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Abstract. Borda’s mouthpiece consists of a long straight tube projecting into a large

vessel, where fluid enters the tube in a free surface flow that tends to become uniform

far downstream in the tube. A two-dimensional approximation to this flow under gravity

in the upper part of the tube leads to an evaluation of the contraction coefficient, the

ratio of the constant depth of the uniform flow to the width of the tube. The analysis

also applies to flow under gravity past a sluice gate, if the semi-infinite wall above the

channel is rotated to the vertical. The contraction coefficient depends upon the Froude

number F , and is generally less than the zero gravity value of 1/2 that is approached as

F →∞.

AMS subject classifications: 65E05, 76B07, 76M15

Key words: Borda’s mouthpiece, free-surface flow, boundary integral equation, contraction coeffi-

cient.

1. Introduction

Borda’s mouthpiece consists of a long straight tube projecting into a large vessel, as

illustrated in Fig. 1. The fluid in the vessel flows into the tube with a free surface detached

from the wall of the tube, and eventually in a uniform stream far from its entry into the

tube. When gravity is neglected, the flow in the tube is symmetric about the centre of the

tube, and the ratio between the width of the uniform stream and the diameter of the tube

(called the contraction coefficient) is known to be 1/2 [1]. The symmetric flow assumption

in Borda’s mouthpiece is not valid when gravity is included, but in this paper we ignore

the flow into the lower part of the tube (indeed, the flow in the entire shaded part of
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Figure 1: Borda's mouthpiee �ow.
Fig. 1) and consider a two-dimensional approximation of the flow into its upper part. The

contraction coefficient of the assumed two-dimensional flow under gravity is calculated in

this paper.

Our analysis also applies to flow under gravity past a sluice gate, if the semi-infinite hor-

izontal wall above the channel in the corresponding two-dimensional configuration shown

in Fig. 2(a) is rotated to the vertical. A numerical solution has been found for the free

surface flow under a sluice gate from deep water, and the modified flow due to the chan-

nel terminating in a waterfall was also considered [2,3]. Most sluice gate flows discussed

elsewhere are for fluid of finite depth upstream [4–6]— cf. also [7–9] more recently. The

solutions are characterised by uniform and supercritical flow far downstream, and super-

critical or subcritical flow far upstream. A wave train occurs when the upstream flow is

subcritical. Binder and Vanden Broeck [10] considered possible multiple disturbances at

the bottom of the channel or the free surface, such as due to a submerged obstacle or a

pressure distribution or a sluice gate. They obtained solutions in which the radiation con-

dition is satisfied — i.e. waves are formed near the gate and disappear, so the flow tends

to be uniform far upstream. However, all solutions involve uniform and supercritical flow

far downstream. We found this characteristic behaviour in our numerical solution for the

flow from infinitely deep water [2] — but also a back flow near the edge of the gate and

a stagnation point for small Froude number, and free surface separation from the vertical

wall at an angle 2π/3 or −5π/6 to the vertical axis [3]. This limiting case agrees with

Vanden-Broeck & Tuck [11], who considered a free surface flow locally near a vertical wall

— cf. also Dagan & Tulin [12] for analysis of the flow near a stagnation point. A solution

with a stagnation point was also obtained for an inclined wall until the wall makes the

angle π/3 to the horizontal and the stream leaves the wall horizontally [14], when the

free-surface flow leaves the boundary smoothly without any stagnation point. Mc Cue and

Forbes [13] solved free-surface flows emerging from a semi-infinite plate with constant

vorticity, a stagnation point occurs at the end of the plate and the free surface leaves the

plate at detachment angle 2π/3 for small Froude number.

In this paper, we use a boundary element method to solve an integral equation involv-
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Figure 2: Sketh of the two-dimensional �ow entering a slit (a) in physial z-plane, (b) in f and ζ-planes.
ing a complex hodograph variable. This method has previously been used to solve some

of the free surface flows mentioned above — e.g. see [15, 16] for a free surface flow

producing one or two jets, or free surface flows caused by a line sink or source [17–19].

The resulting system of nonlinear algebraic equations can be solved by Newton iteration,

so provided it converges the point coordinates of the free surface can be calculated for

supercritical flow — i.e. for Froude number F = U/
p

gW > 1, where U is the velocity

and W is the depth of the uniform flow in the tube far downstream (g is the gravitational

acceleration). We obtain the relation between F and the contraction coefficient ratio W/D,

where D is the width of the entrance (the slit) measured from the bottom of the channel,

and find that W/D→ 1/2 as F →∞.

