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Abstract. An infinite Bernoulli-Euler beam (representing the “combined rail” con-

sisting of the rail and longitudinal sleeper) mounted on periodic flexible point sup-
ports (representing the railpads) has already proven to be a suitable mathematical

model for the floating ladder track (FLT), to define its natural vibrations and its
forced response due to a moving load. Adopting deliberately conservative param-

eters for the existing FLT design, we present further results for the response to a

steadily (uniformly) moving load when the periodic supports are assumed to be
elastic, and then introduce the mass and viscous damping of the periodic supports.

Typical support damping significantly moderates the resulting steady deflexion at

any load speed, and in particular substantially reduces the magnitude of the res-
onant response at the critical speed. The linear mathematical analysis is then ex-

tended to include the inertia of the load that otherwise moves uniformly along the
beam, generating overstability at supercritical speeds — i.e. at load speeds notably

above the critical speed predicted for the resonant response when the load inertia

is neglected. Neither the resonance nor the overstability should prevent the safe
implementation of the FLT design in modern high speed rail systems.

AMS subject classifications: 93A30, 74H10, 74H15, 74H55, 44A30
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load inertia, floating ladder track, Fourier-Laplace transform solution.

1. Introduction

Despite the ubiquity of cross-tie rail tracks nowadays, in Britain and North America

there were longitudinal tie tracks in some of the earliest railway developments using

wooden sleepers (including primitive constructions from tall trees laid end to end),

and much later with longitudinal sleepers of steel and then reinforced concrete. In a
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Figure 1: FLT test installation at the RTRI (courtesy H. Wakui).

Figure 2: Vibration mitigation by the FLT (courtesy H. Wakui).

modern low maintenance version called a ladder track, the rails are fixed onto “ladder

sleepers” consisting of two parallel longitudinal reinforced concrete beams separated

by transverse connectors [1]. The floating ladder track (FLT), subsequently designed

by H. Wakui and his colleagues at the Rail Technical Research Institute (RTRI) of Japan

Railways, consists of a ladder track mounted upon discrete flexible supports (railpads)

on a solid concrete track-bed — cf. Fig. 1. This FLT structure can significantly reduce

traffic vibration and noise, as the experimental results in Fig. 2 reproduced from Ref. [2]

demonstrated. The FLT has been installed in urban rail systems in the Tokyo region

(e.g. as illustrated in Fig. 3), and in China there is now considerable interest in the

potential for vibration mitigation by employing suitably based ladder tracks [3–5].

Although there is an extraordinarily large literature on modelling the dynamic be-

haviour of railway tracks, and in recent years the research effort has intensified with
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Figure 3: FLT implementation in Tokyo region (courtesy H. Wakui).

the development of high speed rail, the periodic discrete flexible supports (the rail-

pads) are an essential feature of the FLT design. Periodic structures have often been

discussed in various ways, but with some exceptions in the study of wave propagation

the investigations have usually not considered support flexibility. However, an infi-

nite Bernoulli-Euler beam (representing the “combined rail” consisting of both the rail

and a longitudinal sleeper) mounted on periodic flexible point supports (representing

the railpads) that may move transversely has proven to be a remarkably suitable sim-

ple mathematical model for the FLT, which not only defines its natural vibrations but

also readily extends to account for the forced vibrations due to a moving load [6, 7].

Provided the concrete track-bed serves to inhibit any significant underlying Rayleigh

wave propagation, the chief safety issue to consider is the dynamic behaviour of the

periodically supported ladder track.

For elastic point supports, additional extensive modes were found to supplement

the pinned-pinned natural vibrations familiar from structures with fixed support, with

fundamentals in the lower end of the experimental frequency range shown in Fig. 2

— cf. Ref. [6]. Further, a steadily moving localised (point) load travelling over the

Bernoulli-Euler beam on periodic elastic point supports was shown to produce steady

forced deflexions that were largely confirmed by numerical simulations at the RTRI. It

was noted in Ref. [7] that the form of the forced response depends upon the load speed

— and in particular, that there is a critical load speed (a system resonance) at which

the response becomes most pronounced, depending upon the support stiffness.

Assuming elastic point supports as in Refs. [6, 7], in the next Section of this article

we again illustrate the typical hierarchy of responses due to a localised load moving

steadily on the RTRI FLT design, using appropriate physical parameters — where our
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further calculations show the steady deflexion for a typical load is but a few millimetres

except at the critical load speed (resonance) that depends upon the support stiffness,

when the amplitude becomes several orders of magnitude larger. However, one may an-

ticipate that not only the stiffness but perhaps also the mass and quite likely the viscous

damping of the periodic supports are important factors, and the inclusion of load iner-

tia has been found to lead to destabilisation in systems with continuous support [8,9].

(Investigations of the response involving load inertia have been distinguished there and

elsewhere as due to a moving mass, but for simplicity of nomenclature we retain “mov-

ing load” as the generic term here, and later specify when the load inertia is included.)

Thus in this article we subsequently extend our analysis for an infinite Bernoulli-Euler

beam mounted on periodic flexible point supports to first include the support mass and

damping in addition to the support stiffness, and then to examine the residual stability

issue when load inertia is considered.

