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Abstract. A modified Verlet method which involves a kind of mid-point rule is con-

structed and applied to the one-dimensional motion of elastic balls of finite size, falling

under constant gravity in space and then under the chemical potential in the interface

region of phase separation within a two-liquid film. When applied to the simulation

of two balls falling under constant gravity in space, the new method is found to be

computationally superior to the usual Verlet method and to Runge–Kutta methods, as it

allows a larger time step for comparable accuracy. The main purpose of this paper is to

develop an efficient numerical method to simulate balls in the interface region of phase

separation within the two-liquid film, where the ball motion is coupled with two-phase

flow. The two-phase flow in the film is described via shallow water equations, using

an invariant finite difference scheme that accurately resolves the interface region. A

larger time step in computing the ball motion, more comparable with the time step in

computing the two-phase flow, is a significant advantage. The computational efficiency

of the new method in the coupled problem is demonstrated for the case of four elastic

balls in the two-liquid film.

AMS subject classifications: 65L12, 65M06, 65P10

Key words: Verlet method, falling balls, first return map, phase separation, shallow water equa-

tions.

1. Introduction

The main purpose of this paper is to develop an efficient numerical method to simulate

the motion of elastic balls of finite size in immiscible two-liquid films. The phase separates

in immiscible films, and the balls are expected to align near the phase separation inter-

face in a kind of self-organisation process related to problems of nanotechnology [8, 18].

Since film phenomena are quite complex, the simulation in this paper is restricted to one
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dimension – i.e. the balls (that may collide) fall in a straight line to the bottom of the phase

separation potential in the two-phase flow.

Falling ball problems are not easy to analyse. However, balls falling in space under

constant gravity have been studied with reference to ergodic theory [4]. In the case of

point masses moving in one dimension above a fixed floor, when the upper point masses

are lighter than the lower ones it has been proven mathematically that the system has some

non-vanishing Lyapunov exponents almost everywhere, and becomes chaotic [16,17]. For

two point masses, there is typical Kolmogorov–Arnold–Moser behaviour when the upper

mass is heavier than the lower one, where quasi-periodic and chaotic trajectories coexist in

the phase space [15]. Related numerical integration must be performed with high accuracy,

and lengthy simulations of falling balls have been undertaken using the symplectic Verlet

method.

The main difficulty encountered in previous simulations of the motion of elastic balls

of finite size in immiscible two-liquid films was the significantly smaller time step required

in the Verlet method than the time step permitted for the flow computation by the CFL

(Courant-Friedrichs-Lewy) condition, for a given accuracy. This led the author to construct

the modified Verlet method involving the second-order mid-point rule adopted in this paper

– i.e. to allow larger time steps for the simulation of the ball motion, more compatible with

the time steps allowed in the invariant finite difference scheme used to solve the two-phase

shallow-water equations invoked [14].

2. Two Balls Falling Under Constant Gravity and the Modified Verlet Method

Involving the Second-Order Mid-Point Rule

In this Section, the modified Verlet method involving the second-order mid-point rule

is constructed and applied to the case of two elastic balls of finite size falling vertically

under constant gravity above a fixed rigid horizontal floor. This new method is first used in

two simpler test problems – viz. the harmonic oscillator and the case of a single bouncing

ball. When applied to the two balls falling in space, the new method is then shown to be

more efficient than either the usual Verlet or various Runge-Kutta methods.

2.1. Mathematical model

The motion of two balls falling in one dimension under constant gravity above the fixed

floor is governed by the system of equations

dzi

d t
= vi , (2.1)

dvi

d t
= fi

�

z1, z2

�

, i = 1,2. (2.2)

Here z denotes the vertical position of a ball above the horizontal floor, v the corresponding

vertical velocity of the ball, t the time, f represents the acceleration, and the subscripts 1
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and 2 denote the lower and upper ball, respectively. The vertical acceleration consists of a

gravity term and an impact stress term – i.e.

f1
�

z1, z2

�

= −g + f1s

�

z1

�

/m1 − f12

�

z1, z2

�

/m1, (2.3)

f2
�

z1, z2

�

= −g + f12

�

z1, z2

�

/m2, (2.4)

where g denotes the gravitational acceleration, mi the respective ball mass (i = 1,2), f1s

the force attributable to the impact stress between the lower ball and the floor, and f12 the

force of impact between the two balls.