2. Problem Formulation

We consider a steady two-dimensional irrotational flow of an inviscid incompressible

fluid under gravity in a large vessel of semi-infinite depth, with a semi-infinite wall shown

in the horizontal above the vessel bottom in Fig. 2(a). From far upstream (denoted by I),

the fluid enters the slit of width D as a free surface flow under the wall and eventually

becomes uniform with depth W and velocity U far downstream (denoted by J). The flow
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is assumed to leave the edge of the wall tangentially. We choose Cartesian coordinates

with the x–axis along the bottom, and the y–axis vertically upward and passing through

the leading edge of the horizontal wall. The flow is described by the complex potential

f (z) = φ(x , y) + iψ(x , y), a function of the complex variable z = x + i y, such that the

complex velocity is d f /dz = u− iv where (u, v) is the velocity vector.

For convenience, we work in dimensionless variables using U as the characteristic ve-

locity and W the characteristic length. Thus our task is to solve the boundary value problem

φx x +φy y = 0 (2.1)

in the flow domain, subject to the dynamic condition represented by the Bernoulli equation

expressed as
1

2
F2
�

φ2
x +φ

2
y

�

+η=
1

2
F2 + 1 (2.2)

along the free surface y = η(x) given the continuity of pressure there, and the kinematic

condition
∂ φ

∂ n̄
= 0 (2.3)

at both solid and free boundaries of the fluid (where n̄ is the local normal at the boundary).

The Froude number is

F =
U
p

gW
,

under the non-dimensionalisation, with the left-hand side in Eq. (2.2) the downstream

component and the constant right-hand side the contribution in the uniform flow upstream.

When the potential function φ(x , y) and the free boundary y = η(x) satisfying Equa-

tions (2.1)–(2.3) are obtained, then η at the separation point A can be evaluated to render

the contraction coefficient. However, on assuming φ = 0 and ψ = 0 at the origin of the

physical z–plane, the flow domain in the complex potential f-plane is a strip of width 1

from I to J as shown in Fig. 2(b) — and alternatively, we may proceed by introducing a

hodograph variable Ω = τ− iθ such that

d f

dz
= eΩ. (2.4)

Thus instead of the potential function φ(x , y) we seek the variable Ω as a function of an

artificial variable ζ = ξ+ iρ, with the lower half plane in ζ becoming the flow domain

corresponding to the strip in the f-plane under the conformal mapping

f = i − 1

π
logζ . (2.5)

As also shown in Fig. 2(b), the flow upstream at I is mapped into ζ= 0 and the separation

point A is mapped into ζ = 1, such that the free surface corresponds to ξ > 1 and ρ = 0.
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In summary, instead of determining φ(x , y) we solve for the hodograph variable Ω as a

function of ζ satisfying the Laplace equation, where the dynamical condition (2.2) becomes

1

2
F2e2τ +η =

1

2
F2 + 1 , (2.6)

and the kinematic condition (2.3) is expressed in terms of the angle θ of the streamline

θ =

¨

0 , ξ < 0

−π , 0< ξ < 1
(2.7)

for the solid boundary but is unknown for the free boundary ξ > 1. We obtain θ from

Eq. (2.6), and τ and η must be expressed as functions of θ .

The relation between θ and τ is obtained as follows. We apply Cauchy’s integral theo-

rem for Ω along the real ζ-axis and the lower semi circle |ζ| →∞. Thus for any 1< ξ <∞,

Ω(ξ) =
i

π

∫ ∞

−∞

Ω(s)

s− ξds , (2.8)

and taking the real part of Eq. (2.8) yields

τ(ξ) = log

�

�

�

�

ξ

1−ξ

�

�

�

�

+
1

π

∫ ∞

1

θ

s− ξds , (2.9)

after substituting the value of θ given by (2.7). Meanwhile, η(ξ) is obtained from Eqs. (2.4)

and (2.5) such that
dz

dζ
= − eΩ

πζ
. (2.10)

On integrating the imaginary part from ξ to∞, since η = 1 at infinity we obtain

η(ξ) = 1+
1

π

∫ ∞

ξ

e−τ sinθ

s
ds . (2.11)

The relations (2.9) and (2.11) substituted in (2.6) then produce the integral equation for

θ , to be solved in order to determine the free surface from Eq. (2.10). The value of x is

obtained from the real part, and the ordinates are given by Eq. (2.11).

