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1. Introduction

In this paper we consider the nonlinear eigenvalue problem (NEP)

T (λ)x = 0, (1.1)

where T (λ) is an analytic n×n matrix-valued function of complex variable λ. The problem

(1.1) includes the classical eigenvalue problem (T (λ) = λI−A), the generalised eigenvalue

problem (T (λ) = λA−B), the quadratic eigenvalue problem (T (λ) = λ2A+λB+C) — [16,

27], the polynomial eigenvalue problem (T (λ) = λmAm+λ
m−1Am−1+ · · ·+λA1+A0) — [6,

16] and the delay eigenvalue problem (T (λ) = λI−A−
∑m

i=1 Aie
−τiλ) — [10,11]. Nonlinear

eigenvalue problems arise in various applications, including nonlinear ordinary differential

equations [26], acoustic surface waves [32], photonic band structures [24], vibration of

viscoelastic structures [1,5] and fluid-solid structures [3,30], simulation of quantum dots

[8, 31], the stability of time-delay systems [20] and so on. For more information about

possible applications of the NEP (1.1) and numerical methods for its solution the reader

can consult Ref. [19].

It is well known that λ is an eigenvalue of the problem (1.1) if and only if it satisfies

the characteristic equation

det
�

T (λ)
�

= 0. (1.2)
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The root of the equation (1.2) can be derived by the Newton method

λk = λk−1−
1

tr (T (λk−1)
−1T ′(λk−1))

, k = 1,2, · · · ,

where T ′(λk−1) is the derivative of T (λ) at the point λ= λk−1 and tr (A) denotes the trace

of the matrix A — cf. Ref. [13,16]. If an eigenvalue of the matrix T is known, the associated

eigenvector can be constructed by the inverse iteration [21].

Let T (λ)P(λ) = Q(λ)R(λ) be a QR decomposition with column pivoting of the matrix

T (λ) — i.e. P(λ) and Q(λ) are, respectively, permutation and unitary matrices, and the

matrix R(λ) = (ri j(λ)) is upper-triangular with the diagonal entries ordered as

�

�r11(λ)
�

� ≥
�

�r22(λ)
�

� ≥ · · · ≥
�

�rnn(λ)
�

�.

Kublanovskaya [15] used the Newton method for the equation rnn(λ) = 0 to find an eigen-

value of the NEP (1.1). Jian and Singhal [9] improved the approach of [15] and established

the quadratic convergence of the method. Li [17,18] presented sufficient conditions for a

smooth QR decomposition and developed numerical methods for NEP (1.1). A similar

method, but based on a smooth LU decomposition of T (λ), has been studied in [4, 32].

Nevertheless, for large matrices, the above methods are not as efficient as required.

If σmin(T (λ)) is the smallest singular value of the matrix T (λ), then λ is an eigenvalue

of the NEP (1.1) if and only if it satisfies the equation

σmin

�

T (λ)
�

= 0.

Hence, the singular value decomposition (SVD) of the matrix T (λ) can be used to determine

the solution of the NEP (1.1) and such an approach, combined with the Newton method,

has been employed by Guo et al. — cf. Ref. [7]. On the other hand, the necessity to compute

SVD of the corresponding matrix at each iteration step presents additional challenges in the

method implementation. Therefore, the inverse iteration method is used to approximate

the smallest singular value and the associated left and right singular vectors of T (λ).

The paper is organized as follows. In Section 2, we consider the solution of the NEP

(1.1) by the Newton method based on singular value decomposition and propose a modifi-

cation of this approach. Section 3 deals with the convergence of the method. In particular,

it is shown that convergence is locally quadratic. Numerical examples are discussed in

Section 4, and our concluding remarks are in Section 5.

