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Abstract. If A is a nonsingular matrix such that its inverse is a stochastic matrix, the

classic Brouwer fixed point theorem implies that the matrix equation AXA = XAX has

a nontrivial solution. An explicit expression of this nontrivial solution is found via

the mean ergodic theorem, and fixed point iteration is considered to find a nontrivial

solution.
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1. Introduction

The matrix equation

ABA= BAB, (1.1)

where both A and B are square matrices of the same size, is closely related to the parameter-

independent Yang-Baxter equation (independently introduced by C. N. Yang in 1968 and

Rodney Baxter in 1971 in statistical mechanics) and the theory of braid groups. The Yang-

Baxter equation and braid groups, together with knot theory, have been extensively studied

by physicists and mathematicians in the past decades — cf. Ref. [4] for more details on

the Yang-Baxter equation and related topics. However, to our knowledge even the relevant

simple matrix equation (1.1) has not been seriously explored in matrix theory.

Finding all pairs of matrices (A, B) that satisfy Eq. (1.1) is no trivial task. Thus given

one of the two n× n matrices A and B (say A), finding B to satisfy the matrix equation

(1.1) is equivalent to solving a system of n2 quadratic equations. The solution to a system
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of polynomial equations is a major topic in algebraic geometry, and it is not easy to find all

of the solutions of the system even with 3× 3 matrices.

In this paper, we are interested in finding all solutions of the following matrix equation

AXA= XAX (1.2)

for a given invertible matrix A such that A−1 is a stochastic matrix. A matrix is called

stochastic if it is a nonnegative matrix such that each of its row sums equals 1.

Most matrix equations that have been studied are linear in the unknown matrix, and

there are many established tools and methods to solve linear matrix equations. For exam-

ple, the vector space structure of the solution set to the equation AX = XA (for all matrices

that commute with A) is determined by the Jordan form structure of the matrix A [1].

However, the matrix equation (1.2) is nonlinear, and there is no general algebraic the-

ory to assist in finding its solution. Eq. (1.2) obviously has two trivial solutions, the zero

solution and the solution of X = A. In this paper, we show that Eq. (1.2) has nontrivial

solutions when A−1 is a stochastic matrix, one of which is a stochastic solution. We may

also regard Eq. (1.2) as a stochastic matrix equation, for which we want to find a stochastic

solution. For another example of a stochastic matrix equation, see Refs. [5,6,8] and other

references therein.

In the next section, we use the classical Brouwer fixed point theorem to establish the

existence of a nontrivial solution to Eq. (1.2). This famous theorem says that if f is a

continuous mapping from a compact convex set D into itself, then f has a fixed point —

i.e. f (x∗) = x∗, where x∗ ∈ D. An explicit form of this nontrivial solution is found in

Section 3, by invoking the mean ergodic theorem for stochastic matrices. Another explicit

nontrivial solution is also obtained in Section 4, due to the special structure of the matrix

equation. A discussion on computing nontrivial solutions is presented in Section 5, and we

summarize our results in Section 6.

2. The Existence of a Nontrivial Solution

The following Theorem proves the existence of a solution to Eq. (1.2).

Theorem 2.1. Suppose A∈ Rn×n is invertible such that its inverse A−1 is a stochastic matrix.

Then the equation (1.2) has a solution X ∗ = Z∗A−1 where Z∗ is a stochastic matrix, and hence

X ∗ is a stochastic matrix.

Proof. Write the equation (1.2) as

XA= A−1XAXAA−1 .

Let Z = XA. Then the above equation is the following fixed point equation for Z :

Z = A−1Z2A−1 .
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Denote by D the set of all n× n stochastic matrices. Then D is a closed, bounded, and

convex subset of Rn×n [3]. For each Z ∈ D let

f (Z) = A−1Z2A−1 . (2.1)

Since A−1 ∈ D and since the set D is closed under multiplication, f maps D into itself.

Clearly f : D→ D is continuous. Hence, by Brouwer’s fixed point theorem, there is Z∗ ∈ D

such that f (Z∗) = Z∗ — i.e.

Z∗ = A−1(Z∗)2A−1 .

Define X ∗ = Z∗A−1. Then X ∗ is a stochastic matrix and a solution of Eq. (1.2).

This theorem does not guarantee that a nontrivial solution can be obtained via the

fixed point approach. However, if A is not a stochastic matrix then the solution X ∗ cannot

be A, so it must be a nontrivial solution. Thus we have the following result.

Corollary 2.1. Under the same condition as in Theorem 2.1, if in addition A is not a stochastic

matrix then a nontrivial solution of Eq. (1.2) can be obtained via the fixed point approach.

Remark 2.1. From [2], if A−1 is a stochastic matrix, then A is not a stochastic matrix if and

only if A is not a permutation matrix.

