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Abstract. In this paper, we propose a mixed Fourier-Jacobi spectral method for two

dimensional Neumann boundary value problem. This method differs from the classical

spectral method. The homogeneous Neumann boundary condition is satisfied exactly.

Moreover, a tridiagonal matrix is employed, instead of the full stiffness matrix encoun-

tered in the classical variational formulation. For analyzing the numerical error, we

establish the mixed Fourier-Jacobi orthogonal approximation. The convergence of pro-

posed scheme is proved. Numerical results demonstrate the efficiency of this approach.
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1. Introduction

In the past several decades, spectral method has become increasingly popular in scien-

tific computing and engineering applications (cf. [4–8,13] and the references therein). In

most of these applications, one usually considers spectral methods for Dirichlet boundary

value problems. However, it is also important to consider various problems with Neumann

boundary condition. In a standard variational formulation, this kind of boundary condition

is commonly imposed in a natural way. Unfortunately, this approach usually leads to a full

stiffness matrix for approximating the second derivatives.

To overcome this disadvantage, Shen [12] first introduced a Legendre spectral method

with essential imposition of Neumann boundary condition. Moreover, Auteri et al. [2]

also studied the aforementioned spectral solver for the Neumann problem associated with
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Laplace and Helmholtz operators in rectangular domains. This method differs from the

classical spectral methods for such problems, the homogeneous Neumann boundary con-

dition is satisfied exactly for each basis. In particular, the proposed approach leads to a

diagonal stiffness matrix, rather than a full matrix encountered in the classical variational

formulation. Wang and Wang [18] analyzed the numerical errors of this algorithm. Mean-

while, Yu and Wang [19] also developed Jacobi spectral method with essential imposition

of Neumann boundary condition for one-dimensional Neumann boundary value problems.

In this paper, we investigate two-dimensional Neumann boundary value problem, us-

ing the Fourier-Jacobi spectral method with essential imposition of Neumann boundary

condition. The main advantage of such treatment consists in that: (i). the stiffness matrix

is tridiagonal, in contrast to the full stiffness matrix encountered in the classical variational

formulation; (ii). the conservation of certain physical quantities can be retained for time-

dependent problems. It is pointed out that Wang and Guo [15] also dealt with a heat

transfer inside a unit disc with Dirichlet boundary condition, using Fourier-Jacobi spectral

method.

For analyzing the numerical error, we establish basic result on mixed Fourier-Jacobi

orthogonal approximation, motivated by Guo and Wang [10,11], and Wang and Guo [16,

17]. The convergence of proposed scheme is proved. We also present some numerical

results to demonstrate the efficiency of this approach.

This paper is organized as follows. In the next section, we recall some properties and

relevant results of Jacobi approximations. The mixed Fourier-Jacobi orthogonal approx-

imation for Neumann problem are established in Section 3. In Section 4, we propose

the mixed Fourier-Jacobi spectral method with essential imposition of Neumann boundary

condition for a model problem and analyze its numerical error. In Section 5, we present

some numerical results. The final section is for concluding remarks.

2. Preliminaries

Let Λ = {x | |x |< 1} and χ(x) be a certain weight function. Denote by N the set of all

non-negative integers. For any r ∈ N, we define the weighted Sobolev space H r
χ(Λ) in the

usual way, and denote its inner product, semi-norm and norm by (u, v)r,χ,Λ, |v|r,χ,Λ and

‖v‖r,χ,Λ respectively. In particular, L2
χ(Λ) = H0

χ(Λ), (u, v)χ,Λ = (u, v)0,χ,Λ and ‖v‖χ,Λ =

‖v‖0,χ,Λ. For any r > 0, we define the space H r
χ(Λ) by space interpolation as in [3]. In

cases where no confusion arises, χ may be dropped from the notations whenever χ(x)≡ 1.

For α,β > −1, we denote by J
(α,β)

l
(x) the Jacobi polynomial of degree l, which is the

eigenfunction of the following Sturm-Liouville problem

∂x((1− x)α+1(1+ x)β+1∂x v(x))+λ
(α,β)

l
(1− x)α(1+ x)β v(x) = 0, x ∈ Λ, (2.1)

with the corresponding eigenvalue λ
(α,β)

l
= l(l+α+β+1), l ≥ 0. The Jacobi polynomials

fulfill the following recurrence relations (cf. [1,9,14]),

∂x J
(α,β)

l
(x) =

1

2
(l +α+ β + 1)J

(α+1,β+1)

l−1
(x), l ≥ 1, (2.2)
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2(l + 1)(l +α+ β + 1)(2l +α+ β)J
(α,β)

l+1
(x) =

�
(2l +α+ β + 1)(α2− β2)

+
(2l +α+ β + 2)!