The presentation is therefore arranged as follows. Further results for periodic elastic

point supports are discussed in Section 2, and the mathematical model is extended

in Section 3 to include the support mass and damping and also the load inertia. In

Section 4, the significant moderation of the response to a steadily moving load due to

the support damping is discussed. Our unified mathematical analysis using Fourier-

Laplace transforms is presented in Section 5, followed by results in Section 6 on the

inertial instability that can occur at supercritical load speeds. Concluding remarks are

made in Section 7, followed by two Appendices to elucidate the key integral in our

analysis and the dimensionless variables adopted.

2. FLT Response due to a Steadily Moving Load assuming Elastic Supports

When the mass and damping of the supports are neglected, the governing equation

we adopt to model the deflexion η(x, t) of an infinite uniform Bernoulli-Euler beam

representing the “combined rail” on periodic elastic discrete supports is [7]

EIηxxxx +mηtt + γ

∞
∑

n=−∞

δ(x− nL) η = f(x, t) , |x| < ∞, t > 0 , (2.1)

where EI is the elasticity coefficient and m is the mass per unit length of the beam, γ
is the stiffness of each periodic support, L is the distance between any two successive

discrete (point) supports, and the reaction from the supports is represented by the

summation on the left-hand side. As in Ref. [7], we consider a steadily moving localised

load of velocity V represented by the forcing function f(x, t) = −F0 δ(x−V t) involving

the Dirac delta function, corresponding to the point of contact of a single wheel load;

and in our calculations here we again adopt the magnitude F0 = 80 kN corresponding

to the maximum static wheel load in Japan (the typical value is 50 kN for urban rail

and 60 kN for Shinkansen). The point mass assumption in the forcing function is not

restrictive if the smallest characteristic length of the response is rather larger than the

actual contact dimension. Moreover, in the linear theory the composite response due to
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several points of contact (the additional wheel loads in practice) could be constructed

by superposition — and in any case it turns out to be quite sufficient for us to consider

the response due to a single wheel load in order to examine the safety of the FLT design,

even if some reinforcement between the responses due to several points of contact were

to occur. Incidentally, in this article we continue to assume that the moving load always

remains in contact with the beam.

Together with appropriate initial conditions for η(x, t) and boundary conditions at

infinity, Eq. (2.1) could be solved as an initial value problem. However, on introducing

the coordinate X = x − V t in a reference frame moving with the load, in Ref. [7] we

proceeded to obtain an informative exact solution for the deflexion as a function of

space and time based on Fourier analysis. On preferring to write ζ(X, t) = η(x(X, t))
for the deflexion in this co-moving reference frame here, this solution is

ζ(X, t) =
F0

2π

(

−
∫ ∞

−∞

e−ikX

EIk4 −mk2V 2
dk +

γ

L

∞
∑

p=−∞

ei2πp(X+V t)/L

×
∫ ∞

−∞

e−ikX

[EI(k − 2πp/L)4 −mk2V 2][EIk4 −mk2V 2][1 + γM(k, kV )]
dk

)

. (2.2)

The integrals in Eq. (2.2) involve the load speed V but they are all time-independent.

It is also important to note that the response consists of: (1) a steady component

(stationary relative to the load) accompanying the load given by the first integral plus

the contribution from the p = 0 term in the sum, which is proportional to the ratio of

the support stiffness γ to the support separation L; and (2) oscillatory contributions

from the other terms in the summation (for all p 6= 0) that further involve the support

separation. Part of the p = 0 term in the sum cancels the first integral such that

the residual determines the dominant steady deflexion accompanying the load that

we proceed to evaluate, whereas the oscillatory contributions correspond to negligible

outgoing waves. In passing, we note that this is consistent with the assumption that

the response to a steadily moving load is ipso facto a steady state, often made in the

literature.

Here we again illustrate the typical response for a steadily moving point load on

the Bernoulli-Euler beam assuming periodic elastic supports, on adopting the value

Γ = 1 for the support stiffness parameter defined by Γ ≡ γL3/(4EI) as in Ref. [7].

Fig. 4 shows how the steady deflexion depends upon the load speed, and it is notable

that the magnitude is always finite — even near the critical speed Vcrit ≃ 307 m/s,

where the amplitude is much larger and the response becomes extensive. The support

stiffness has previously been identified as an important parameter, such that Vcrit can

become dangerously low for softer supports (Γ < 1), but Vcrit increases monotonically

as Γ increases — cf. Fig. 11 in Ref. [7]. Thus for any support stiffness parameter

value Γ ≥ 1 the predicted critical speed Vcrit of over 300 metres per second is too

high for the associated resonance phenomenon to be a major safety concern, even for

modern fast rail systems. This critical speed estimate was also obtained independently

in finite element calculations for the FLT at the RTRI. (The chosen value Γ = 1 is
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Figure 4: Load speed dependent steady deflexion, for elastic supports with stiffness parameter Γ = 1.

deliberately conservative — i.e. less than a quarter of the actual value in the RTRI FLT

design, where the support stiffness is also expected to increase with age.) As shown

in Fig. 5, the support stiffness parameter Γ also proves to be important in determining

that the maximum magnitude of the deflexion at subcritical load speeds V < Vcrit is no

more than a few millimetres for the typical stiffness of the periodic supports in the FLT

design, consistent with some experimental observations and the previously mentioned

numerical simulation carried out at the RTRI.