We have the following result as a special case of Theorem 2.1 and Corollary 2.1.

Corollary 2.2. Let A be an upper (or lower) triangular matrix. If A is invertible such that its

inverse A−1 is a stochastic matrix, then the equation (1.2) has a solution X ∗ = Z∗A−1 where

Z∗ is an upper (or lower) triangular stochastic matrix. Consequently, the solution X ∗ is also

an upper (or lower) triangular stochastic matrix. If in addition A is not a stochastic matrix,

then the solution is nontrivial.

Proof. The proof is the same, on choosing D to be the set of all upper (or lower)

triangular stochastic matrices and noting that the inverse of an upper (or lower) triangular

matrix is also upper (or lower) triangular, and that D is closed under multiplication.

3. Explicit Nontrivial Solution

We can find an explicit nontrivial solution, as envisaged under Theorem 2.1 and Corol-

lary 2.2, and to do so we introduce the following definition.

Definition 3.1. For any n× n matrix C , define

Cm =
1

m

m−1
∑

i=0

C i .

Then by the Cesaro limit we mean

P = lim
m→∞Cm ,

if this limit exists.
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We recall the well-known result that the Cesaro limit exists for an n×n matrix C if and

only if its spectral radius ρ(C) < 1, or else ρ(C) = 1 with the condition that each eigen-

values on the unit circle in the complex plane is semisimple [7]. We have the following

properties for any stochastic matrix [3,7].

Lemma 3.1. If C ∈ Rn×n is a stochastic matrix, then the following statements are true.

(a) Each eigenvalue on the unit circle in the complex plane is semisimple — i.e. its algebraic

and geometric multiplicities are equal.

(b) The Cesaro limit P = limm→∞ Cm exists.

(c) P is a stochastic matrix.

(d) P is idempotent — i.e. P2 = P. (In fact, P is a projection matrix onto N(C − I) along

R(C − I).)

(e) C P = PC = P.

(f) If C is invertible, then C−1P = PC−1 = P.

(g) There exist bases {x1, · · · , xk} of N(C − I) and {y1, · · · , yk} of N(C T − I) such that

x T
i y j = δi j for all i and j, and P =

∑k

i=1 x i yT
i where k is the multiplicity of the

eigenvalue 1 of C.

We now proceed to find the explicit nontrivial solution.

Theorem 3.1. If C = A−1 is a stochastic matrix, then P =
∑k

i=1 x i yT
i is the matrix in

Lemma 3.1 — a fixed point matrix to Eq. (2.1), and hence a nontrivial solution of Eq. (1.2)

unless P = A.

Proof. From Lemma 3.1 (d) and (e),

f (P) = C P2C = C PC = PC = P ,

so P is a fixed point matrix of Eq. (2.1) and hence a solution to Eq. (1.2).

Now we show that the matrix C = A−1 in Corollary 2.2 is a stochastic matrix such that

1 is the only eigenvalue on the unit circle in the complex plane.

Lemma 3.2. Let A be an upper (or lower) triangular matrix. If A is invertible such that its

inverse C = A−1 is a stochastic matrix, then the eigenvalue 1 is the only eigenvalue of C on

the unit circle in the complex plane.

Proof. Since C is a stochastic matrix, 1 is an eigenvalue of C . Since C is an upper (or

lower) triangular matrix, all of its eigenvalues appear in its diagonal entries; and since C is

also a nonnegative matrix, no eigenvalue of C can be complex or negative. Consequently,

1 is the only eigenvalue of C on the unit circle in the complex plane.

For a stochastic matrix C such that 1 is the only eigenvalue on the unit circle in the

complex plane, we have the following result that is stronger than Lemma 3.1 [7].
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Lemma 3.3. Suppose that an n× n matrix C is a stochastic matrix such that 1 is the only

eigenvalue on the unit circle in the complex plane. Then all the conclusions of Lemma 3.1 are

valid, with part (b) strengthened to

(b) P = limn→∞ Cn exists.

Thus when C is a stochastic matrix such that 1 is the only eigenvalue on the unit circle

in the complex plane, the fixed point matrix P can be found from either Lemma 3.1 (g) or

Lemma 3.3 (b).

4. Another Nontrivial Solution

Prior to presenting another solution of the matrix equation (1.2), we give the following

simple motivating example.

Example 4.1. Let

A=

�

0 1

1 0

�

so that its inverse (i.e. itself) is stochastic. From direct computation, we find all four

solutions to Eq. (1.2) — viz. the zero matrix and the A matrix, as the trivial solutions, and

the projection matrix

P =
1

2

�

1 1

1 1

�

and the row-sum-zero matrix

B =
1

2

�

−1 1

1 −1

�

as nontrivial solutions. The observation that the last solution B is just A− P leads to the

following result.