Since it is assumed the balls are elastic, suitable impact stresses calculated using Hertz

theory [11] are

f1s = k ·
�

x1

�
3

2 , x1 =max
�

R− z1, 0
�

, (2.5)

f12 = k ·
�

x2

�
3

2 , x2 =max
�

R−
�

z2 − z1

�

/2,0
�

, (2.6)

where R is the common ball radius and k is the elastic (“spring") constant.

The corresponding Hamiltonian of the system is therefore

H =
∑

i=1,2

�

1

2
mi v

2
i +mi gzi + Eci,

�

, (2.7)

where the elastic collisional energy is

Eci =
2

5
k ·
�

x i

�
5

2 , i = 1,2 . (2.8)

2.2. Modified Verlet method involving second-order mid-point rule

The usual Verlet method renders Eqs. (2.1) and (2.2) for each ball as

zn+1 = zn +∆t · vn+
1

2
(∆t)2 · f n , (2.9)

f n+1 = f
�

zn+1
�

, (2.10)

vn+1 = vn+∆t ·
f n+1 + f n

2
, (2.11)

where ∆t is the time-step width, the superscript denotes the time step, and the subscript

denoting a particular ball has been omitted.

However, on introducing truncated Taylor series into the model, Eqs. (2.1) and (2.2)

become

dz

d t
+
∆t

2

d2z

d t2
+
(∆t)2

6

d3z

d t3
= v+

∆t

2
f , (2.12)

dv

d t
+
∆t

2

d2v

d t2
+
(∆t)2

6

d3v

d t3
= f +

∆t

2
f ′v+

(∆t)2

4

�

f ′′v2 + f ′ f
�

, (2.13)
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where

f ′v =

2
∑

j=1

∂ f
�

z1, z2

�

∂ z j

v j, f ′′v2 =

2
∑

i, j=1

∂ 2 f
�

z1, z2

�

∂ zi∂ z j

vi v j , f ′ f =

2
∑

j=1

∂ f
�

z1, z2

�

∂ z j

f j .

The first-order perturbed terms of the time derivative may be eliminated using the

equations themselves and the second-order perturbed terms of the time derivative repeat-

edly, yielding the system of differential equations

dz

d t
= v−

(∆t)2

6

�

f ′v
�

, (2.14)

dv

d t
= f + (∆t)2

�

1

12
f ′′v2+

1

12
f ′ f

�

, (2.15)

which produces the modified Verlet method involving the second-order mid-point rule as

follows.

On eliminating second-order perturbed terms, and replacing the trapezoidal rule used

in the velocity equation in the Verlet method with another formula, one obtains

zn+1/2 = zn +
∆t

2
· vn+α(∆t)2 f (zn) , (2.16)

vn+1 = vn+∆t · f
�

zn+1/2
�

, (2.17)

where the improved Euler method corresponds to α = 0 and the mid-point method when

α = 1/4, where the value of the mid-point is (zn+1 + zn)/2. Further, the value at the mid-

point is given by the Taylor expansion of zn+1/2 up to second order if α = 1/8, under a

method designated here as the second-order mid-point rule. The corresponding approxi-

mate velocity equation is

dv

d t
= f + (∆t)2

�

−
1

24
f ′′v2−

1

24
f ′ f

�

. (2.18)

The detailed of derivation of (2.18) is shown in the Appendix.

The perturbed term is cancelled by the weighted average of the equations of the trape-

zoidal rule and the second-order mid-point rule, such that

vn+1
V = vn+∆t ·

f
�

zn +∆t · vn+ (∆t)2 f (zn)/2
�

+ f (zn)

2
, (2.19)

vn+1
T = vn+∆t · f

�

zn +
∆t

2
vn+

(∆t)2

8
f (zn)

�

, (2.20)

vn+1 =
vn+1

V + 2vn+1
T

3
. (2.21)
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The appropriate modified equation of position for the new method, derived from (2.14)

and the weight of (2.21), is

dz

d t
= v+

(∆t)2

12

�

f ′v
�

(2.22)

such that

zn+1 = zn +∆t · vn+
(∆t)2

4

�

f

�

zn +∆t · vn+
(∆t)2

2
f (zn)

�

+ f (zn)

�

. (2.23)

Averaging the corresponding equation in the Verlet method and this equation, using the

same weight as for the velocity equation, yields

zn+1=zn +∆t · vn+
(∆t)2

3
f (zn) +

(∆t)2

6
f

�

zn +∆t · vn+
(∆t)2

2
f (zn)

�

=zn+∆t · vn+
(∆t)2

2
f (zn)+

(∆t)2

6

�

f

�

zn +∆t · vn+
(∆t)2

2
f (zn)

�

− f (zn)

�

. (2.24)

Equations of (2.19)–(2.21) and (2.24) constitute the modified Verlet method involving

the second-order mid-point rule, where one may note that the model equations of the

previous subsection are approximated by difference equations to third-order accuracy.