A rail track critical speed was predicted long ago by Timoshenko, in a Bernoulli-

Euler beam model on simple continuous support [10]. In passing, we note the replace-

ment for Eq. (2.1) to describe a Bernoulli-Euler beam on a Winkler foundation yields

the free wave dispersion relation ω2 = (EIk4 + γ)/m, and hence Vcrit = (4EIγ/m2)1/4

as the local minimum of the phase speed c(k) ≡ ω/k [10]. The large but finite ampli-

tude extensive response seen in Fig. 4 differs from the theoretically infinite localised

response at the critical speed for a beam on a continuous elastic (Winkler) founda-

tion in the absence of dissipation, whereas the subcritical (V < Vcrit) and supercrit-

ical (V > Vcrit) responses with significantly smaller magnitudes resemble the corre-

sponding forms in that context [11] — viz. a subcritical quasi-static response and the

emergence of waves in the supercritical response, with characteristically shorter waves

ahead and longer waves behind the moving load. The non-localised wave-like nature

of the response near the critical speed in Fig. 4 presumably reflects the periodic sup-
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Figure 5: Maximum deflexion in the subcritical response vs. support stiffness Γ.

port structure, whereas the subcritical and supercritical responses (with forms similar

to those for continuous support) evidently do not. Since a realistic solution cannot

be nonzero at a sufficiently large distance from the load, a few authors have rejected

the predicted supercritical steady response due to its extensive nature, which now also

characterises the response near the critical speed (rather than the localised unbounded

solution previously found when the support is continuous). However, the predicted

nonzero amplitude at a distance can be viewed as due to the load moving steadily for a

theoretically infinite time, and in general one may expect the response to always tend

to zero away from the load when there is some dissipation mechanism included in the

mathematical model.

We draw attention to the extensive literature on an analogous hierarchy of load

speed dependent responses due to a moving load on a floating ice plate, where flexural-

gravity waves occur above the critical speed — and incidentally, where it was noted that

the resonant response at the critical load speed corresponds to energy continuously ac-

cumulating immediately underneath the load, since the minimum phase speed also

coincides with the group speed [12, 13]. In that context, the localised unbounded

response predicted at the critical speed in the absence of dissipation led to time-

dependent calculations for an impulsively-started steadily moving load, to examine

the approach to the complete hierarchy of load speed dependent steady responses due

to a line load [13, 14], and subsequently also the higher-dimensional response due to

a point load [15]. This time-dependent work not only justified the earlier assumption

in the literature that the response to a steadily moving load must be a steady state, but

also predicted how rapidly each response in the hierarchy evolves. Recently, there has
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Figure 6: Load speed dependent response for support damping coefficient µs = 0.1 (Γ = 1).

been considerable work on relevant nonlinear calculations too, largely prompted by

the unbounded critical speed response predicted by the linear theory [16–19]. Further,

the mathematical model for the ice sheet was extended to include plate viscoelasticity,

which not only rendered finite the formerly predicted infinite deflexion at the criti-

cal speed but also produced steady state responses where the magnitude tends to zero

away from the load in all cases (at all load speeds) [20] — and the corresponding time-

dependent theory led to clarification of the uniqueness of the critical speed (coincident

with the minimum of the phase speed of the flexural gravity waves, and therefore their

associated group speed), and predicted that the evolution to each of the viscoelastic

plate steady state deflexions proceeds even more rapidly [21].

3. Extended Mathematical Model

If the the mass and viscous damping of the periodic supports are also included, the

governing equation (2.1) for the deflexion becomes

EI
∂4η

∂x4
+m

∂2η

∂t2
+

∞
∑

n=−∞

δ(x− nL)

(

m0
∂2

∂t2
+ µ

∂

∂t
+ γ

)

η = f(x, t) , |x| < ∞, t > 0 ,

(3.1)
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Figure 7: Load speed dependent response for support damping coefficient µs = 0.5 (Γ = 1).

where m0 and µ denote the respective mass and viscous damping coefficients for each

periodic support. As foreshadowed in Section 1, we will also include load inertia. The

input function is then

f(x, t) = −
(

M0
d2η

dt2
+ F0

)

δ(x− V t) , (3.2)

where M0 is the point mass and V denotes its constant translation speed along the

horizontal Bernoulli-Euler beam, with the delta function defining the position x of

the load at time t. Both Eq. (3.1) and Eq. (3.2) are expressed relative to a stationary

reference frame, and the total derivative in Eq. (3.2) corresponds to differentiation with

respect to time in the frame of the moving load (following its motion) — cf. also [8].

We could of course explicitly write F0 = M0g where g denotes the gravitational

acceleration, but it is convenient to retain F0 in order to conveniently set it to zero

later and thereby isolate the response due to the load inertia. We bear in mind that the

predicted response when F0 = 0 in our linear theory may be superposed on that due to

the steadily moving load (when M0 = 0) considered in Ref. [7], and as discussed again

in the previous section and also the next section of this article.
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4. Reduced Response of the FLT to a Steadily Moving Load due to Support
Damping

On adopting Eq. (3.1) to include the support mass m0 and a nonzero damping

coefficient µ, the modification of the Fourier analysis in Ref. [7] for a steadily moving

load is straightforward. Thus under the Fourier transform

η̂(k, ω) =

∫ ∞

−∞

∫ ∞

−∞
ei(kx−ωt)η(x, t) dx dt (4.1)

with respect to both x and t, we find that γ in Ref. [7] is replaced by −m0ω
2 − iωµ+ γ,

so let us now just discuss the consequent new results from our calculations.

