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Abstract. We consider a charged particle confined in a one-dimensional rectangular double-
well potential, driven by an external periodic excitation at frequency Ω and with amplitude
A. We find that there is the regime of the parametric resonance due to the modulation of the
amplitude A at the frequency ωprm, which results in the change in the population dynamics
of the energy levels. The analysis relies on the Dirac system of Hamiltonian equations that
are equivalent to the Schrödinger equation. Considering a finite dimensional approximation
to the Dirac system, we construct the foliation of its phase space by subsets Fab given by
constraints a ≤ N0 ≤ b on the occupation probabilities N0 of the ground state, and describe
the tunneling by frequencies νab of the system’s visiting subsets Fab. The frequencies νab

determine the probability density and thus the Shannon entropy, which has the maximum
value at the resonant frequency ω = ωprm. The reconstruction of the state-space of the
system’s dynamics with the help of the Shaw-Takens method indicates that the quasi-periodic
motion breaks down at the resonant value ωprm.
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1 Introduction: Tunneling in the finite dimensional Hamilto-

nian approximation

Driven transitions in a double well are instrumental for studying the tunneling in various fields of
physics and chemistry, [1,2]. Considerable attention has been drawn to the tunneling dynamics
in the presence of a driving force with a time dependent amplitude. In his seminal paper [3], M.
Holthaus showed that shaping the driving force may be instrumental in controlling the tunneling
in a bistable potential. In particular, it was shown, [3], that choosing an appropriate envelope
for laser pulse, one may perform the population transfer on time scales much shorter than the
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base tunneling time. This situation is intimately related to the problem of quantum chaos,
which is generally approached within the framework of the quasi-classical approximation and
Gutzwiller’s theory. In fact, classical chaotic systems are often used as a clue to the quantum
ones. In contrast, it would be very interesting to look at the quantum chaos the other way round
and consider systems which need studying without approximations that could have bearing upon
classical mechanics, for example, particles confined to potentials of a size comparable with the
de Broglie wave length. This has also an additional interest owing to the fact that calculations
within the framework of semiclassical theory should depart from the quantum ones on the time
scale of ~/∆E, ∆E being the typical spacing between energy levels. Specifically, the Schrödinger
equation describing the problem needs numerical studying.

The current approach to the tunneling generally focuses on localization of wave packets, and
uses the concept of dwell time. The latter is usually taken in the form, [4, 5],

τD(a, b) =

∫ +∞

−∞

dt

∫ b

a
|ψ(x, t)|2 dx. (1.1)

Even though the concept of dwell time is generally recognized as an important characteristic of
the wave packet, [6], it brings forward conceptual difficulties owing to the special role played
by time in quantum mechanics, [6,7]. Consequently, it is often difficult to determine a quantity
that should be both correct and practical for studying the tunneling dynamics in a double
well potential, if we wish to describe the particle’s localization in one of the potential wells.
Fortunately, in certain cases the choice of the well really means the choice of an energy state,
as illustrated in Fig. 1, and consequently there is an opportunity for considering the tunneling
dynamics in the energy representation, instead of the x-one. To put it in a quantitative form,
let us consider the characteristic function χab(x) which is 1 if a ≤ x ≤ b and 0 otherwise, and
introduce the quantity

νφ(a, b) = lim
T→∞

{

1

T

∫ +T/2

−T/2
χab(Nφ) dt

}

, Nφ = | < ψ|φ > |2, (1.2)

where ψ(t) is a solution of the Schrödinger equation, and φ is a state of the system.

The time averaged probability νφ(a, b) can be visualized as the frequency of visiting a region
of states determined by constraint a ≤ Nφ ≤ b. It is easy to see that (1.2) is similar to (1.1),
νφ(a, b) describing the system’s dwell time in segment (a, b). At first sight, the calculation of
νφ(a, b) looks rather complicated, and in fact the direct numerical integration of the Schrödinger
equation is time consuming and requires special precautions to overcome possible artifacts.
However, to solve the problem one may use the method proposed by Dirac [8] for studying the
interaction of an atomic system with radiation. It relies on the decomposition of the system’s
Hamiltonian

H = H0 + V,

where H0 is the main term, and V is the term describing the interaction with external field. If
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ψ(x, t) is a solution to the Schrödinger equation

i~
∂ψ

∂t
= Hψ, (1.3)

we may cast ψ(x, t) in the form of series

ψ(x, t) =
∑

n

cn ψn(x, t), (1.4)

where coefficients cn depend on time, indices n may have continuous values, [8], and ψn(x, t) are
stationary solutions to (1.3) with the integration term, H1, being cancelled out,

ψn(x, t) = exp

(

−iEn

~
t

)

φn.

The coefficients cn verify the equations

i~ ∂t cn =
∑

m

Vnm cm, Vnm = exp

(

i
En − Em

~
t

)

< φn|V |φm > (1.5)

which are the Hamiltonian ones, as can be seen from the fact that

i~ ∂t cn = {cn, F}

where the Poisson bracket {, } and Hamiltonian F are defined by the equations

{c∗n, cm} = i δnm, F =
∑

nm

c∗n Vnm cm.