(2l +α+ β − 1)!
x
�

J
(α,β)

l
(x)− 2(l +α)(l + β)(2l +α+ β + 2)J

(α,β)

l−1
(x), (2.3)

and

∫ x

−1

J
(α,β)

l
(y)d y =al(J

(α,β)

l+1
(x)− J

(α,β)

l+1
(−1))+ bl(J

(α,β)

l
(x)− J

(α,β)

l
(−1))

+ cl(J
(α,β)

l−1
(x)− J

(α,β)

l−1
(−1)), (2.4)

where

al =
2(l +α+ β + 1)

(2l +α+ β + 1)(2l +α+ β + 2)
, bl =

2(α− β)
(2l +α+ β)(2l +α+ β + 2)

,

cl =
−2(l +α)(l + β)

(l +α+ β)(2l +α+ β)(2l +α+ β + 1)
.

Besides,

J
(α,β)

l
(−x) = (−1)lJ

(β ,α)

l
(x), J

(α,β)

l
(1) =

Γ(l +α+ 1)

l!Γ(α+ 1)
, (2.5)

where Γ(x) is the Gamma function.

Next let χ(α,β)(x) = (1−x)α(1+x)β . The set of Jacobi polynomials forms the L2

χ(α,β)(Λ)

orthogonal system,

∫

Λ

J
(α,β)

l
(x)J (α,β)

m (x)χ(α,β)(x)d x = γ
(α,β)

l
δl ,m, (2.6)

where δl ,m is the Kronecker function, and

γ
(α,β)

l
=

2α+β+1Γ(l +α+ 1)Γ(l + β + 1)

(2l +α+ β + 1)Γ(l + 1)Γ(l +α+ β + 1)
. (2.7)

For any N ∈ N, we denote by PN the set of all algebraic polynomials of degree at most

N . Let α,β ,γ,δ > −1, we introduce the space H
µ

α,β ,γ,δ
(Λ), 0 ≤ µ ≤ 1 and H

µ

σ,λ,α,β ,γ,δ
(Λ),

0≤ µ ≤ 2. For µ = 0,

H0
σ,λ,α,β ,γ,δ(Λ) = H0

α,β ,γ,δ(Λ) = L2

χ(γ,δ)(Λ).

For µ = 1,

H1
α,β ,γ,δ(Λ) =

¦
v | v is measurable and ‖v‖1,α,β ,γ,δ,Λ <∞

©
,

equipped with the norm

‖v‖1,α,β ,γ,δ,Λ =
�
|v|2

1,χ(α,β),Λ
+ ‖v‖2

χ(γ,δ),Λ

� 1

2
.
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For µ = 2,

H2
σ,λ,α,β ,γ,δ(Λ) =

¦
v | v is measurable and ‖v‖2,σ,λ,α,β ,γ,δ,Λ <∞

©
,

equipped with the norm

‖v‖2,σ,λ,α,β ,γ,δ,Λ =
�
|v|2

2,χ(σ,λ),Λ
+ |v|2

1,χ(α,β),Λ
+ ‖v‖2

χ(γ,δ),Λ

� 1

2
.

The space H
µ

α,β ,γ,δ
(Λ), 0 < µ < 1 and H

µ

σ,λ,α,β ,γ,δ
(Λ), 0 < µ < 2 are defined by space

interpolation as in [3], with the norms ‖v‖µ,α,β ,γ,δ,Λ and ‖v‖µ,σ,λ,α,β ,γ,δ,Λ respectively. For

description of approximation results, we also define the space

H r

χ(α,β),∗(Λ) =
¦

v | v is measurable and ||v||r,χ(α,β),∗ <∞
©

, r ≥ 1, r ∈ N,

where

||v||r,χ(α,β),∗ =

 
r−1∑

k=0

|v|2
k+1,χ(α,β),∗

! 1

2

and |v|r,χ(α,β),∗ = ||∂ r
x v||χ(α+r−1,β+r−1),Λ.

According to Lemma 3.5 of [9], one verifies readily that

Lemma 2.1. If λ < 1, then for any v ∈ H2
σ,λ,α,β ,γ,δ

(Λ), ∂x v(x) is continuous on any subin-

terval Λ∗ = [−1, a]⊂ Λ with −1< a < 1, and

max
x∈Λ∗
|∂x v(x)| ≤ c||∂x v||1,χ(σ,λ),Λ.