First of all, we noted that the mass of the railpad is so small in the RTRI FLT design

(m0 is only about 0.3 kg) that its effect is negligible. On the other hand, the viscous

damping of the periodic supports does significantly moderate the response, for typical

conservative values of the damping coefficient in the FLT design. We continue to use

the dimensionless coefficient Γ to characterise the support stiffness, and now introduce

the dimensionless coefficient µs = µL/
√
EIm to characterise the support damping (cf.

also Subsection 5.3 and Appendix B).

Fig. 6 shows the load speed dependent forms when µs = 0.1, and the other param-

eters are the same as in Fig. 4 (including F0 = 80 kN and Γ = 1). Thus in comparison

with the results for the FLT shown in Fig. 4 for purely elastic supports, the response

at or above the critical speed in Fig. 6 is significantly moderated. We observe that the

amplitude now generally tends to zero away from the load as expected, but more im-

portantly the maximum amplitude of the resonant response near the critical speed is

substantially reduced. However, the familiar subcritical and supercritical features can

still be discerned — viz. the static-like form and the characteristic short and long waves

propagated ahead and behind the load, respectively. The forms in Fig. 6 for the support

damping coefficient value µs = 0.1 generally resemble those arising in the cold region

context when the plate viscoelasticity is included in the calculations there [13,20,21],

so even further attenuation might be anticipated if the beam is no longer treated as

elastic. However, as shown in Fig. 7 the predicted attenuation due to a higher support

damping coefficient µs = 0.5 is already substantial, without considering any further

dissipative mechanism.

Indeed, as shown in Fig. 8 the maximum deflexion for the dynamic response be-

comes even less than that of the static deflexion when µs exceeds 0.5, similar to the

result previously found when the support is continuous [8]. Further, although the sup-

port damping may be expected to slowly decline as the railpads age, the value 0.5 for

the support damping coefficient is less than about half of the estimated value in the

RTRI FLT design. Thus the predicted significantly reduced response due to the support

damping alone provides another reason to be confident that the existing design should

prove to be safe for any load speed, including the high critical speed if that were ever

reached. We now proceed to examine the consequences of also including the load

inertia.
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Figure 8: The support damping effect as µs increases through 0.1 to 0.9 (Γ = 1).

5. Fourier-Laplace Transform Solution

5.1. Fourier-Laplace transform

In proceeding with our unified discussion including load inertia, we follow the anal-

ysis in Ref. [7] except that we replace the exponent in time t in the Fourier transform

(4.1) by an explicitly Laplace exponent — cf. also Ref [8]. Thus we introduce the

double transform

η̂(k, s) =

∫ ∞

x=−∞

∫ ∞

t=0
eikx−stη(x, t) dx dt , (5.1)

such that the transformed fundamental equation Eq. (3.1) is

(EIk4 +ms2) η̂ + (m0s
2 + µs+ γ)Q(k, s) = f̂(k, s) , (5.2)

where f̂(k, s) is the transform of the forcing function f(x, t) and

Q(k, s) =

∞
∑

n=−∞

η̄(nL, s)einkL (5.3)

involves the integral transform of η(x, t) with respect to time t only — i.e.

η̄(x, s) =

∫ ∞

0
e−stη(x, t) dt . (5.4)
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For convenience, in writing Eq. (5.2) the assumed initial conditions are

η(x, 0) = 0 and
∂η

∂t

∣

∣

∣

∣

t=0

= 0 .

On dividing by D(k, s) ≡ EIk4 + ms2 and then taking the inverse transform with

respect to k, Eq. (5.2) yields

η̄(x, s) + ν(s)
∞
∑

n=−∞

η̄(nL, s)M(x− nL, s) = N(x, s) (5.5)

where

M(x, s) = F−1

(

1

EIk4 +ms2
; k → x

)

(5.6)

and

N(x, s) = F−1

(

f̂(k, s)

EIk4 +ms2
; k → x

)

(5.7)

are the inverse Fourier transforms analogous to the expressions in Ref. [7] but we now

write ν(s) = m0s
2+µs+γ. Indeed, the corresponding subsequent analysis as in Ref. [7]

likewise renders the analogous important result

Q(k, s) =
N (k, s)

1 + ν(s)M(k, s)
(5.8)

where

M(k, s) =

∞
∑

n=−∞

M(nL, s)einkL (5.9)

and

N (k, s) =

∞
∑

n=−∞

N(nL, s)einkL . (5.10)

Thus we obtain the transformed solution

η̂(k, s) =
f̂(k, s)− ν(s)Q(k, s)

EIk4 +ms2
(5.11)

from Eq. (5.2), given suitable evaluation of M(k, s) and N (k, s).

In passing, we note that the denominator EIk4 +ms2 common to Eqs. (5.6), (5.7)

and (5.11) would be modified if we were also to account for the axial (longitudinal)

stress considered by Kerr in 1972 and then in Ref. [8], or for viscoelasticity in the beam.
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5.2. Uniformly translating inertial point load

The Fourier-Laplace transform of the input function Eq. (3.2) is

f̂(k, s) = −
∫ ∞

x=−∞

∫ ∞

t=0
eikx−st

(

M0
d2η

dt2
+ F0

)

δ(x − V t) dx dt

= −
∫ ∞

X=−∞
eikX

∫ ∞

t=0
e−(s−ikV )t

(

M0
∂2ζ

∂t2
+ F0

)

dt δ(X) dX

= −
(

M0(s− ikV )2 ζ̄(0, s − ikV ) +
F0

s− ikV

)

, (5.12)

on introducing ζ(X, t) = η(x(X, t), t) where X = x − V t is the space coordinate in

the translating frame of the load, reversing the order of integration, and writing the

relevant Laplace transform of ζ(X, t) with respect to time t — i.e.