2.3. An harmonic oscillator

The stability of the modified Verlet method involving the second-order mid-point rule

can be demonstrated by application to an harmonic oscillator, which can be viewed as a

linearised model of one ball striking the floor, where the initial height of the centre of the

ball is its radius and the elastic force of restitution is Hooke’s law. Thus the ball is deformed

by gravity such that the position of the centre of the ball is lowered and then rebounds to

its initial height, and subsequently undergoes a continuous harmonic oscillation. Assuming

the angular velocity of the harmonic oscillation to be 1.0 radian sec−1 say, the modified

Verlet method involving the second-order mid-point rule in this case is

 

zn+1

vn+1

!

=













1−
(∆t)2

2
+
(∆t)4

12
∆t −

(∆t)3

6

−∆t +
(∆t)3

6
1−
(∆t)2

2













 

zn

vn

!

. (2.25)

The eigenvalues of the coefficient matrix are complex conjugates, with absolute value
p

1− (∆t)6/72. Thus the computed amplitude of the oscillation is less than the exact

amplitude, and accurate to sixth order in the time-step width.
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Figure 1: Phase portrait of a bouning ball: (A),(B) Verlet method; (C),(D) modi�ed Verlet methodinvolving seond-order mid-point rule.
2.4. Single bouncing ball

A single bouncing ball also demonstrates the relative advantage of the modified Ver-

let method involving the second-order mid-point rule. Let us consider a ball of radius

0.1 cm falling until it strikes the rigid floor, where it becomes deformed but is again un-

deformed on returning to its initial height, and this repeats endlessly. The gravitational

acceleration is 980 gm/sec2, the assumed elastic (“spring") constant of the Hertz theory is

107 gm/(cm1/2 · sec2), the assumed initial height of the centre of the ball is 0.2 cm, and

the time-step width adopted is 0.0003 sec. The resulting phase portrait obtained from the

usual Verlet method is shown in Fig. 1A, and Fig. 1B is an enlargement of a part of 1A.

The phase portrait obtained from the modified Verlet method involving the second-order

mid-point rule is presented in Fig. 1C, and Fig. 1D is an enlargement of Fig. 1C. Since the

total energy is constant, the phase portrait should be a single closed line, but there is a

large fluctuation of the phase portrait in Fig. 1B.

It is instructive to note that the approximate Hamiltonian under the Verlet method is

HV = Hexact + (∆t)2
�

−
1

12
f ′v2−

1

24
f 2

�

, (2.26)

where Hexact is the exact Hamiltonian. On the other hand, the approximate Hamiltonian
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Figure 2: First return map of the upper ball from the modi�ed Verlet method involving seond-ordermid-point rule. The lower ball mass is (A) 1.2, (B) 0.8, and the upper ball mass is 1.0. The �rstreturn map shows the upper ball's position and veloity when the lower ball is in its lowest position afterolliding with the �oor.
under the second-order mid-point rule in the modified Verlet method is

HT = Hexact + (∆t)2
�

1

24
f ′v2+

1

48
f 2

�

, (2.27)

where the second-order terms of the Hamiltonian are cancelled out. The suppression of

the fluctuation in Fig. 1D is evidence for the improved accuracy under the modified Verlet

method involving the second-order mid-point rule.

2.5. Two falling balls

Let us now proceed to simulate the one-dimensional motion of the two balls of finite

size falling under gravity. After colliding with the floor, the lower ball either rebounds up-

ward and subsequently collides with the falling upper ball or it eventually falls down again

if the two balls do not collide. When the two balls do collide, the momentum exchange

returns the lower ball toward the floor and sends the upper ball upward, before that ball

falls again. The rhythm of the interaction is obviously complex, and depends upon the

relative masses of the two balls.