If, in addition, σ < 1, then these results can be extended to Λ.

In the forthcoming discussions, we need a unusual mapping. To do this, let λ < 1 and

0H2
σ,λ,α,β ,γ,δ(Λ) =

n
u | u ∈ H2

σ,λ,α,β ,γ,δ(Λ), ∂x u(−1) = 0
o

,

0PN (Λ) =PN ∩ 0H2
σ,λ,α,β ,γ,δ(Λ).

Due to Lemma 2.1, the set 0H2
σ,λ,α,β ,γ,δ

(Λ) is meaningful.

Lemma 2.2. (cf. Theorem 3.3 of [19]). If λ < 1 and one of the following conditions holds:

α≤ γ+ 2, α < 1, β ≤ 0, δ ≥ 0, (2.8)

α≤ 0, β ≤ δ+ 2, γ≥ 0, (2.9)

α≤ γ+ 2, β ≤ δ+ 1, α < 1, 0< β < 1, (2.10)

then there exists a mapping

0P1
N ,α,β ,γ,δ,Λ : 0H2

σ,λ,α,β ,γ,δ(Λ)→ 0PN (Λ),
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such that 0P1
N ,α,β ,γ,δ,Λ

u(1) = u(1), and for any u ∈ 0H2
σ,λ,α,β ,γ,δ

(Λ)∩H r

χ(α,β) ,∗(Λ) with integer

2≤ r ≤ N + 1,

‖0P1
N ,α,β ,γ,δ,Λu− u‖1,α,β ,γ,δ,Λ ≤ cN1−r |u|r,χ(α,β),∗. (2.11)

In particular, if (2.8) or (2.10) holds, then we have

‖0P1
N ,α,β ,γ,δ,Λu− u‖χ(−1,δ),Λ ≤ cN1−r |u|r,χ(α,β),∗. (2.12)

If, in addition,

0< α≤ γ+ 1 and
λ− 1

2
≤ β ≤ δ+ 1, (2.13)

then for all 0≤ µ ≤ 1,

‖0P1
N ,α,β ,γ,δ,Λu− u‖µ,α,β ,γ,δ,Λ ≤ cNµ−r |u|r,χ(α,β),∗. (2.14)

3. Mixed Fourier-Jacobi Orthogonal Approximation

In this section, we consider the mixed Fourier-Jacobi orthogonal approximation.

Let I = (0,2π) and H r(I) be the Sobolev space with the norm ‖·‖r,I and the semi-norm

| · |r,I as usual. For any non-negative integer m, we denote by Hm
p (I) the subspace of Hm(I),

consisting of all functions whose derivatives of order up to m− 1 have the period 2π. For

any r > 0, the space H r
p(I) is defined by space interpolation as in [3].

Let M be any positive integer, and eVM (I) = span{eilθ | |l| ≤ M}. We denote by VM (I)

the subset of eVM (I) consisting of all real-valued functions. The orthogonal projection PM ,I :

L2(I)→ VM (I) is defined by

∫

I

(PM ,I v(θ)− v(θ))φ(θ)dθ = 0, ∀φ ∈ VM (I).

It was shown in [8] that for any v ∈ H r
p(I), r ≥ 0 and µ ≤ r,

‖PM ,I v − v‖µ,I ≤ cMµ−r |v|r,I . (3.1)

We now establish the result on the mixed Fourier-Jacobi orthogonal approximation.

For this purpose, let Ω = Λ× I . We define the spaces

F (Ω) :=F (σ,λ,α,β ,γ,δ,η,ξ) =
n

v ∈ H2
σ,λ,α,β ,γ,δ(Λ, H1

p(I)) | there exists finite trace of

∂x v(x ,θ) at x = −1 and ‖v‖1,α,β ,γ,δ,η,ξ,Ω <∞
©

,

0F (Ω) := 0F (σ,λ,α,β ,γ,δ,η,ξ) =
�

v ∈ F (Ω) | ∂x v(−1,θ) = 0
	

,

where

‖v‖1,α,β ,γ,δ,η,ξ,Ω =

�
‖∂x v‖2

L2

χ(α,β)
(Λ,L2(I))

+ ‖∂θ v‖2
L2

χ(η,ξ)
(Λ,L2(I))

+ ‖v‖2
L2

χ(γ,δ)
(Λ,L2(I))

� 1

2

.
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Moreover, we denote by

(u, v)χ,Ω =

∫

Ω

u(x ,θ)v(x ,θ)χ(x)dθd x .