ζ̄(X, s − ikV ) =

∫ ∞

0
e−(s−ikV )tζ(X, t) dt , (5.13)

consistent with the Fourier-Laplace transform

η̂(k, s) =

∫ ∞

−∞

∫ ∞

0
eikx−st η(x, t) dt dx

=

∫ ∞

−∞
eikX

∫ ∞

0
e−(s−ikV )tζ(X, t) dt dX = ζ̂(k, s − ikV ) . (5.14)

Substituting the result Eq. (5.12) into Eq. (5.7) produces

N(x, s) = − 1

2π

∫ ∞

−∞
e−ikxM0(s− ikV )2ζ̄(0, s − ikV ) + F0/(s − ikV )

EIk4 +ms2
dk , (5.15)

such that

N(nL, s) = − 1

2π

∫ ∞

−∞
e−iℓ nLM0(s− iℓV )2ζ̄(0, s − iℓV ) + F0/(s − iℓV )

EIℓ4 +ms2
dℓ . (5.16)

Thus the function N (k, s) defined by Eq. (5.10) is

− 1

2π

∫ ∞

−∞

(

∞
∑

n=−∞

ei(k−ℓ)nL

)

M0(s−iℓV )2ζ̄(0, s−iℓV )+F0/(s−iℓV )

EIℓ4 +ms2
dℓ

= −
∫ ∞

−∞

∞
∑

p=−∞

δ[(ℓ−k)L− 2πp]
M0(s−iℓV )2ζ̄(0, s−iℓV )+F0/(s−iℓV )

EIℓ4 +ms2
dℓ

= − 1

L

∞
∑

p=−∞

M0[s∗−i(2πp/L)V ]2 ζ̄(0, s∗−i(2πp/L)V )+F0/[s∗−i(2πp/L)V ]

EI(k + 2πp/L)4 +m(s∗ + ikV )2
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on invoking the Poisson identity, where in the last line we write s∗ = s − ikV for the

Doppler-shifted form in the load frame — cf. the definition Eq. (5.13) and the result

Eq. (5.14). Thus from Eq. (5.8) the factor Q(k, s), to be incorporated in the transformed

governing equation Eq. (5.2) together with the form −M0s
2
∗ζ̄(0, s∗)+F0/s∗ for the input

function from Eq. (5.12), is

− 1

L

∞
∑

p=−∞

M0[s∗−i(2πp/L)V ]2 ζ̄(0, s∗−i(2πp/L)V ) + F0/[s∗−i(2πp/L)V ]

[EI(k+2πp/L)4 +m(s∗+ikV )2] [1 + ν(s∗+ikV )M(k, s∗+ikV )]
. (5.17)

Consequently, the transformed solution for the deflexion in the load frame is

ζ̂(k, s∗) = −M0s
2
∗ ζ̄(0, s∗) + F0/s∗
D(k, s∗ + ikV )

+
ν(s∗ + ikV )

L

×
∞
∑

p=−∞

M0[s∗ − i(2πp/L)V ]2 ζ̄(0, s∗ − i(2πp/L)V ) + F0/[s∗ − i(2πp/L)V ]

D(k + 2πp/L, s∗ + ikV )D(k, s∗ + ikV )F(k, s∗ + ikV )
, (5.18)

where we have written D(k, s∗+ikV ) = EIk4+m(s∗+ikV )2 and also F(k, s∗+ikV ) =
1+ν(s∗+ ikV )M(k, s∗+ ikV ). The inverse Fourier transform with respect to k (i.e. the

operation
∫∞
−∞ exp(−ikX) ... dk) yields the deflexion in the Laplace domain relative to

the load, corresponding to the transform Eq. (5.13) in time t — viz.

ζ̄(X, s∗) = −
(

M0s
2
∗ζ̄(0, s∗) +

F0

s∗

)(

1

2π

∫ ∞

−∞

e−ikX

D(k, s∗ + ikV )
dk

)

+
1

L

∞
∑

p=−∞

(

M0[s∗ − i(2πp/L)V ]2ζ̄(0, s∗ − i(2πp/L)V ) +
F0

s∗ − i(2πp/L)V

)

×
(

1

2π

∫ ∞

−∞
e−ikX ν(s∗ + ikV )

D(k + 2πp/L, s∗ + ikV )D(k, s∗ + ikV )F(k, s∗ + ikV )
dk

)

,

(5.19)

which replaces equation (5) in Ref. [8] for the case of continuous support.

In the analysis for the steadily moving load (i.e. with M0 = 0 but F0 6= 0) first

presented in Ref. [7] and further applied in Section 3 of this article — when the analogy

to the result Eq. (5.19) is a Fourier rather than a Laplace transform in time t — on

taking the relevant inverse Fourier transformation we obtained the result Eq. (2.2),

where it was found to be sufficient to consider only the p = 0 term in the summation.

The subsequent retention of the p = 0 term alone in the summation in Eq. (5.19) here

was also found to be justified numerically, thereby identifying the important integral in

the resultant dispersion relation in the presence of load inertia as discussed below.