2. Modified Newton Method for NEP

Let I denote the identity matrix, diag (a1, a2, · · · , an) the diagonal matrix with the di-

agonal entries a1, a2, · · · , an, T H(λ) the conjugate transpose to the matrix T (λ), and ‖A‖
the Euclidean norm of a matrix (a vector) A. Any matrix A can be written in the form

A= [α1,α2, · · · ,αn], with the column-vectors α j. This notation is used in what follows.
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Let us consider an approach to the NEP (1.1) based on the Newton method combined

with singular value decomposition

T (λ) = U(λ)Σ(λ)V H(λ)

of the matrix T (λ). We recall that Σ(λ) = diag (σ1(λ), · · · ,σn(λ)) with σ1(λ) ≥ · · · ≥
σn(λ) ≥ 0, and U(λ) = [u1(λ), · · · ,un(λ)], V (λ) = [v1(λ), · · · , vn(λ)] ∈ C

n×n are unitary

matrices. Then

σmin

�

T (λ)
�

= σn(λ) = uH
n
(λ)T (λ)vn(λ), (2.1)

and according to Refs. [2,12,33], the derivative of σmin(T (λ)) is

σ′min

�

T (λ)
�

= uH
n (λ)T

′(λ)vn(λ).

The method proposed by Guo et al. [7] for solving the NEP (1.1) can be summarized as

follows.

Algorithm 2.1. Starting with an initial approximation λ0, for k = 1,2, · · · , make the

following steps:

1. Derive the singular value decomposition T (λk−1) = U(λk−1)Σ(λk−1)V
H(λk−1) of the

matrix T (λk−1).

2. Use Newton method

λk = λk−1 −σn(λk−1)/
�

uH
n (λk−1)T

′(λk−1)vn(λk−1)
�

to obtain the next approximation λk.

3. Repeat the procedure till the required accuracy is achieved.

Algorithm 2.1 is a time-consuming procedure since it involves the SVD of the matrix

T (λ) at each iteration. However, the smallest singular value and the associated left and

right singular vectors can be approximated by inverse iteration — cf. Refs. [21, 28, 29,

34]. More precisely, if T = T (λk), σ = σmin(T (λk)), and u and v are, respectively, the

corresponding left and right singular vectors, the inverse iteration procedure considered by

Xu [34] is:

Algorithm 2.2. Starting with an initial approximation u0, for k = 1,2, · · · , make the

following steps:

1. Find the solution of the linear system Twk = uk−1.

2. Set vk := wk/‖wk‖.

3. Find the solution of the linear system T H yk = vk.

4. Set uk := yk/‖yk‖.

5. Repeat the procedure till the required accuracy is achieved.



142 X. Chen and H. Dai

Let u be the final left singular vector uk obtained by Algorithm 2.2. If we derive w from

the equation Tw = u, then the smallest singular value of the matrix T and the associated

right singular vector can be approximated as follows σ ≈ 1/‖w‖ and v ≈ w/‖w‖.
Thus taking into account the fact that an approximation of the smallest singular value

and the associated left and right singular vectors can be derived by the inverse iteration

procedure, we propose the following modified Newton method for solving the NEP (1.1).

Algorithm 2.3. Starting with an initial approximation λ0, make the following steps:

1. Compute the smallest singular value σ0 and the corresponding left u0 and right v0

unit singular vectors of T (λ0).

2. For k = 1,2, · · · , until convergence do

2.1. Use Newton method λk = λk−1 − σk−1/u
H
k−1

T ′(λk−1)vk−1 to find the next ap-

proximation λk.

2.2. Derive xk from the linear system T (λk)xk = uk−1.

2.3. Set vk := xk/‖xk‖.

2.4. Derive yk from the linear system T H(λk)yk = vk.

2.5. Set uk := yk/‖yk‖.

2.6. Set σk := uH
k

T (λk)vk.

In Algorithm 2.3, the linear systems T (λk)xk = uk−1 and T H(λk)yk = vk are to be

solved at each iteration. For small and medium-sized matrices this can be done by a direct

method and by a preconditioned GMRES method for large-scale ones — cf. Ref. [23].

3. Locally Quadratic Convergence of Modified Newton Method

Let us now analyse the convergence of Algorithm 2.3.

Lemma 3.1. If A(z) is an analytic m× n matrix-valued function in an open set D ⊆ C, then

A(z) has an analytic singular value decomposition on D.

Proof. The proof is similar to Theorem 1 in Ref. [2].

In what follows, we will use the notation an = O (bn) for infinitesimals of the same

order as n tends to∞.