Next denote byPN ,M(Ω) =PN (Λ)⊗VM (I)∩0F (Ω). The orthogonal projection 0P1
N ,M ,Ω :

0F (Ω)→PN ,M(Ω) is defined by

a(0P1
N ,M ,Ωv− v,φ) = 0, ∀φ ∈ PN ,M(Ω), (3.2)

where

a(u, v) = (∂xu,∂x v)χ(α,β),Ω + (∂θu,∂θ v)χ(η,ξ),Ω + (u, v)χ(γ,δ),Ω.

Clearly, PN ,M(Ω) and 0P1
N ,M ,Ω are related to the parameters σ,λ,α,β ,γ,δ,η,ξ.

Lemma 3.1. For any v(·,θ) ∈ L2(I) and ∂θ v(1,θ) = 0, we have ∂θ PM ,I v(1,θ) = 0.

Proof. Due to ∂θ v(1,θ) = 0, we can rewrite v(x ,θ) as v(x ,θ) = (1− x)µu(x ,θ) +

b(x), where µ > 0 is a certain constant. Thanks to v(·,θ) ∈ L2(I), we deduce readily

that u(·,θ) ∈ L2(I). Hence PM ,Iu(x ,θ) is meaningful. Furthermore, PM ,I v(x ,θ) = (1−
x)µPM ,I u(x ,θ) + b(x). Hence, ∂θ PM ,I v(1,θ) = 0.

Theorem 3.1. (i). If one of the conditions (2.8)-(2.10) holds, then for any

v ∈ 0F (Ω)∩H r

χ(α,β),∗(Λ, H1(I))∩H1
α,β ,γ,δ(Λ, Hs

p(I))

with α,β ,γ,δ,η,ξ > −1, integer 2≤ r ≤ N + 1, s ≥ 1, η ≥ γ and ξ ≥ δ, we have

‖0P1
N ,M ,Ωv − v‖1,α,β ,γ,δ,η,ξ,Ω ≤c(N1−r +M1−s)

�
|v|H r

χ(α,β),∗
(Λ,L2(I)) + |v|H r

χ(α,β),∗
(Λ,H1(I))

+ |∂x v|L2

χ(α,β)
(Λ,Hs(I)) + |v|L2

χ(γ,δ)
(Λ,Hs(I))

�
. (3.3)

(ii). If η = −1, (2.8) or (2.10) holds and ∂θ v(1,θ) = 0, then for any

v ∈ 0F (Ω)∩H r

χ(α,β),∗(Λ, H1(I))∩H1
α,β ,γ,δ(Λ, Hs

p(I))∩ L2

χ(−1,δ)(Λ, Hs(I))

with α,β ,γ,δ,ξ > −1, integer 2≤ r ≤ N + 1, s ≥ 1 and ξ ≥ δ, we have

‖0P1
N ,M ,Ωv − v‖1,α,β ,γ,δ,−1,ξ,Ω ≤c(N1−r +M1−s)

�
|v|H r

χ(α,β),∗(Λ,L2(I)) + |v|H r

χ(α,β),∗(Λ,H1(I))

+ |∂x v|L2

χ(α,β)
(Λ,Hs(I)) + |v|L2

χ(−1,δ)
(Λ,Hs(I))

�
. (3.4)

Proof. We first consider the case (3.3). By the projection theorem, we have

‖0P1
N ,M ,Ωv − v‖1,α,β ,γ,δ,η,ξ,Ω ≤ ‖φ − v‖1,α,β ,γ,δ,η,ξ,Ω, ∀φ ∈ PN ,M(Ω). (3.5)
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Take φ = 0P1
N ,α,β ,γ,δ,Λ

· PM ,I v. Since α,β ,γ,δ,η,ξ > −1, we verify readily that φ ∈
PN ,M(Ω). It remains to estimate the terms ‖0P1

N ,α,β ,γ,δ,Λ
· PM ,I v − v‖H1

α,β ,γ,δ
(Λ,L2(I)) and ‖∂θ

(0P1
N ,α,β ,γ,δ,Λ

· PM ,I v − v)‖L2

χ(η,ξ)
(Λ,L2(I)). Thanks to (2.11) and (3.1), we deduce that for

integer 2≤ r ≤ N + 1 and s ≥ 0,

‖0P1
N ,α,β ,γ,δ,Λ

· PM ,I v − v‖H1
α,β ,γ,δ

(Λ,L2(I))