On retaining only the p = 0 term in the summation in Eq. (5.19), we have

ζ̄(X, s∗) = −
(

M0s
2
∗ζ̄(0, s∗) +

F0

s∗

)

1

2π

∫ ∞

−∞
e−ikXA(k, s∗ + ikV ) dk (5.20)
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on writing

A(k, s∗ + ikV ) =
1

D(k, s∗ + ikV )
− ν(s∗ + ikV )/L

D(k, s∗ + ikV )2F(k, s∗ + ikV )
. (5.21)

Setting X = 0 yields

ζ̄(0, s∗) = − F0

s∗[M0s2∗ + χ(s∗)]
(5.22)

where

χ(s∗) =

[

1

2π

∫ ∞

−∞
A(k, s∗ + ikV ) dk

]−1

, (5.23)

and hence

ζ̄(X, s∗) = − F0

2πs∗

∫ ∞

−∞
A(k, s∗ + ikV ) dk

+
M0s

2
∗

M0s2∗ + χ(s∗)

F0

2πs∗

[
∫ ∞

−∞
e−ikXA(k, s∗ + ikV ) dk

]

. (5.24)

Eq. (5.24) reduces to equation (7) of Ref. [8] when ν(s∗ + ikV ) = 0, and in principle

may be inverted by integration over a Bromwich contour to produce the predicted

deflexion ζ(X, t). As in equation (7) of Ref. [8], the first member in Eq. (5.24) describes

the beam deflexion under a steadily moving load (when M0 = 0), and the second

defines the beam deflexion caused by the load inertia (when M0 6= 0). In particular,

under this inversion the load inertial contributions to the deflexion ζ(X, t) come from

the poles corresponding to the zeroes of the denominator in the first factor outside the

second integral of Eq. (5.24) — i.e. where

M0s
2
∗ + χ(s∗) = 0 , (5.25)

analogous to equation (8) in Ref. [8]. Thus there is instability if there is a root s∗ of

Eq. (5.25) with positive real part. Indeed, if we simply consider the consequences of

the load inertia alone (i.e. consider M0 6= 0 but assume F0 = 0), on setting X = 0 in

Eq. (5.20) we immediately obtain

1 +M0s
2
∗

1

2π

∫ ∞

−∞
A(k, s∗ + ikV ) dk = 0 , (5.26)

a trivial re-expression of the approximate dispersion relation Eq. (5.25). Moreover, on

writing s∗ = i(ω − kV ), Eq. (5.26) takes the form

1−M0(ω − kV )2
1

2π

∫ ∞

−∞

(

1

D(k, ω)
− ν(iω)/L

D(k, ω)2F(k, ω)

)

dk = 0 , (5.27)

where ν(iω) = γ + iµω − m0ω
2 and F(k, ω) = 1 + ν(iω)M(k, ω), but otherwise the

notation including D(k, ω) = EIk4 −mω2 is entirely consistent with Ref. [7].
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5.3. Dimensionless representation

Reference may be made to the Appendix, for background to the following dimen-

sionless representation of the approximate dispersion relation for the inertial instability.

On introducing the dimensionless variables α = kL and σ = κL as in Ref. [7], where

however

κ =

(

m|ω|2
EI

)1/4

e iΘ/2

is now complex (−π < Θ < 0 for overstability), we have

γ + iµω −m0ω
2 =

EI

L3

(

γs + iµsσ
2 −msσ

4
)

if we use subscripts s to denote the corresponding dimensionless parameters

ms =
m0

mL
, µs =

µ

mc
, γs =

γL3

EI

where c =
√

EI/mL2. Consequently, the integral in Eq. (5.27) becomes

L3

EI

∫ ∞

−∞

(

1

α4 − σ4
− γs + iµsσ

2 −msσ
4

[α4 − σ4]2F(α, σ)

)

dα , (5.28)

where we write (cf. also Eq. (13) of [7])

F(α, σ) = 1− Γ(σ)

σ3

(

sinhσ

coshσ − cosα
− sinσ

cos σ − cosα

)

since

M(α, σ) = − L3

EI

1

σ3

(

sinhσ

coshσ − cosα
− sinσ

cos σ − cosα

)

,

and where we now have

Γ(σ) =
γs + iµsσ

2 −msσ
4

4

— i.e. a function of σ. The term F(α, σ) in the rewritten integral argument in Eq. (5.28)

notably has the numerator factor

(cosh σ − cosα)(cos σ − cosα)− Γ(σ)

σ3
[sinhσ(cos σ − cosα)− sinσ(cosh σ − cosα)] ,

which we conveniently denoted by B(α, σ) in Ref. [7].

We can write ω − kV = Ω = Ωs

√

EI/(mL4) such that σ2 = Ωs + αVs, where

Vs = V/c = V
√

mL2/(EI) is the dimensionless horizontal load speed. Thus with

σ2 representing Ωs + αVs in the integral, the dimensionless form of the approximate

dispersion relation Eq. (5.27) is

MsΩ
2
s

1

2π

∫ ∞

−∞

(

1

α4 − σ4
− γs + iµsσ

2 −msσ
4

(α4 − σ4)2F(α, σ)

)

dα = 1 (5.29)



Floating ladder Track Response to a Moving Load 301

with Ms = M0/(mL) the dimensionless mass of the load; or

Ms =
χ(Ωs)

Ω2
s

, (5.30)

where on recalling Eq. (5.23) we denote

χ(Ωs) =

[

1

2π

∫ ∞

−∞

(

1

α4 − σ4
− γs + iµsσ

2 −msσ
4

(α4 − σ4)2F(α, σ)

)

dα

]−1

. (5.31)

Another useful re-expression of the approximate dispersion relation is

1 +MsΩ
2
s

2

π

∫ ∞

−∞
Γ(σ)

R(α, σ) − 1/[4Γ(σ)]

α4 − σ4
dα = 0 , (5.32)

where

R(α, σ) =
1

(α4 − σ4)F(α, σ)
.