Lemma 3.2. Let T (λ) be an analytic n × n matrix-valued function and let λ∗ be a simple

eigenvalue of the NEP (1.1). If σ∗ is the smallest singular value of T (λ∗), and u∗ and v∗
are, respectively, the associated left and right unit singular vectors, then there is a neighbor-

hood N(λ∗) of λ∗ such that for all λ ∈ N(λ∗), the smallest singular value σ of T (λ) and the

corresponding left and right unit singular vectors u and v have the following properties:

(a) |σ−σ∗| = O (|λ−λ∗|),

(b) ‖u− u∗‖= O (|λ−λ∗|),

(c) ‖v − v∗‖ = O (|λ−λ∗|).
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Proof. Since λ∗ is a simple eigenvalue of the NEP (1.1), the rank of the matrix T (λ∗) is

n− 1, and the smallest singular value σ∗ of T (λ∗) is also simple. According to Ref. [25],

there is a neighborhood N(λ∗) of λ∗ such that for all λ ∈ N(λ∗), the smallest singular value

σ satisfies the relation (a). By Lemma 3.1, the smallest singular value σ and the associated

left and right unit singular vectors corresponding to the eigenvalue λ∗ are analytic functions

so that they are Lipschitz continuous in N(λ∗), which yields relations (b) and (c).

Lemma 3.3. Let T (λ) be an analytic n × n matrix-valued function and let λ∗ be a simple

eigenvalue of the NEP (1.1). Assume that σ∗ is the smallest singular value of T (λ∗), u∗ and

v∗ are, respectively, the associated left and right unit singular vectors and λk, σk, uk and vk

are generated by Algorithm 2.3 at the k-th iteration step. If |λ0 − λ∗| ≤ ǫ for an ǫ ∈ (0,1),

then

(a) ‖vk − v∗‖= O (|λk −λ∗|),

(b) ‖uk − u∗‖= O (|λk −λ∗|),

(c) ‖T (λk)vk‖= O (|λk −λ∗|),

(d) ‖T H(λk)uk‖= O (|λk −λ∗|),

for all k = 0,1, · · · .

Proof. We prove this lemma by mathematical induction. If k = 0, then Lemma 3.2

implies that σ∗ = 0 and σ0 = uH
0

T (λ0)v0 and the relations (a)-(d) follow. Assume now

that these relations are valid for k− 1 and examine the case for k.

Let us consider the singular value decomposition of the matrix T (λk),

T (λk) = U(λk)Σ(λk)V
H(λk),

where U(λk) = [u1(λk), · · · ,un(λk)], V (λk) = [v1(λk), · · · , vn(λk)] are unitary matrices,

and the entries of the diagonal matrix Σ(λk) = diag (σ1(λk), · · · ,σn(λk)) are ordered as

σ1(λk) ≥ · · · ≥ σn(λk) ≥ 0. It follows from Lemma 3.2 that σn(λk) = O (|λk − λ∗|).
Since vectors u1(λk), · · · ,un(λk) constitute an orthonormal basis in Cn, the unit vector uk−1

generated by Algorithm 2.3 can be represented in the form

uk−1 =

n
∑

i=1

αiui(λk),

and without loss of generality, we can assume that αn is a non-negative number. Determin-

ing xk from the system

T (λk)xk = uk−1 =

n
∑

i=1

αiui(λk),

we obtain

xk =

n
∑

i=1

αi T (λk)
−1ui(λk) =

n
∑

i=1

αi

vi(λk)

σi(λk)
, (3.1)
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and the norm of this vector is

‖xk‖=

�

n
∑

i=1

|αi|
2

σ2
i
(λk)

�1/2

.

Let us now show that αn is close to 1. The induction hypothesis and Lemma 3.2 yield that

‖uk−1− u∗‖ = O
�

|λk−1−λ∗|
�

,


un(λk)− u∗


= O
�

|λk −λ∗|
�

.

On the other hand,



uk−1 − un(λk)




2
= |α1|

2 + · · ·+ |αn|
2 − 2αn + 1= 2− 2αn,

and since



uk−1 − un(λk)


≤ ‖uk−1 − u∗‖+


u∗ − un(λk)


 = O
�

|λk−1−λ∗|
�

+ O
�

|λk −λ∗|
�

,

it follows that αn is close to 1.