≤ ‖0P1
N ,α,β ,γ,δ,Λ

· PM ,I v − PM ,I v‖H1
α,β ,γ,δ

(Λ,L2(I)) + ‖PM ,I v− v‖H1
α,β ,γ,δ

(Λ,L2(I))

≤ cN1−r |PM ,I v|H r

χ(α,β),∗
(Λ,L2(I)) + cM−s |∂x v|L2

χ(α,β)
(Λ,Hs(I)) + cM−s |v|L2

χ(γ,δ)
(Λ,Hs(I))

≤ cN1−r |v|H r

χ(α,β),∗(Λ,L2(I)) + cM−s |∂x v|L2

χ(α,β)
(Λ,Hs(I)) + cM−s |v|L2

χ(γ,δ)
(Λ,Hs(I)). (3.6)

Moveover, due to η ≥ γ and ξ ≥ δ, we use (2.11) and (3.1) again to obtain that for integer

2≤ r ≤ N + 1 and s ≥ 1,

‖∂θ (0P1
N ,α,β ,γ,δ,Λ

· PM ,I v− v)‖L2

χ(η,ξ)
(Λ,L2(I))

≤ ‖0P1
N ,α,β ,γ,δ,Λ

· ∂θ PM ,I v− ∂θ PM ,I v‖L2

χ(γ,δ)
(Λ,L2(I)) + ‖∂θ (PM ,I v− v)‖L2

χ(γ,δ)
(Λ,L2(I))

≤ cN1−r |∂θ PM ,I v|H r

χ(α,β),∗(Λ,L2(I))+ cM1−s |v|L2

χ(γ,δ)
(Λ,Hs(I))

≤ cN1−r |v|H r

χ(α,β),∗(Λ,H1(I))+ cM1−s |v|L2

χ(γ,δ)
(Λ,Hs(I)). (3.7)

Therefore, a combination of (3.6) and (3.7) leads to (3.3).

Next if η = −1, (2.8) or (2.10) holds and ∂θ v(1,θ) = 0, then we take φ = 0P1
N ,α,β ,γ,δ,Λ

·
PM ,I v. Since ∂θφ =

0P1
N ,α,β ,γ,δ,Λ

∂θ PM ,I v. Moreover, according to Lemma 2.2, 0P1
N ,α,β ,γ,δ,Λ

u(1)

= u(1). Therefore, by virtue of Lemma 3.1, ∂θφ(1,θ) = ∂θ PM ,I v(1,θ) = 0, and so

∂θφ(x , ·) ∈ L2

χ(−1,ξ)(Λ). This leads to φ ∈ PN ,M(Ω). It remains to estimate the term ‖∂θ
(0P1

N ,α,β ,γ,δ,Λ
· PM ,I v − v)‖L2

χ(−1,ξ)
(Λ,L2(I)). Thanks to ξ ≥ δ, we obtain from (2.12) and (3.1)

that

‖∂θ (0P1
N ,α,β ,γ,δ,Λ

· PM ,I v − v)‖L2

χ(−1,ξ)
(Λ,L2(I))

≤ ‖0P1
N ,α,β ,γ,δ,Λ · ∂θ PM ,I v− ∂θ PM ,I v‖L2

χ(−1,δ)
(Λ,L2(I)) + ‖∂θ (PM ,I v− v)‖L2

χ(−1,δ)
(Λ,L2(I))

≤ cN1−r |∂θ PM ,I v|H r

χ(α,β),∗(Λ,L2(I)) + cM1−s |v|L2

χ(−1,δ)
(Λ,Hs(I))

≤ cN1−r |v|H r

χ(α,β),∗
(Λ,H1(I)) + cM1−s |v|L2

χ(−1,δ)
(Λ,Hs(I)). (3.8)

Therefore, a combination of (3.6) and (3.8) leads to (3.4).