The integrand fraction in Eq. (5.32) previously appeared in our analysis of Ref. [7],

when we observed that the only corresponding singularities occur where B(α, σ) = 0.

6. Inertial Instability

The dimensionless form Eq. (5.29) of the approximate dispersion relation Eq. (5.27)

has been solved numerically using MATLAB and Maple, adopting the “combined rail”

parameters EI = 1.6 × 107Nm2 and m = 300 kg/m as before. Although the railpad

mass is negligible in the FLT design as previously mentioned, which we may now note

corresponds to ms = m0/(mL) << 1, both the support damping and support stiffness

proved to be important for the overstability due to the load inertia found to arise above

a sufficiently high supercritical speed. Indeed, the minimum load speed at which the

instability emerged progressively increased beyond the critical speed as the support

damping was increased, for any given support stiffness. This conclusion is first illus-

trated below for the support stiffness parameter Γ = 1 (i.e. γs = 4) and the two values

µs = 0.1 and µs = 0.5 for the support damping coefficient, conservatively chosen as

before to investigate the safety of the FLT design.
The inertial instability surface defining the dimensional growth rate (the negative

imaginary part of Ω = ω − kV ) as a function of the Doppler-shifted frequency (the

real part of Ω) and the load speed V is shown in Fig. 9, for the support damping

coefficient µs = 0.1. The corresponding contours of constant growth rate are shown

in red in Fig. 10, together with contours of constant load mass M0 (in kilogrammes)

superimposed in green and the blue zero growth rate contour that separates the stable

and unstable regions, versus the load speed. The minimum load speed for the instability

is identical for all values of the load mass M0 — viz. V ≃ 320 m/sec in the supercritical



302 R.J. Hosking and F. Milinazzo

300

350

400

450

500

0
50

100
150

200
250

0

5

10

15

20

25

30

35

40

 

load speed m/sreal part Ω Hz

 

g
ro

w
th

 r
a

te
 s
−

1

5

10

15

20

25

30

35

Figure 9: Inertial instability surfaces for growth rate vs. frequency and load speed when µs = 0.1 (Γ = 1).
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Figure 10: Contours of constant growth rate (red) with M0 contours (green) when µs = 0.1 (Γ = 1).

regime (i.e. above the critical speed Vcrit ≃ 307 m/sec for the resonant response to a

steadily moving load when µs = 0, as in Ref. [7] and Section 2 of this article). The

instability is also seen to originate at small frequency and to occur for any load mass

M0 > 0, from unrealistically extremely high to more realistic M0 values, where the

instability only occurs above even higher minimum load speeds. Further, the growth

rate is larger at higher frequency and increases as the load speed increases.

For values of the support stiffness Γ less than approximately 3, it was found that
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Figure 11: Inertial instability surfaces for growth rate vs. frequency and load speed when µs = 0.5 (Γ = 1).

Figure 12: Contours of constant growth rate (red) with M0 contours (green) when µs = 0.5 (Γ = 1).

there can be two instability branches for other values of the support damping µs. This

is evident in the corresponding instability surfaces and contours for the chosen larger

support damping coefficient µs = 0.5 more characteristic of the FLT design, as shown

in Figs. 11 and 12. The predicted minimum load speed for overstability is now approx-

imately 370 m/s, and the growth rates are less. The branch of the instability surface

(II) in the foreground of Fig. 11 is quite separate from the other instability surface (I),

as is also reflected in Fig. 12. The minimum load speed is again identical for all M0.
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On surface (I), the instability appears at larger frequencies and at smaller M0. Surface

(II) decreases in size as either the support stiffness or the support damping increases.

7. Conclusions

The response of the floating ladder rack (FLT) design to a moving load has been

modelled by considering a point load traversing a Bernoulli-Euler beam mounted on

periodic flexible point supports. The FLT design has notable advantages over conven-

tional cross-tie tracks, including vibration and noise mitigation. An earlier investigation

of the model with elastic point supports has been extended to include the support mass

and viscous damping. The support damping not only significantly reduces the steady

response to the moving load when load inertia is neglected, including the resonant

response at the critical load speed, but also increases the minimum load speed in the

supercritical regime above which overstability may occur when load inertia is included.