From (3.1), we have

vH
n (λk)vk =

vH
n
(λk)xk

‖xk‖
=

αn

σn(λk)‖xk‖

=

�

1+

n−1
∑

i=1

|αi|
2σ2

n(λk)

α2
n
σ2

i
(λk)

�−1/2

= 1+ O

�

σ2
n(λk)

α2
n

n−1
∑

i=1

|αi|
2

σ2
i
(λk)

�

. (3.2)

Using the boundedness of the sums
∑n−1

i=1
|αi|

2/σ2
i
(λk) and Lemma 3.2, we rewrite the

relation (3.2) as

vH
n (λk)vk = 1+ O

�

σ2
n(λk)
�

= 1+ O
�

|λk −λ∗|
2
�

,

hence obtaining



vn(λk)− vk





2
= 2− 2vH

n (λk)vk = O
�

|λk −λ∗|
2
�

,

or


vn(λk)− vk



 = O
�

|λk −λ∗|
�

. (3.3)

Combining (3.3) with assertion (c) in Lemma 3.2, we obtain

‖vk − v∗‖ ≤


vn(λk)− vk



+


vn(λk)− v∗


= O
�

|λk −λ∗|
�

.

Let us also note that



T (λk)vk



 =
‖T (λk)xk‖
‖xk‖

=
‖uk−1‖

‖xk‖
=

1

‖xk‖
≤
σn(λk)

αn

= O
�

|λk −λ∗|
�

.
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Since the vectors v1(λk), · · · , vn(λk) also constitute an orthonormal basis in Cn, the unit

vector vk generated by Algorithm 2.3 can be represented in the form vk =
∑n

i=1 βi vi(λk)

with a non-negative coefficient βn. The vector yk satisfies the equation

T H(λk)yk = vk =

n
∑

i=1

βi vi(λk).

Therefore,

yk =

n
∑

i=1

βi

�

T H(λk)
�−1

vi(λk) =

n
∑

i=1

βi

ui(λk)

σi(λk)
,

and its norm is

‖yk‖=

�

n
∑

i=1

|βi|
2

σ2
i
(λk)

�1/2

.

It follows from (3.3) that











n
∑

i=1

βi vi(λk)− vn(λk)











2

= |β1|
2 + · · ·+ |βn|

2 − 2βn + 1= 2− 2βn = O
�

|λk −λ∗|
�

,

or βn = 1+ O (|λk −λ∗|). Proceeding similarly to (3.2), we obtain

uH
n
(λk)uk =

uH
n (λk)yk

‖yk‖
= 1+ O

�

σ2
n(λk)

β2
n

n−1
∑

i=1

|βi|
2

σ2
i
(λk)

�

.

Since the sums
∑n−1

i=1
|βi|

2/σ2
i
(λk) are bounded, we can write

uH
n (λk)uk = 1+ O

�

σ2
n(λk)
�

= 1+ O
�

|λk −λ∗|
2
�

,

which implies


un(λk)− uk





2
= 2− 2uH

n (λk)uk = O
�

|λk −λ∗|
2
�

,

and, subsequently,


un(λk)− uk



= O
�

|λk −λ∗|
�

.

Combining it with assertion (b) in Lemma 3.2, we get

‖uk − u∗‖ ≤


un(λk)− uk



+


un(λk)− u∗


 = O
�

|λk −λ∗|
�

.

It follows that



T H(λk)uk



=
‖T H(λk)yk‖
‖yk‖

=
‖vk‖
‖yk‖

=
1

‖yk‖
≤
σn(λk)

βn

= O
�

|λk −λ∗|
�

,

which completes the proof.

Let us now show the locally quadratic convergence of Algorithm 2.3.
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Theorem 3.1. If uH
∗ T ′(λ∗)v∗ 6= 0, then under the assumptions of Lemma 3.3, the iteration

sequence {λk} generated by Algorithm 2.3, converges locally quadratic to the eigenvalue λ∗.

Proof. Since the smallest singular value of T (λ∗) is zero, one has

(uk +△uk)
H T (λ∗)(vk +△vk) = 0, (3.4)

where△vk := v∗− vk and△uk := u∗−uk. When |λ∗−λk| is sufficiently small, the analytic

matrix-valued function T (λ) can be written in the form

T (λ∗) = T (λk) + (λ∗ −λk)T
′(λk) + O
�

|λ∗ −λk|
2
�

. (3.5)

From (3.4) and (3.5) one obtains

uH
k

�

T (λk) + (λ∗ −λk)T
′(λk)
�

vk =− uH
k

�

T (λk) + (λ∗ −λk)T
′(λk)
�

△vk

− (△uk)
H
�

T (λk) + (λ∗ −λk)T
′(λk)
�

vk

+ O
�

|λ∗ −λk|
2
�

. (3.6)

Moreover, according to Algorithm 2.3,

λk+1 = λk − uH
k

T (λk)vk/u
H
k

T ′(λk)vk,

so that

uH
k

�

T (λk) + (λk+1−λk)T
′(λk)
�

vk = 0.