Theorem 4.1. If A−1 is a stochastic matrix, then a solution to Eq. (1.2) is the matrix X ∗ =
A− P, where P is as in Theorem 3.1,

Proof. Since AP = PA= P and P2 = P, we have

A(A− P)A=A3− APA= A3− P

and

(A− P)A(A− P) =A3− PA2 − A2P + PAP

=A3− P − P + P = A3− P ,

hence A− P is a solution of Eq. (1.2).
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5. Discussion on How to Compute P

Suppose we want to compute a fixed point matrix P of (2.1) by fixed point iteration —

i.e. we set Z0 = I where I is the identity matrix, and

Zm = f (Zm−1) for m = 0,1, · · · ,
where

f (Z) = A−1Z2A−1 = C Z2C .

Since

Zm = C2m+1−2 for m= 0,1,2, · · · , (5.1)

the fixed point iteration is an efficient way to compute C j for j = 2m+1 − 2 where m =

0,1,2, · · · . Thus by Lemma 3.3, if 1 is the only eigenvalue of C on the unit circle in the

complex plane then Zm → P as m → ∞. In such a case, it is notable from Eq. (5.1) that

Zm → P quadratically as m → ∞, which is a very fast convergence. We illustrate this

further with two numerical examples.

Example 5.1. Consider

C =

�

0.9 0.1

0.025 0.975

�

,

where 1 is the only eigenvalue of C on the unit circle in the complex plane with multiplicity

1. From Lemma 3.1 (g), one can compute

P =

�

0.2 0.8

0.2 0.8

�

.

In Table 1, we have compiled ‖Zm− P‖∞:Table 1: In�nity-norm errors in Example 5.1.
m ‖Zm− P‖∞
1 1.23× 100

2 2.47× 10−1

3 2.91× 10−2

4 4.06× 10−4

5 7.89× 10−8

6 6.13× 10−15

Example 5.2. Consider

C =











1 0 0 0

0.4 0.3 0 0.3

0.1 0.5 0.2 0.2

0 0 0 1











,
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where 1 is the only eigenvalue of C on the unit circle in the complex plane, and semisimple

with multiplicity 2. From Lemma 3.1 (g), one can compute

P =











1 0 0 0

4/7 0 0 3/7

27/56 0 0 29/56

0 0 0 1











.

In Table 2, we have compiled ‖Zm− P‖∞:Table 2: In�nity-norm errors in Example 5.2.
m ‖Zm− P‖∞
1 5.80× 100

2 6.78× 10−3

3 4.77× 10−7

4 2.14× 10−15

If C has eigenvalues other than 1 on the unit circle in the complex plane, the conver-

gence of the fixed point iteration (2.1) is not guaranteed; and even if it converges, it may

not converge to the fixed point matrix P in Theorem 3.1. We illustrate this through the

following two examples.

Example 5.3. Let

C =

�

0 1

1 0

�

.

The matrix C has −1 as one eigenvalue, and A= C . The fixed point iteration converges to

I, a trivial fixed point matrix of Eq. (2.1) that gives a trivial solution X ∗ = A. Thus the fixed

point iteration fails to find the fixed point matrix P in Theorem 3.1. From Lemma 3.1 (g),

we have

P =
1

2

�

1 1

1 1

�

.

Example 5.4. Let

C =







0 1 0

0 0 1

1 0 0





 .

The matrix C has two complex eigenvalues−1/2± i
p

3/2 on the unit circle in the complex

plane, and hence the fixed point iteration does not converge. In fact, we have Zm = I

when m is even and Zm = C−1 = A when m is odd, so the fixed point iteration fails to find

a fixed point matrix for Eq. (2.1). Again using Lemma 3.1 (g), one finds

P =
1

3







1 1 1

1 1 1

1 1 1






.
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6. Conclusions

We have obtained two nontrivial solutions of the Yang-Baxter-type matrix equation

(1.2) when A−1 is stochastic. When 1 is the only eigenvalue of C on the unit circle in

the complex plane, the fixed point iteration (2.1) provides a fast algorithm to compute

the fixed point matrix P, without the necessity to find the left and right (orthonormal)

eigenvectors of C associated with the eigenvalue 1. When C has at least one eigenvalue

on the unit circle in the complex plane other than 1, the fixed point iteration may not

converge — and even if it converges, it may not locate P. In such cases, Lemma 3.1 (b)

or (g) can be used to compute P. Of course, another nontrivial solution A− P is available

once P is available. A residual question is whether there are nontrivial solutions other than

those given in this paper, and inter alia we intend to consider this. Indeed, our future goal

is to find all relevant solutions and the structure of the solution manifold.
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