Moreover, since the critical speed is already so high for conservative values of the im-

portant support parameters (stiffness and damping) than in the actual FLT design, nei-

ther the resonant response nor the overstability should prevent its safe implementation

in modern high speed rail systems.
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A. Key Integral with Complex Eigenfrequency

Let us consider the complex eigenfrequency ω = |ω| exp(iΘ) where sinΘ < 0, such

that s t = iωt = |ω|(− sinΘ + i cos Θ)t has positive real part for t > 0, corresponding

to overstability (growing oscillations) anticipated with load inertia — cf. [8]. The key

integral is
∫ ∞

−∞

e−ixy

x4 − a4
dx

where a = [m|ω|2/(EI)]1/4 exp(iΘ/2) = |a| exp(iΘ/2); and the requirement sinΘ < 0
is satisfied provided Θ is in the lower half of the complex plane (i.e. −π < Θ < 0,

within ±2nπ where n is an integer) — and here we take arg(a) = Θ/2 to be in the

fourth quadrant such that Re(a) > 0.
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The above key integral may be evaluated by applying the theorem of residues to the

closed contour integral in the complex z-plane

∮

C

e−iyz

z4 − a4
dz

corresponding to closing the integration contour in the upper half plane (when y < 0)

or the lower half plane (when y > 0) respectively, such that

∫ ∞

−∞

e−ixy

x4 − a4
dx =

∮

C

e−iyz

z4 − a4
dz

because the contribution from the semicircle at infinity is zero in each case. One may

consider the upper half plane (the case y = −|y| < 0). Noting that z4−a4 = (z−a)(z3+
az2+a2z+a3), we have the sum of the two residues at the poles a1 = a = |a| exp(iΘ/2)
and a2 = | a| exp[i(Θ + π)/2] = ia as

e−ia1y

4a31
+

e−ia2y

4a32
=

1

4a3

(

eia|y| + i e−a|y|
)

,

rendering the key integral as 2πi times this result — i.e.

− π

2a3

(

e−a|y| − i eia|y|
)

= − π

2a3

(

e−a|y| + sin(a|y|)− i cos(a|y|)
)

. (A.1)

We have the same result Eq. (A.1) for y > 0, on completing the contour in the lower

half plane with residues from poles at a3 = | a| exp[i(Θ + 2π)/2] = −a and a4 =
| a| exp[i(Θ + 3π)/2] = −ia. In passing, note that a = | a| exp(iΘ/2) necessarily has

negative real part for overstability (i.e. when π/2 < Θ/2 < π).

Alternatively, the result Eq. (A.1) follows from partial fractions

1

x4 − a4
= − 1

2a2

(

1

x2 + a2
− 1

x2 − a2

)

= − 1

2a2

[

1

x2 + a2
+

1

2a

(

1

x+ a
− 1

x− a

)]

,

since
∫ ∞

0

cos(x|y|)
x2 + a2

dx =
π

2a
e−a|y|

for Re(a) > 0, and

∫ ∞

−∞

cos(x|y|)
x+ a

dx = π [ sin(a|y|)− i cos(a|y|) ]

for |arg a| < π, on noting that cos(xy) = [exp(ixy) + exp(−ixy)]/2 and again using the

residue theorem (with contours completed in the upper or lower half plane depending

upon the sign of the real variable y).
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Consequently

∫ ∞

−∞

e−ixy

x2 + a2
dx = 2

∫ ∞

0

cos(x|y|)
x2 + a2

dx =
π

a
e−a|y|

and

1

2a

∫ ∞

−∞
e−ixy

(

1

x+ a
− 1

x− a

)

dx =
1

2a

∫ ∞

−∞

e−ixy + e+ixy

x+ a
dx

=
1

a

∫ ∞

−∞

cos(x|y|)
x+ a

dx

=
π

a
[ sin(a|y|)− i cos(a|y|) ] ,

so the result Eq. (A.1) is recovered.

On setting iω for s, we therefore have the modified contribution

(γ + iµω −m0ω
2)M

where from Eq. (A.1) we have

M(k, ω) = − L3

4EI

1

(κL)3

∞
∑

n=−∞

[ e−κ|nL| − i eiκ|nL| ] einkL (A.2)

with

κ =

(

m|ω|2
EI

)1/4

eiΘ/2 .

As in [7], we again have

∞
∑

n=−∞

e−κ|nL| einkL =

∞
∑

n=0

e−n(κ−ik)L +

∞
∑

n=0

e−n(κ+ik)L − 1 =
sinh(κL)

cosh(κL)− cos(kL)

and now consequently also (on setting −iκ for κ)

i

∞
∑

n=−∞

eiκ|nL| einkL =
sin(κL)

cos(κL)− cos(kL)
,

such that

M(k, ω) = − L3

4EI

1

(κL)3

(

sinh(κL)

cosh(κL)− cos(kL)
− sin(κL)

cos(κL)− cos(kL)

)

— i.e. when κ is complex, we recover precisely the same form as in Ref. [7] where κ
was real.
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B. Dimensionless Fundamental Equation

Introducing dimensionless variables

ξ =
x

L
, τ =

tc

L
where c =

√

EI

mL2
,

the dimensionless form of the fundamental equation Eq. (3.1) is

∂4η

∂ξ4
+

∂2η

∂τ2
+

∞
∑

n=−∞

δ(ξ − n)

(

ms
∂2

∂τ2
+ µs

∂

∂τ
+ γs

)

η = f(ξ, τ) , (B.1)

where

ms =
m0

mL
, µs =

µ

mc
, γs =

γL3

EI

and

f(ξ, τ) = −
(

Ms
d2η

dτ2
+ Fs

)

δ(ξ − Vsτ)

with

Ms =
M0

mL
, Fs =

F0L
3

EI
, Vs =

V

c
,

on invoking the property δ(ax) = |a|−1δ(x) (|a| 6= 0). This motivates the dimension-

less representation in Section 5.3. However, we subsequently use Γ = γs/4 for the

dimensionless support stiffness in the calculations of the inertial instability discussed in

Section 6, for ready comparison with the results for a steadily (uniformly) moving load

previously discussed in Ref. [7] and again in Section 2 and Section 4 of this article.
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