Therefore, equation (3.6) yields

uH
k

�

(λk+1 −λ∗)T
′(λk)
�

vk =uH
k

�

T (λk) + (λ∗ −λk)T
′(λk)
�

△vk

+ (△uk)
H
�

T (λk) + (λ∗ −λk)T
′(λk)
�

vk + O
�

|λ∗ −λk|
2
�

,

and consequently,
�

�uH
k T ′(λk)vk

�

�

�

�λk+1− λ∗
�

�≤
�

�uH
k

�

T (λk) + (λ∗ −λk)T
′(λk)
�

△vk

�

�

+
�

�(△uk)
H
�

T (λk) + (λ∗ − λk)T
′(λk)
�

vk

�

�

+ O
�

|λ∗ −λk|
2
�

. (3.7)

Using now assertions (a)-(d) of Lemma 3.3 with v∗ − vk = △vk and u∗ − uk = △uk, we

arrive at the estimates
�

�uH
k

�

T (λk) + (λ∗ −λk)T
′(λk)
�

△vk

�

�

≤


T H(λk)uk







△vk



+ |λ∗ −λk|


uH
k

T ′(λk)


‖△vk‖ = O
�

|λ∗ −λk|
2
�

,
�

�(△uk)
H
�

T (λk) + (λ∗ −λk)T
′(λk)
�

vk

�

�

≤


(△uk)
H






T (λk)vk



+ |λ∗ −λk|


(△uk)
H






T ′(λk)vk



 = O
�

|λ∗ −λk|
2
�

. (3.8)

However, if |λk − λ∗| is small enough, the term uH
k

T ′(λk)vk does not vanish. Therefore,

relations (3.7)-(3.8) imply

|λk+1−λ∗| = O
�

|λk −λ∗|
2
�

.

which completes the proof.
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Table 1: Numerial results in Example 4.1.

Algorithm 2.1 Algorithm 2.3

k λk |λk −λ∗| λk |λk −λ∗|
0 1 1

1 0.8294 2.37E+00 0.8294 2.36E+00

2 -2.6245 1.09E+00 -2.6247 1.09E+00

3 -1.8977 3.62E-01 -1.9002 3.64E-01

4 -1.5763 4.05E-02 -1.5767 4.09E-02

5 -1.5364 4.85E-04 -1.5364 4.94E-04

6 -1.5359 6.94E-08 -1.5359 7.17E-08

7 -1.5359 2.66E-15 -1.5359 1.78E-15

4. Numerical Examples

Let us compare Algorithms 2.1 and 2.3 used for the NEP (1.1). The numerical exper-

iments have been conducted in MATLAB environment (version 2012b). The exact eigen-

value of the NEP (1.1) and the computation time (in seconds) are denoted by λ∗ and CPU,

respectively. The symbols σk and λk, respectively, stand for the smallest singular value

and the approximated eigenvalue generated by Algorithms 2.1 and 2.3 at the k-th iteration

step. The iteration procedure is terminated if σk ≤ 10−8.

Example 4.1 (cf. Kressner [14]). Let us consider the nonlinear eigenvalue problem

T (λ) x =
�

λA0 − A1 − A2e−λ
�

x = 0,

where

A0 =

�

1 0

0 1

�

, A1 =

�

−5 1

2 −6

�

, A2 =

�

−2 1

4 −1

�

.

The exact eigenvalue λ∗ of the above problem is −1.53587607 since σmin(T (λ∗)) = 10−16.

We choose λ0 = 1 as an initial approximation to the exact eigenvalue and find the corre-

sponding approximations by Algorithms 2.1 and 2.3. The results are reported in Table 1. In

particular, it shows that both Algorithm 2.1 and Algorithm 2.3 converge locally quadratic.