3. Zero Gravity Solution

Let us first determine the analytical solution in the absence of gravity for comparison.

The flow contains a singularity at the separation point, where the stream leaves the solid

boundary to form a free surface at ζ = 1. The hodograph variable Ω should be considered

via analytic function

χ(ζ) =
Ω
p

ζ− 1
. (3.1)
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The singular point ζ = 1 is the order of a square root [20]. We write Eq. (3.1) along the

real axis on invoking Eq. (2.7) and zero gravity, when Eq. (2.6) gives τ = 0 for ξ > 1 and

we have

χ(ξ) =







−iτ/
p

1− ξ , ξ < 0

(−iτ+π)/
p

1− ξ , 0< ξ < 1

−iθ/
p

ξ− 1 , 1< ξ .

(3.2)

The unknown function θ can be obtained by applying Cauchy’s integral theorem to χ

along the real axis of ζ, similar to Eq. (2.8). The imaginary part yields

θ(ξ) =
p

ξ− 1

∫ 1

0

dsp
1− s (s−ξ) , (3.3)

and integrating we obtain

θ(ξ) = −2 arctan





1
p

ξ− 1



 (3.4)

for ξ > 1. (We may check that θ → −π as ξ→ 1, and θ → 0 as ξ → ∞.) This result is

then used to determine the free surface profile, by integrating the real and imaginary parts

of Eq. (2.10)

d x

dξ
=

cosθ

πξ
,

dη

dξ
=

sinθ

πξ
(3.5)

for τ = 0. The contraction coefficient α= 1/η(1) is then obtained, by evaluating

η(1) = 1+
1

π

∫ ∞

1

sinθ

s
ds . (3.6)

The integral in Eq. (3.6) can be evaluated numerically by the trapezoidal rule, which for

infinite Froude number gives α= 0.5 to 4 decimal accuracy using 500 points, in agreement

with the result previously given in Ref. [1].

4. Numerical Solution Under Gravity

The nonlinear integral equation (2.6) converts to a set of N algebraic equations in N

unknowns, if we approximate the integral in Eq. (2.9) by summation in a suitable manner.

The interval of integration (1,∞) is first truncated to (1, T ), and then divided into N

subintervals with end points 1 = ξ0 < ξ1 < · · · < ξN = T , in order to evaluate the N

unknowns θ j ≈ θ(ξ j) for j = 1,2, · · · , N . We choose the truncation value T to be relatively

large, to sufficiently extend the free surface into the far uniform flow region.

In obtaining the N algebraic equations, we use N collocation points ξ∗
j

at the mid-point

in each subinterval (ξ j−1,ξ j), and determine the corresponding values θ ∗
j

linearly between
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θ j−1 and θ j. For each point ξ∗
j
, we have one algebraic equation from the integral equation

(2.6), so there are N equations in the unknowns θ1,θ2, · · · ,θN . The Froude number F is a

given parameter; and we also have θ0 = −π at the edge of the horizontal wall, since we

assume that the stream separates from the wall smoothly there.

In order to evaluate the Cauchy principle value for the singular integral in Eq. (2.9), we

approximate θ(ξ) as a linear variable to evaluate the integral on each interval (ξ j−1,ξ j),

such that ∀ξ∗j we have τ(ξ∗j ) = τ
∗
j where

τ∗j ≈ log

�

�

�

�

�

ξ∗j
1− ξ∗

j

�

�

�

�

�

+
1

π

N
∑

l=1

�

θl−1− θl

�

+

¨

θl − (θl−1− θl)

�

ξ∗j − ξl

ξl−1− ξl

�«

log

�

�

�

�

�

ξl − ξ∗j
ξl−1− ξ∗j

�

�

�

�

�

. (4.1)

Similarly, the integral in Eq. (2.11) determining the free surface coordinate η(ξ∗j ) = η
∗
j can

be evaluated numerically via the trapezoidal rule:

η∗j ≈























1+
1

π

e
−τ∗

j sinθ ∗
j

ξ∗
j

(ξ j − ξ∗j ) , j = N

η∗j+1 +
1

2π







e
−τ∗

j sinθ ∗j
ξ∗

j

+
e
−τ∗

j+1 sinθ ∗j+1

ξ∗
j+1






(ξ∗j+1 − ξ∗j ) , otherwise .