In the simulation, it is assumed that the initial positions of the ball centres are 0.2 cm

and 0.5 cm from the floor, respectively. The period of computation considered is 1000 sec,

the time step is 10−4 sec, and the other parameters adopted are the same as in the calcula-

tion for the single bouncing ball described in the previous subsection. The first return map

proposed by Whelan et al. [15] represents the position and velocity of the upper ball when

the lower ball is at its lowest position after colliding with the floor. The results from the

modified Verlet method involving the seconf-order mid-point rule are presented in Fig. 2,

where the mass of the upper ball is 1.0 gm, and that of the lower ball is either 1.2 gm (in

Fig. 2A) or 0.8 gm (in Fig. 2B).

The behaviour is chaotic when the upper ball is lighter than the lower ball, but there is

quasi-periodicity when the upper ball is heavier, in agreement with theory [15,16].

Results obtained using other methods are shown in Fig. 3, for the case where the

mass of the upper ball is 1.0 gm and that of the lower ball is 0.8 gm. Figs. 3A and 3B

present results from the explicit second order symplectic Verlet method, for the time-step
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width 10−4 sec in Fig. 3A and 10−5 sec in Fig. 3B, respectively. It is notable that Fig. 3A is

qualitatively different from Fig. 2, which was obtained using the modified Verlet method

involving the second-order mid-point rule. Figs. 3C and 3D show the results obtained

using a Runge–Kutta method with the time-step width 10−4 sec. Fig. 3C shows results

from the fourth order 1/6 formula and 3D from the third order Kutta formula that are

called RK41 and RK32, respectively [1]. The number of function evaluations per time step

is four for the 1/6 formula and three for the Kutta formula, whereas the number of function

evaluations per time step in the modified Verlet method involving the second-order mid-

point rule is three. Fig. 3D is obviously very different from the others. Fig. 3E presents the

result from the symmetric and symplectic implicit mid-point rule with the same time-step

width 10−4 sec, but it requires evaluation of the right-hand side function of the differential

equation at every inner iteration. The convergence criterion value demanded for the inner

iteration is 10−14, and approximately six iterations are needed during a collision. With the

given time-step width and the number of function evaluations involved, the modified Verlet

method involving the second-order mid-point rule is evidently computationally superior.

Fig. 4 presents the intermittency of the difference of velocity between the Verlet method

and the second-order mid-point rule, over the time interval 500 sec to 501 sec. During free

fall, where the velocity is a linear function of time and correspondingly the position is a

square function of time, the results of both second-order methods are the same. However,

when the lower ball collides with the floor, or when the upper ball collides with the lower

one, the results from the two methods differ. During free fall, the results from the usual

Verlet method may be used to correct the results from the second-order mid-point rule

when a collision is detected.

3. Balls in the Interface Region of Phase Separation in a Two-Liquid Film

The modified Verlet method involving the second-order mid-point rule is now applied

to the problem of colliding balls in the two-liquid film. The two-liquid film is formed in a

flat horizontal reservoir, where the ends of the liquid film are in contact with the walls of

the reservoir. The top of the film is a free surface, and it is assumed that the phases have

separated in the two-liquid film. Furthermore, a shallow water approximation is adopted

for the film. Balls are submerged in the liquid film, and are aligned on a line passing trans-

versely across the interface region of phase separation. The balls move horizontally due to

the force arising from the chemical potential difference between the balls and the liquid,

and tend to fall to the bottom of the potential of the coupled system. When one ball col-

lides with another, it is assumed that they interact elastically as before. The ball movement

stirs the liquid in the film through the consequent change in the chemical potential.

3.1. Two-phase shallow water equations

For the two-phase flow in the film, a suitable two-fluid model involves two volume

fractions and two velocities for the major and minor phases, and a common pressure [5,6].
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Figure 3: First return map when the massesof the lower and upper balls are 0.8 and 1.0,respetively. The time-step width is 10−4for (A) Verlet method, the time-step width
10−5 for the Verlet method in (B), (C) 4th-order Runge�Kutta method and (D) 3rd-orderRunge�Kutta method, (E) the impliit mid-point method.
Figure 4: Di�erene between the upper ball ve-loities obtained using the usual Verlet methodand the seond-order mid-point rule.

In a shallow water approximation, the relevant equations are [14]

∂
�

αdh
�

∂ t
+
∂
�

αdhud

�

∂ x
= 0 , (3.1)

∂
�

αch
�

∂ t
+
∂
�

αchuc

�

∂ x
= 0 , (3.2)

∂ ud

∂ t
+ ud

∂ ud

∂ x
= −

1

ρd

∂
�

ρmgh
�

∂ x
, (3.3)

∂ uc

∂ t
+ uc

∂ uc

∂ x
= −

1

ρc

∂
�

ρmgh
�

∂ x
, (3.4)

where αd +αc = 1 . (3.5)



10 H. Yasuda

Here x denotes the horizontal coordinate and t the time, h the surface height, α the volume

fractions and u the horizontal velocities where the subscript d denotes the minor phase and

c the major phase, g is the gravitational acceleration, and ρm = αdρd+αcρc is the density

of the mixture. The unknowns are the surface height, the two volume fractions, and the

two velocities.