Example 4.2 (cf. Ruhe [22]). We consider the nonlinear eigenvalue problem

T (λ)x =
�

(eλ − 1)B1 +λ
2B2 − B0

�

x = 0,

where B0 = b0 I and the matrices B1 and B2 are defined as follows

B1 = (b
(1)

jk
), b

(1)

jk
=
�

n+ 1−max( j, k)
�

× j × k,

B2 = (b
(2)

jk
), b

(2)

jk
= nδ jk + 1/( j + k).

For n = 500 and b0 = 500, the exact eigenvalue λ∗ of the above problem is 0.99855892

because σmin(T (λ∗)) = 2× 10−9.
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Table 2: Numerial results in Example 4.2.

Algorithm 2.1 Algorithm 2.3

k λk |λk −λ∗| λk |λk −λ∗|
0 5 5

1 2.6310 1.63E+00 2.6310 1.63E+00

2 1.5063 5.08E-01 1.5063 5.08E-01

3 1.0842 8.56E-02 1.0842 8.56E-02

4 1.0019 3.38E-03 1.0019 3.38E-03

5 0.9986 5.70E-06 0.9986 5.52E-06

6 0.9986 4.28E-10 0.9986 1.53E-11

CPU 1.260 0.323

We choose λ0 = 5 as an initial approximation to the exact eigenvalue and find the cor-

responding approximations by Algorithms 2.1 and 2.3. The results are reported in Table 2,

which shows that both Algorithm 2.1 and Algorithm 2.3 converge locally quadratic and

Algorithm 2.3 requires less CPU than Algorithm 2.1.

Example 4.3. We consider the nonlinear eigenvalue problem

T (λ)x = (−A1e−λ − A0 +λI)x = 0,

where

A0 =
1

h2











−2 1 0

1 −2
.. .

. . .
. . . 1

0 1 −2











− 2









sin(h) 0

sin(2h)
. . .

0 sin(nh)









,

A1 = 2







0 sin(h)

sin(2h)

. .
.

sin(nh) 0





 ,

and h = π/n. For n = 750, the exact eigenvalue λ∗ of the above problem is −0.33050859

because σmin(T (λ∗)) = 3× 10−11.

We choose λ0 = 0 as an initial approximation to the exact eigenvalue and find the cor-

responding approximations by Algorithms 2.1 and 2.3. The results are reported in Table 3,

which shows that both Algorithm 2.1 and Algorithm 2.3 converge locally quadratic and

Algorithm 2.3 requires less CPU than Algorithm 2.1.

5. Conclusion

We propose a modification to the Newton method for nonlinear eigenvalue problems

and establish its locally quadratic convergence. Numerical examples show the efficiency

and lower computational cost of this approach.
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Table 3: Numerial results in Example 4.3.

Algorithm 2.1 Algorithm 2.3

k λk |λk −λ∗| λk |λk −λ∗|
0 0 0

1 -0.3718 4.13E-02 -0.3718 4.13E-02

2 -0.3311 6.12E-04 -0.3311 6.14E-04

3 -0.3305 1.35E-07 -0.3305 1.36E-07

4 -0.3305 2.32E-13 -0.3305 1.11E-16

CPU 2.6411 0.8274

Acknowledgments

The authors thank Professor Roger Hosking, Professor Zhong-Zhi Bai and anonymous

referees for useful comments and suggestions which helped to improve the presentation

of this paper. The authors are also grateful to Professor Victor D. Didenko for his care-

ful editing. The research was supported by the National Natural Science Foundation of

China (Grants Nos.11571171 and 11701409), the Natural Science Foundation of Jiangsu

Province (Grant No.BK20170591), the Natural Science Foundation of Jiangsu Higher Edu-

cation Institutions of China (Grant No.17KJB110018).

References

[1] S. Adhikari and B. Pascual, Eigenvalues of linear viscoelastic systems, J. Sound Vib. 325, 1000–

1011 (2009).

[2] A. Bunse-Gerstner, R. Byers, V. Mehrmann and N. K. Nichols, Numerical computation of an an-

alytic singular value decomposition of a matrix valued function, Numer. Math. 60, 1–39 (1991).

[3] C. Conca, A. Osses and J. Planchard, Asymptotic analysis relating spectral models in fluid-solid

vibrations, SIAM J. Numer. Anal. 35, 1020–1048 (1998).

[4] H. Dai and Z. Z. Bai, On smooth LU decompositions with applications to solutions of nonlinear

eigenvalue problems, J. Comput. Math. 28, 745–766 (2010).