(4.2)

To obtain the contraction coefficient, we need the value η(ξ0), approximated by

η(ξ0)≈ η∗1 +
1

π

e−τ
∗
1 sinθ ∗1
ξ∗

1

(ξ∗1 −ξ0) .

The closed form may be solved numerically by Newton method provided the iteration

converges, and the abscissa x∗j = x(ξ∗j) of the free surface is determined from the real part

of Eq. (2.10), approximated by

x∗j ≈























− 1

π

e
−τ∗

j cosθ ∗j
ξ∗

j

(ξ∗j − ξ j−1) , j = 1

x∗j−1 −
1

2π







e
−τ∗

j cosθ ∗j
ξ∗

j

+
e
−τ∗

j−1 cosθ ∗j−1

ξ∗
j−1






(ξ∗j − ξ∗j−1) , otherwise .

(4.3)

We integrate the real part of Eq. (2.10) from ξ0 to ξ∗
j

on choosing x(1) = 0, and then plot

the coordinates {(x∗
j
,η∗

j
), j = 0,1, · · · , N} to get the surface profile.
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Figure 3: The pro�le of free surfae �ow for F = 2.1, produing ontration oe�ient 0.396.
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Figure 4: The pro�le of free surfae �ow for F = 2.5, produing ontration oe�ient 0.445.
5. Results

Most calculations in this paper use N = 120 and T ≈ 107, in the numerical procedure

described in the previous section. A typical free surface is shown in Fig. 3. The free

surface leaves the horizontal wall smoothly; there are no waves on the free surface; and

far downstream we see uniform flow with a constant depth smaller than the width of the

slit, and their ratio can be calculated for various Froude numbers. For an initial guess of

θ , we use the result for zero gravity given in Eq (3.4). For ξ > T , Eq. (3.4) is O(1/
p

ξ)

such that the improper integral in Eq. (2.9) is convergent, and we can choose large T so

the integral from T to infinity is negligible.

We computed the free surface using F = 2.1, plotted in Fig. 3 . The profile of the free

surface represents the values of θ from −π asymptotically to zero, as ξ ranges from 1 to

∞. Far downstream the stream tends to uniform flow, and we chose to the uniform depth

to be of unit length, such that the contraction coefficient α is 0.396. For other values of

Froude number, our numerical procedure produces a similar free surface, but with lower

width η(1) of the slit for larger Froude number. The free surface for F = 2.5 is shown

in Fig. 4, with a larger contraction coefficient 0.445. We calculated up to F = 15, and
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Figure 5: Plot of the ontration oe�ient α versus Froude number F .
obtained η(1) = 2.001 or α = 0.499. A plot of α versus F is given in Fig. 5, where

the curve is relatively flat for larger Froude number. Our numerical procedure failed for

F < 2, as indicated by the oscillatory values of θ for large ξ and that the uniform flow far

downstream is not met.

For F → ∞, our integral equation is Eq. (2.9) on substituting τ = 0, instead of

Eq. (2.6). We determined the θ j that satisfy the discrete equation (4.1) for τ∗j = 0. The

system of equations was constructed for each ξ∗j , and solved by Newton’s method. In the

post-processing, the coordinates of the free surface were then evaluated from Eq. (3.5).

The number N of the discrete points plays an important role in monitoring the accuracy of

the calculation. The truncation number T is less significant, as θ is very small for ξ > T .

Using N = 120, our calculation gave up to 3 decimal place accuracy. We calculated the con-

traction coefficients α for N = 30,60 and 120; and those numbers were used to determine

α at N →∞ by

αN = α∞ +Q

�

Nmax

N

�δ

.

The constants αN and α∞ are the contraction coefficients at that number of discrete points,

Nmax was chosen to be 120, and Q and δ are constants we determined from our calcula-

tions. We obtained α30 = 0.4879134, α60 = 0.4982664 and α120 = 0.5002489, together

with β = 2.4 and Q = −3.0 10−4, so that by using N = 120 our calculation α120 is accurate

up to 3 decimals compared to α∞ = 0.49997. This contraction coefficient is the asymp-

totic number of the curve in Fig. 4, and agrees with the analytical solution presented by

Milne-Thomson [1].

6. Conclusion

We have discussed a two-dimensional approximation to the flow into the upper part

of Borda’s mouthpiece, in analysis also applicable to flow under a sluice gate. The free

surface flow is described by formulating the problem as an integral equation and using a
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boundary element method. The contraction coefficient is found to be less than the known

zero gravity value of 1/2, but tends to this value as the Froude number tends to infinity.
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