The equation for the surface height is derived by adding (3.1), (3.2), and (3.5)

∂ h

∂ t
+
∂
�

αdhud +αchuc

�

∂ x
= 0. (3.6)

The volume fractions are then determined from (3.1) and (3.2), and the equation (3.6)

for the surface height.

3.2. Modelling the phenomena in the two-liquid film

The ball motion in the two-liquid film is governed by three interactions – viz. ball–

ball interaction, liquid–liquid interaction, and liquid–ball interaction. For the ball–ball

interaction, once again elastic collisions are assumed; for the liquid–liquid interaction, the

Ginzburg–Landau model for phase separation is adopted; and for the liquid–ball interac-

tion, a phenomenological model proposed in polymer science is used.

The Ginzburg–Landau model defines the Gibbs free energy of the phase separation [2],

where the driving forces are given by

fd = −αd

∂ µ

∂ x
, fc = αc

∂ µ

∂ x
, (3.7)

µ = −aψ+ bψ3 − γ
∂ 2ψ

∂ x2
, ψ= αd −αc. (3.8)

Here f represents the driving forces of the phase separation (with subscripts d and c

denoting the respective minor and major phases as before), µ is the chemical potential, ψ

is the order parameter that distinguishes the phase state by the difference of the volume

fractions for the phase separation, and {a, b,γ} are the constants in the Ginzburg–Landau

model that depend on the relevant phenomena.

Adding the driving forces of the phase separation yields the velocity equations in the

two-phase shallow water approximation

∂ uk

∂ t
+ uk

∂ uk

∂ x
= −

1

ρk

∂

∂ x

�

ρmgh±µ
�

, k = d , c , (3.9)

where k is either d or c and the sign of µ is either + for d or − for c.

The phenomenological model adopted for the free energy Fcpl of the coupled system is

(cf. Peng et al. [9])

Fcpl =

∫

d x
¦

h(x)4πR2 V
�

x − rp

�
�

ψ (x)−ψs

�2
©

, (3.10)

V
�

x − rp

�

= V0 exp
�

−
�

�x − rp

�

�/r0

�

,



Modified Verlet method involving second-order mid-point rule 11

where rp denotes the position of the centre of the ball, ψs the order parameter of the

surface of the balls, and V0 and r0 are constants. When there are two or more more balls

in the two-liquid film, their free energies are superposed. The chemical potential of the

coupled system is defined by

µcpl = 8πR2V
�

x − rp

�
�

ψ−ψs

�

, (3.11)

and added to the chemical potential term of the two-phase shallow water equations.

The velocity equation of a ball of velocity v and mass m in the interface region of phase

separation is thus

dv

d t
= −M

∂ Fcpl

∂ rp

+ fcol l ision/m , (3.12)

where M denotes its mobility. When the ith ball collides with the (i+1)th ball, the relevant

collision term is

fcol l ision= k ·
�

ri,i+1

� 3

2 , (3.13)

ri,i+1 =max
�

R−
�

rp,i+1 − rp,i

�

/2,0
�

, (3.14)

where rp,i is the position of the centre of the i-th ball and the balls are numbered in

ascending order from left to right.

3.3. Numerical methods

The modified Verlet method involving the second-order mid-point rule is used in (3.12)

to simulate the ball motion in the two-liquid film, using a third-order spline interpolation

in the first term on the right-hand side to evaluate the integral representing Fcpl given in

Eq. (3.10).