[5] E. M. Daya and M. Potier-Ferry, A numerical method for nonlinear eigenvalue problems appli-

cation to vibrations of viscoelastic structures, Comput. Struct. 79, 533–541 (2001).

[6] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press (1982).

[7] J. S. Guo, W. W. Lin and C. S. Wang, Nonequivalence deflation for the solution of matrix talent

value problems, Linear Algebra Appl. 231, 15–45 (1995).

[8] T. M. Hwang, W. W. Lin, W. C. Wang and W. Wang, Numerical simulation of three dimensional

pyramid quantum dot, J. Comput. Phys. 196, 208–232 (2004).

[9] N. K. Jain and K. Singhal, On Kublanovskaya’s approach to the solution of the generalized latent

value problem for functional λ-matrices, SIAM J. Numer. Anal. 20, 1062–1070 (1983).

[10] E. Jarlebring, The spectrum of delay-differential equations: numerical methods, stability and

perturbation, Ph.D. Thesis, TU Braunschweig 2008.

[11] E. Jarlebring, K. Meerbergen and W. Michiels, A Krylov method for the delay eigenvalue problem,

SIAM J. Sci. Comput. 32, 3278–3300 (2010).

[12] T. Kato, Perturbation Theory for Linear Operators, 2nd edn., Springer-Verlag, Berlin, 1976.



150 X. Chen and H. Dai

[13] V. B. Khazanov and V. N. Kublanovskaya, Spectral problems for matrix pencils: Methods and

algorithms II, Sov. J. Numer. Anal. Math. Modelling, 3, 467–485 (1988).

[14] D. Kressner, A block Newton method for nonlinear eigenvalue problems, Numer. Math. 114,

355–372 (2009).

[15] V. N. Kublanovskaya, On an approach to the solution of the generalized latent value problem for

λ-matrices, SIAM J. Numer. Anal. 7, 532–537 (1970).

[16] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press (1966).

[17] R. C. Li, QR decomposition and nonlinear eigenvalue problems, Math. Numer. Sinica, 11, 374–

385 (1989).

[18] R. C. Li, Compute multiply nonlinear eigenvalues, J. Comput. Math. 10, 1–20 (1992).

[19] V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: A challenge for modern eigenvalue

methods, GAMM Mitteilungen, 27, 121–152 (2004).

[20] S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer (2001).

[21] G. Peters and J. H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s method,

SIAM Rev. 21, 339–360 (1979).

[22] A. Ruhe, Algorithms for the nonlinear eigenvalue problems, SIAM J. Numer. Anal. 10, 674–689

(1973).

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., SIAM (2003).

[24] A. Spence and C. Poulton, Photonic band structure calculations using nonlinear eigenvalue tech-

niques, J. Comput. Phys. 204, 65–81 (2005).

[25] J. G. Sun, Matrix Perturbation Theory, 2nd edn., Science Press (2001).

[26] W. Sun and K. M. Liu, Iterative algorithms for nonlinear ordinary differential eigenvalue prob-

lems, Appl. Numer. Math. 38, 361–376 (2001).

[27] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev. 43, 235–286

(2001).

[28] S. Van Huffel, J. Vandewalle and A. Haegemans, An efficient and reliable algorithm for com-

puting the singular subspace of a matrix, associated with its smallest singular values, J. Comput.

Appl. Math. 19, 313-333 (1987).

[29] J. M. Varah, The calculation of the eigenvectors of a general complex matrix by inverse iteration,

Math. Comput. 22, 785–791 (1968).

[30] H. Voss, A rational spectral problem in fluid-solid vibration, Electron. Trans. Numer. Anal. 16,

94–106 (2003).

[31] H. Voss, Numerical calculation of the electronic structure for three-dimensional quantum dots,

Comput. Phys. Commun. 174, 441–446 (2006).

[32] R. Wobst, The generalized eigenvalue problem and acoustic surface wave computations, Com-

puting, 39, 57–69 (1987).

[33] K. Wright, Differential equations for the analytic singular value decomposition of a matrix, Nu-

mer. Math. 63, 283–295 (1992).

[34] S. F. Xu, A smallest singular value method for solving inverse eigenvalue problems, J. Comput.

Math. 14, 23–31 (1996).