4. Mixed Fourier-Jacobi Spectral Method for Neumann Problem

In this section, we investigate the mixed spectral method with essential imposition of

Neumann boundary condition for two-dimensional problem. For simplicity, we consider
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the following model problem

(
−∆V (y1, y2) +µV (y1, y2) = G(y1, y2), µ > 0, y2

1 + y2
2 < 2,

−∂nV (y1, y2) = 0, y2
1 + y2

2 = 2.
(4.1)

Let y1 = ρ cosθ , y2 = ρ sinθ , W (ρ,θ) = V (y1, y2) and F(ρ,θ) = G(y1, y2). Then the

above equation can be rewritten in polar coordinates as





− 1

ρ
∂ρ(ρ∂ρW (ρ,θ))− 1

ρ2 ∂
2
θ

W (ρ,θ) +µW (ρ,θ) = f (ρ,θ), 0≤ρ<2,0≤θ< 2π,

W (ρ,θ + 2π) =W (ρ,θ), 0≤ρ<2,0≤θ<2π,

∂ρW (2,θ) = 0, 0≤θ <2π.

(4.2)

Moreover, we have the polar condition ∂θU(0,θ) = 0 for 0 ≤ θ < 2π. We make the

variable transformation ρ = 1− x , U(x ,θ) =W (ρ,θ), f (x ,θ) = F(ρ,θ). Then (4.2) can

be changed to





− 1

1−x
∂x ((1− x)∂x U(x ,θ))− 1

(1−x)2
∂ 2
θ

U(x ,θ) +µU(x ,θ) = f (x ,θ), in Ω,

U(x ,θ + 2π) = U(x ,θ), in Ω,

∂x U(−1,θ) = 0, ∂θU(1,θ) = 0, 0≤ θ < 2π.

(4.3)

In order to derive a proper weak formulation of (4.3), we introduce the bilinear form with

µ > 0,

bµ(u, v) =

∫

Ω

(1− x)∂xu(x ,θ)∂x v(x ,θ)dθd x +

∫

Ω

1

1− x
∂θu(x ,θ)∂θ v(x ,θ)dθd x

+µ

∫

Ω

(1− x)u(x ,θ)v(x ,θ)dθd x . (4.4)

In the forthcoming discussions, let ‖ · ‖1,A = ‖ · ‖1,1,0,1,0,−1,0,Ω, and still denote by 0F (Ω),
0P1

N ,M ,Ω andPN ,M(Ω) the corresponding notations as before with α= γ = 1, β = δ = ξ = 0

and η = −1. Due to ∂θu(1,θ) = 0, we get that

|bµ(u, v)| ≤max(µ, 1)‖u‖1,A‖v‖1,A, bµ(u,u)≥min(µ, 1)‖u‖21,A. (4.5)

The weak formulation of (4.3) is to find U ∈ 0F (Ω) such that

bµ(U , v) = ( f , v)Ω, ∀v ∈ 0F (Ω). (4.6)

If f ∈ 0F (Ω)′, then by (4.5) and the Lax-Milgram lemma, (4.6) admits a unique solution.

The mixed spectral scheme for (4.6) is to seek uN ,M ∈ PN ,M(Ω) such that

bµ(uN ,M ,φ) = ( f ,φ)Ω, ∀φ ∈ PN ,M(Ω). (4.7)
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Theorem 4.1. If

U ∈ 0F (Ω)∩H r

χ(1,0),∗(Λ, H1(I))∩ H1
1,0,1,0(Λ, Hs

p(I))∩ L2

χ(−1,0)(Λ, Hs(I)),

then for integer 2≤ r ≤ N + 1 and s ≥ 1,

‖U − uN ,M‖1,A ≤c(N1−r +M1−s)
�
|v|H r

χ(1,0),∗(Λ,L2(I))+ |v|H r

χ(1,0),∗(Λ,H1(I))

+ |∂x v|L2

χ(1,0)
(Λ,Hs(I)) + |v|L2

χ(−1,0)
(Λ,Hs(I))

�
.

Proof. Let UN ,M =
0P1

N ,M ,ΩU . By the definition (3.2), we obtain from (4.6) that

bµ(UN ,M ,φ) = (µ− 1)(UN ,M − U ,φ)χ(1,0),Ω + ( f ,φ)Ω, ∀φ ∈ PN ,M(Ω). (4.8)

Further, let ũN ,M = uN ,M − UN ,M . Subtracting (4.8) from (4.7) yields

bµ(ũN ,M ,φ) = (µ− 1)(U − UN ,M ,φ)χ(1,0),Ω.

Taking φ = ũN ,M , we use (4.5) to assert that

‖ũN ,M‖21,A ≤ c‖U − UN ,M‖χ(1,0),Ω‖ũN ,M‖χ(1,0),Ω.

Hence

‖ũN ,M‖1,A ≤ c‖U − UN ,M‖χ(1,0),Ω.