For the two-phase shallow-water equations, an invariant finite difference scheme based

on the theory of the transformation group and developed by Russian researchers quite ac-

curately resolves the interface region of phase separation [14]. The differential equations

of mathematical physics do not alter in form under point transformations (such as the

Galilean or similarity transformations), and finite difference schemes can be defined ac-

cordingly – i.e. such that the first differential approximation of the finite difference scheme

on the discrete points in space and time preserves this property under point transfor-

mations [10, 12, 13]. The first differential approximation in the finite difference scheme

of [10], where it is also called the modified equation [7], is a partial differential equation

obtained by expanding in Taylor series and neglecting higher order terms. Our scheme

here is as follows:
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(αh)n+1
i − (αh)ni

∆t
+
(αhu)ni+1 − (αhu)ni−1

2∆x

=
∆t

2

�

un
i+1/2

un
i+1/2

�

(αh)ni+1 − (αh)ni

�

− un
i−1/2

un
i−1/2

�

(αh)ni − (αh)ni−1

�
�

/∆x2

+∆t
�

un
i+1/2

(αh)ni+1/2

�

un
i+1 − un

i

�

− un
i−1/2

(αh)ni−1/2

�

un
i − un

i−1

�
�

/∆x2

+
∆t

2

1

ρ

�

(αh)ni+1/2

��
�

ρmgh
�n

i+1±µ
n
i+1

�

−
�
�

ρm gh
�n

i ±µ
n
i

��

− (αh)ni−1/2

��
�

ρmgh
�n

i ±µ
n
i

�

−
�
�

ρmgh
�n

i−1 ±µ
n
i−1

��
�

/∆x2, (3.15)

un+1
i
− un

i

∆t
+

un
i+1
+ un

i−1

2

un
i+1
− un

i−1

2∆x

=−
1

ρ

�
�

ρmgh
�n

i+1 ±µ
n
i+1

�

−
�
�

ρmgh
�n

i−1 ±µ
n
i−1

�

2∆x

+
∆t

2

�

un
i+1/2

un
i+1/2

�

un
i+1 − un

i

�

− un
i−1/2

un
i−1/2

�

un
i − un

i−1

�
�

/∆x2

+
∆t

2
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Here ∆t is the time-step size, ∆x is the width of the x -directional mesh, the subscript i

denotes the x -directional mesh number, n the time step number, and um represents the

mass-weighted velocity of the mixture – i.e. such that ρmum = αdρdud + αcρcuc . The

subscripts d and c have now been omitted, since the finite difference scheme for the major

phase is the same as that for the minor phase. The use of truncated Taylor series expansions

produces the first differential approximation, where first-order terms in ∆t and ∆x do not

appear. The scheme accuracy is second order in time and second order in space [14].

A non-conservative form for the velocity equation is used, although the conservative

form is usually chosen. It is necessary to use the conservative form for the computa-

tion of shock waves, but shock waves do not play an important role in the problem dis-

cussed here. However, there are some phenomenological terms in the mathematical model

adopted above – and experience with nuclear code development has revealed that a non-

conservative form may be preferable, as the relevant conservative form conserves non-

physical errors arising from phenomenological terms [3].



Modified Verlet method involving second-order mid-point rule 13

3.4. Preliminary cases: kink solution and two balls in the potential of a kink

solution

Prior to the simulation balls in the two-phase flow, two preliminary uncoupled prob-

lems were considered. The first was a steady state kink solution for two-phase flow in the

film, and the second was for two balls in the potential of a kink solution.

The Euler–Lagrange equation of the Ginzburg–Landau model has an analytic solution

called a kink solution, where a one-dimensional two-phase flow is stationary and attains a

ground state in the far field – viz.

ψ (x) =ψe tanh
�

x/
p

2ξ
�

, (3.17)

where ψe =
p

a/b represents the ground state and ξ =
p

γ/a is the order of the interface

region thickness [2]. For the numerical computation of this kink solution, a phenomeno-

logical lateral viscosity term was added to the equation of velocity – viz.

ν
∂ 2uk

∂ x2
≃ ν

uk,i+1− 2uk.i + uk,i−1

∆x2
, k = d , c

where ν is the phenomenological viscosity coefficient. The introduction of this viscosity

term can ensure that the velocity due to the large force due to the phase separation in the

interface region decays, such that the numerical solution is stationary.

A steady state was computed from a perturbed kink solution, for the following pa-

rameters. The liquid film length was 50 cm and initial height 1.0 cm, the liquid den-

sity 1.0 gm/cm3 and viscosity 0.01 cm2/sec for the respective phases, and the gravita-

tional acceleration 980 cm/sec2. The initial velocity of the flow in the film was zero, and

the constants in the Ginzburg–Landau model were 1.0 gm/(cm · sec2) for a and b, and

1.0 gm · cm/sec2 for γ. The initial distribution of the order parameter was given by the

kink solution of the Ginzburg–Landau model. A perturbation of less than 0.0001 was ran-

domly added to the volume fractions of the kink solution, and the space mesh size was

0.1 cm. The origin of the coordinate system centre was taken to be at the centre of the

interface region at the centre of the film, the interface region width approximately 6 cm,

and the order parameter to be zero at the origin. The boundary conditions assumed at

the end of the film were Neumann zero for the volume fractions of the two phases and

the surface height, and Dirichlet zero for the velocities. For the time-step width 0.001 sec,

the perturbation decayed slowly in the small fluid motion and the calculation converged

to the kink solution. The computed steady state of the liquid film for the x-coordinate

between −10 cm and 10 cm is shown in Fig. 5. (When the time-step width was 0.01 sec,

the computation diverged.)

The second problem involved two balls placed symmetrically about the centre of the

potential of the kink solution. This is similar to the bouncing ball problem except for the

included potential if symmetry is maintained, where each ball moves toward the centre

of the interface region under the chemical potential, the point at which they collide. (The

balls are deformed on impact and then move back to their initial positions, before resuming
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Figure 5: Steady state of the liquid �lm, from a perturbed kink solution.
their former motion toward the centre.) The radius of each ball was taken to be 0.1 cm,

their mass 1.0 gm and the elastic (“spring") constant 107 gm/(cm1/2sec2). The assumed

initial positions of the balls were ±0.2 cm, within the interface region of the kink solution.

The phase portrait obtained over every 100 steps is shown in Figs. 6A, 6B. The time-

step width in Fig. 6A was 0.0001 sec, and 0.0008 sec in Fig. 6B. Since the total energy

of the balls is constant, the phase portrait should be a single closed line, but it becomes

broadened in Fig. 6B. The maximum position of the ball at the right during two collisions,

which we call the peak and should be constant, is shown in Fig. 6C. It is seen that the peak

for the time-step width 0.0001 sec does remain approximately constant, with a maximum

relative error to the initial position −4.31× 10−5. For the time-step widths 0.00055 sec

and 0.0008 sec, the peaks are 0.194 cm and 0.173 cm, respectively. Fig. 6D shows the

phase portrait of a single ball starting from x = −0.2 cm until 500 sec, with the time-step

width 0.0008 sec. The decay is negligible in Fig. 6D, meaning that the decay originates

from the calculation of collisions. The greater decay of the peak for a larger time-step may

be expected qualitatively, on recalling the form for the absolute value of the eigenvalues in

Section 2.3.

As foreshadowed, it is the computation of the ball motion that places the main restric-

tion on the time-step in the coupled problem.

3.5. Balls in the interface region of phase separation in a liquid film

Let us now turn to the simulation of four balls in the interface region of a phase-

separated film. The liquid films are presumed uniform from the bottom to the surface in

the shallow water approximation, so the force applied to the balls through the chemical

potential is horizontal. There is no vertical gravitational force on the balls in the liquid film

if the densities of the liquid and the balls are equal, so the balls only move horizontally.

The effect by which the balls exclude the fluid is ignored.

When the order parameter of the surface of the balls is equal to that of the centre of

the interface region and the initial positions of the balls are symmetric about the centre,
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Figure 6: Phase portrait of two balls in the potential of the kink solution, using the modi�ed Verletmethod involving seond-order mid-point rule: (A) with time-step width 0.0001; (B) with time-stepwidth 0.0008; (C) at the peak position of the right ball; and (D) the phase portrait of a single ball fortime-step width of 0.0008.
the balls fall symmetrically toward the centre under the chemical potential. The motion

on either side of the centre resembles the case of the two balls falling under constant

gravity discussed in Section 2.5, if the symmetry is maintained. Each inner falling ball now

collides elastically with the other at the centre, and then moves outward before colliding

with the respective outer falling ball or falls again if that collision does not occur. When an

inner and outer ball collide, their momentum exchange sends the inner ball back toward

the centre and the outer ball moves away, until it again falls toward the centre under the

chemical potential. Furthermore, the liquid in the film is stirred by the motion of the balls

due to the chemical potential. A sketch of the geometry of the balls in the interface region

is illustrated in Fig. 7.