This fact with (3.4) leads to the desired result.

5. Numerical Results

In this section, we describe the numerical implementations and present some numerical

results confirming the theoretical analysis in the last section.

Denote by Lk(x) the Legendre polynomial of degree k, and set

ψk(x) =Lk(x)−
2k+ 3

(k+ 2)2
Lk+1(x)−

(k+ 1)2

(k+ 2)2
Lk+2(x)

=(1− x)(J
(1,0)

k
(x)+

(k+ 1)2

(k+ 2)2
J
(1,0)

k+1
(x)), 0≤ k ≤ N − 2.

Clearly, ∂xψk(−1) = 0 and ψk(1) = 0, 0≤ k ≤ N − 2. Moreover, let

ϕ0(x) = L0(x), ϕk(x) =

r
k+ 2

2k(k+ 1)
(Lk(x)+

k

k+ 2
Lk+1(x)), 1≤ k ≤ N − 1.



Fourier-Jacobi spectral method 293

Then we have ∂xϕk(−1) = 0, 0≤ k ≤ N − 1. We now take the basis functions as





φ1
k,m(x ,θ) =

1p
2π
ψk(x) sin(mθ), 0≤ k ≤ N − 2, 1≤ m ≤ M ,

φ2
k,m(x ,θ) =

1p
2π
ψk(x) cos(mθ), 0≤ k ≤ N − 2, 1≤ m ≤ M ,

φ3
k
(x ,θ) =

1p
2π
ϕk(x), 0≤ k ≤ N − 1.

It can be checked readily that ∂xφ
q

k,m
(−1,θ) = 0, ∂xφ

3
k
(−1,θ) = 0, ∂θφ

q

k,m
(1,θ) = 0 and

∂θφ
3
k
(1,θ) = 0, q = 1,2. In particular, the set of the previous basis functions spans the

space PN ,M(Ω). The numerical solution is expanded as

uN ,M(x ,θ) =

N−2∑

k=0

M∑

m=1

bu1
k,mφ

1
k,m(x ,θ) +

N−2∑

k=0

M∑

m=1

bu2
k,mφ

2
k,m(x ,θ) +

N−1∑

k=0

bu3
kφ

3
k(x ,θ).

Next takeφ = φ
q

j,l
(x ,θ) andφ = φ3

j
(x ,θ) in (4.7), and let f

q

j,l
=
∫
Ω

f (x ,θ)φ
q

j,l
(x ,θ)dθd x

and f 3
j
=
∫
Ω

f (x ,θ)φ3
j
(x ,θ)dθd x . Then by the orthogonality of trigonometric functions,

we deduce that





N−2∑

k=0

�∫

Λ

(1− x)∂xψk∂xψ jd x + l2

∫

Λ

1

1− x
ψkψ jd x

+µ

∫

Λ

(1− x)ψkψ jd x

�
buq

k,l
= 2 f

q

j,l
, 0≤ j ≤ N − 2, 1≤ l ≤ M , q = 1,2,

N−1∑

k=0

�∫

Λ

(1− x)∂xϕk∂xϕ jd x +µ

∫

Λ

(1− x)ϕkϕ jd x

�
bu3

k
= f 3

j , 0≤ j ≤ N − 1.

(5.1)

For deriving a compact matrix of the above equations, we introduce the matrices A =

(a j,k), B = (b j,k), C = (c j,k), 0 ≤ j, k ≤ N − 2 and G = (g j,k), H = (h j,k), 0 ≤ j, k ≤ N − 1

with the following entries:

a j,k =

∫ 1

−1

(1− x)∂xψk(x)∂xψ j(x)d x , b j,k =

∫ 1

−1

1

1− x
ψk(x)ψ j(x)d x ,

c j,k =

∫ 1

−1

(1− x)ψk(x)ψ j(x)d x , g j,k =

∫ 1

−1

(1− x)∂xϕk(x)∂xϕ j(x)d x ,

h j,k =

∫ 1

−1

(1− x)ϕk(x)ϕ j(x)d x .