The computational methods for both the ball motion and the two-phase flow are ex-

plicit, where values at the n+ 1− th time step are computed from values of the n− th

step and the computation is combined at the n− th step. The assumed properties of the

balls and the specification of the two-phase flow in the liquid film was the same as in the

previous uncoupled case. The elastic (“spring") constant of the Hertz theory assumed was

107 gm/(cm1/2 · sec2), the initial positions of the ball centres were −0.5, −0.2, 0.2 and

0.5 cm, the constant V0 in the model of the coupled free energy 0.01 gm/(cm3 · sec2), the

constant R0 0.5 cm, and the ball mobility 105 gm−1. The order parameter of the ball sur-

face was zero, the computation time 50 sec, and the time-step width 1.0−5 sec (a smaller

time-step for the coupled system than for uncoupled cases). Fig. 8A shows the first return
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Figure 8: Falling balls in the interfae regionof phase separation in the �lm of length 50.(A) �rst return map of the outer fourth ballwhen the two inner balls ollide and the entreof the third ball is losest to the origin; (B)positions of the entres of the third (lower)and fourth (upper) ball; and (C) the variationof the order parameter from the initial value atthe point 0.3.
map of the outer fourth ball when the two inner balls collide and the centre of the third

ball is closest to the origin. Fig. 8B portrays the positions of the centres of the third and

fourth balls in the right half of the film during the time interval 40− 50 sec, and of course

the movement of the first and second ball in the left half is symmetric. Fig. 8C presents the

variation of the order parameter from the initial value x = 0.3 cm during the time interval

40 − 50 sec. The numerical method evidently resolved the small variation of the order

parameter caused by the ball motion.

The first return map depends sensitively on the chemical potential and the dimension

of the film. For example, if the length of the film is 50.1 cm rather than 50 cm, a quasi-

periodic first return map is obtained, as shown in Fig. 9A. Fig. 9B is an enlargement of

the upper right part of Fig. 9A. The other parts of Fig. 9A are also elliptic, but no elliptic
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Figure 9: (A) First return map when the length of the �lm is 50.1; and (B) enlargement of the upperright part of (A).
figures appear in Fig. 8A. A survey of the first return map remains an issue for further study.

And the high sensibility on the parameters of the phenomena suggests the possibility and

difficulty to control balls for technological purposes.

4. Conclusion

The modified Verlet method involving the second-order mid-point rule is more efficient

in the simulation of falling balls than numerical integrators previously used. In particu-

lar, the motion of balls under the chemical potential within the interface region of phase

separation in a two-liquid film was accurately and efficiently simulated by the modified

Verlet method involving the second-order mid-point rule, when combined with an invari-

ant finite difference scheme for the two-phase shallow water equations. However, a more

careful consideration of the first return map remains an issue for further study.

A. Appendix

The derivation of equation (2.18) from (2.16) and (2.17) in Section 2.2 is an elimi-

nation process involving time differential. The velocity equation using the second-order

mid-point rule is

vn+1− vn

∆t
= f

�

zn +
∆t

2
· vn+α (∆t)2 f (zn)

�

. (A.1)

Ignoring higher order terms, the Taylor expansion of (A.1) becomes

dv

d t
+
∆t

2

d2v

d t2
+
∆t2

6

d3v

d t3
= f +

∆t

2
f ′v +

∆t2

8
f ′′v2+α (∆t)2 f ′ f , (A.2)

where the summations are represented as in Section 2.2.

The second-order and third-order time derivatives on the left-hand side of (A.2) are

eliminated by invoking differentiated forms of the equation, to yield

dv

d t
+
∆t

2

d f

d t
+
∆t2

6

�

f ′ f + f ′′v2
�

= f +
∆t

2
f ′v+

∆t2

8
f ′′v2+α (∆t)2 f ′ f . (A.3)
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Similarly, equation (2.16) becomes

dz

d t
+
∆t

4

dv

d t
+
α

2
(∆t)2

d f

d t
= v + 2α∆t · f +

1

48
(∆t)2

d2v

d t2
. (A.4)

Substituting (A.3) into (A.4) and ignoring higher order terms, (A.4) becomes

dz

d t
= v+∆t

�

2α−
1

4

�

f + (∆t)2
�

1

48
−
α

2

�

f ′v. (A.5)

Applying (A.5) to the calculation of the second term in the left-hand side of (A.3) and

ignoring the higher order terms, the result is

dv

d t
= f − (∆t)2

�

α−
1

8

�

f + (∆t)2
�

1

8
−

1

6

�

f ′′v2+ (∆t)2
�

α−
1

6

�

f ′ f . (A.6)

If α is equal to 1/8, (A.6) becomes

dv

d t
= f + (∆t)2

�

−
1

24
f ′′v2−

1

24
f ′ f

�

. (A.7)
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