We next calculate the non zero elements of the matrices A, B and C. By using (2.6) we
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obtain that for 0≤ k ≤ N − 2,

akk =
2(k+ 1)(2k+ 3)(k2+ 3k+ 1)

(k+ 2)3
, ak(k+1) = a(k+1)k = −

2(k+ 1)2

k+ 2
,

bkk =
2(k+ 1)5 + 2(k+ 2)5

(k+ 1)(k+ 2)5
, bk(k+1) = b(k+1)k =

2(k+ 1)2

(k+ 2)3
,

ckk =
4(k+ 1)(2k+ 3)(k2+ 3k+ 11)

(k+ 2)3(2k+ 1)(2k+ 5)
,

ck(k+1) = c(k+1)k = −
2(k4+ 8k3 + 52k2+ 144k+ 74)

(k+ 2)(k+ 3)2(2k+ 1)(2k+ 7)
,

ck(k+2) = c(k+2)k = −
2(k4+ 10k3+ 28k2+ 15k− 13)

(k+ 2)2(k+ 4)2(2k+ 5)
,

ck(k+3) = c(k+3)k =
2(k+ 1)2(k+ 3)

(k+ 2)2(2k+ 5)(2k+ 7)
.

Similarly, the non zero elements of the matrices G and H for 1≤ k ≤ N − 1 are as follows,

gkk = 1, hkk =
2(k2+ 2k+ 6)

k(k+ 2)(2k+ 1)(2k+ 3)
,

hk(k+1) = h(k+1)k = −
6(3k2+ 9k+ 5)

p
k(k+ 3)

k(k+ 1)(k+ 2)(k+ 3)(2k+ 1)(2k+ 3)(2k+ 5)
,

hk(k+2) = h(k+2)k = −
p

k(k+ 1)(k+ 3)(k+ 4)

(k+ 1)(k+ 3)(2k+ 3)(2k+ 5)
.

In particular, h00 = 2, h01 = h10 = −
p

3/3. Next let

X
q

l
= (buq

0,l
,buq

1,l
, · · · ,buq

N−2,l
)T , F

q

l
= ( f

q

0,l
, f

q

1,l
, · · · , f

q

N−2,l
)T , 1≤ l ≤ M , q = 1,2,

X 3 = (bu3
0,bu3

1, · · · ,bu3
N−1)

T , F3 = ( f 3
0 , f 3

1 , · · · , f 3
N−1)

T .

Then we have from (5.1) that

[A+ l2
B+µC]X

q

l
= 2F

q

l
, 1≤ l ≤ M , q = 1,2, (5.2)

[G+µH]X 3 = 2F3. (5.3)

For description of the numerical errors, let θM ,l = 2πl/(2M + 1), 0≤ l ≤ 2M , and ζN ,k

and ρN ,k, 0≤ k ≤ N be the zeros and weights of Legendre-Gauss interpolation,

EM ,N ,1 =

 
2π

2M + 1

N∑

k=0

2M∑

l=0

(U(ζN ,k,θM ,l)− uM ,N (ζN ,k,θM ,l))
2ρN ,k

! 1

2

≃
U − uM ,N


L2(Ω)

,

EM ,N ,2 = max
0≤k≤N

max
0≤l≤2M

��U(ζN ,k,θM ,l)− uM ,N (ζN ,k,θM ,l)
��≃
U − uM ,N


L∞(Ω) .



Fourier-Jacobi spectral method 295

Example 1. We take the test function

U(x ,θ) = (1− x)(1+ x)2ex+sinθ + (x2+ 2x − 3) cosθ + 1,

and µ = 1. In Fig. 1, we plot the numerical errors log10 EM ,N ,1 and log10 EM ,N ,2 vs M with

N = 2M , respectively. They demonstrate that the numerical errors decay exponentially as

N →∞. This fact coincides well with the theoretical analysis.

Example 2. We take the test function

U(x ,θ) = (1− x)(1+ x)2 sin(x + θ) + 1,

and µ = 1. In Fig. 2, we plot the numerical errors log10 EM ,N ,1 and log10 EM ,N ,2 vs M with

N = 2M , respectively. They also show that the numerical errors decay exponentially as

N →∞.
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Figure 1: The disrete L2− and L∞−errors. 3 4 5 6 7 8 9 10 11
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Figure 2: The disrete L2− and L∞−errors.
6. Concluding Remarks

In this paper, we proposed a Fourier-Jacobi spectral method for two-dimensional Neu-

mann problems. The mixed Fourier-Jacobi orthogonal approximation was established. The

numerical error of the proposed spectral scheme was analyzed. In particular, by choosing

appropriate base functions with zero slope at the boundary, the stiffness matrix is tridi-

agonal, rather than a full matrix by using the classical spectral method. The numerical

results demonstrated the spectral accuracy of proposed schemes, and coincided well with

the theoretical analysis.
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