Thus, c0, c1, . . . , cn, . . . ; c∗0, c
∗

1, . . . , c
∗

n, . . . form the phase space of the Hamiltonian system given
by (1.5), which is equivalent to the initial Schrödinger equation. The occupation probabilities
for ψk(x, t) as regards to ψ(x, t) read

Nk = c∗kck = | < ψ|φk > |2.

We are mainly interested in the ground state and the occupation probability N0. To this end,
consider the foliation of the phase space given by the sets

Fk k+1 ∆k ≤ N0 ≤ ∆k+1, k = 1, 2, 3, . . . ,N ,

where ∆k are intervals dividing segment (0,1) in N equal parts.

For the ground state of the system φ0 we use the short notation νab = νφ0
(a, b). The visiting

frequencies in the short notation

νk k+1
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Figure 1: Rectangular one-dimensional double-well potential. Lines ”0” and ”1” indicate the moduli of

the wave functions |ψ0(x, t)| and |ψ1(x, t)| of the ground and the first excited states, respectively. D is

the distance between the wells; L0, L1 and U0, U1 are the widths and depths of the wells.

are defined by the time τk spent by the trajectory in Fk k+1 (see, Fig. 2). By considering the
ratios

ρ(N0) =
νk k+1

∆k+1 − ∆k
=

ν∆

∆
(1.6)

we obtain a coarse-grained probability distribution for N0, for the chosen period of time T . It
turns out, see Section 4 for the details, that the right hand side of (1.6) tends to a limit as
T → ∞. By letting ∆ → 0 we obtain the probability density, ρ(N0), for the distribution of N0.
Hence, we may define the Shannon entropy

σ = −

∫

ρ ln ρ dN0

which is “a measure of the amount of uncertainty represented by a probability distribution”,
see, e.g., [9]. The entropy σ, which is determined by the external field and in particular the
parametric excitation, turns out to be a valuable numerical means for studying the character of
the tunneling dynamics.

Thus the Hamiltonian system obtained with the Dirac equations serves as the instrument
both for the numerical solution of the Schrödinger equation and for the qualitative analysis of
the tunneling. Last but not least, we may employ the Cranck-Nicholson finite difference method
as an alternative way of numerically solving the Schrödinger equation, which provides a valuable
test of our calculations.
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Figure 2: Intersection of a trajectory with the region in the phase-space determined by the relation

∆k ≤ N0 ≤ ∆k+1 in (N0 − θ) window, θ = φ1 −φ0, where φ0, φ1 are the phases of the complex quantities

c0, c1

2 Transition frequencies of the driven tunneling

We shall consider a particle confined in the rectangular potential of the form, see Fig. 1,

U =







−U0, a ≤ x ≤ b
−U1, c ≤ x ≤ d

0, otherwise
(2.1)

where a, b, c, d together with U0, U1 are used here as the exact parameters of the potential
configuration. The particle is considered under the action of an external field, corresponding to
an electromagnetic wave, given in the x-representation by the equation

V = A sin Ωt

(

−i~
∂

∂x

)

(2.2)

so that the particle’s dynamics is determined by the Schrödinger equation

i~
∂

∂t
ψ = −

~
2

2m

∂2

∂x2
ψ + U(x)ψ + V (x, t)ψ. (2.3)

The stationary solutions to (2.3) without external field V (x, t) are assumed to be known.
The perturbation or excitation potential can be visualized as the vector potential of a

monochromatic wave. We may cast the solution in the form of (1.4), in which the continu-
ous part of the spectrum is accommodated with continuous indices n, see, e.g., [8]. Thus the
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problem of finding a solution to the Schrödinger equation is reduced to that of solving the
Hamiltonian system given by (1.5); at this point it should be noted that (1.5) is equivalent
to the initial Schrödinger equation. Therefore, it is not easier than the latter, but, it admits
approximations for its solution. In this paper, we shall consider only bound states and neglect
the continuous part of the spectrum so that the sum in n of (1.5) be finite. We may use a fi-
nite dimensional approximation to the infinite system (1.5), which is equivalent to the Galerkin
method for solution of ordinary differential equations.

We choose the parameters of the double-well potential in such a way that the ground state
of the particle be almost totally confined in one well, and the first excited one in another.

In what follows we shall denote the transition frequencies and the matrix elements of the
excitation potential by

ωnm = (En − Em)/~, and Vnm = A sinΩt exp(iαnm)κnm

where κnm is the modulus of the matrix element and αnm is the phase (see (1.5)).
A qualitative description of the transitions between the ground state and the first excited

state can be obtained by employing the rotating wave approximation [10] in the following man-
ner. First, we neglect the whole energy levels, besides the first two, so that the equations take
the form

i~ ∂t c0 = A sinΩt exp(−i(ω10t + α))κ c1

i~ ∂t c1 = A sinΩt exp(i(ω10t + α))κ c0

where α = α10 and κ = κ10. By considering the resonance case Ω = ω10 and neglecting all
oscillating terms we cast the equations of motion in the matrix form

i~ ∂t ~c = M ~c, (2.4)

where ~c = (c0(t), c1(t)) and

M =
Aκ

2
(− sinα σ1 + cos α σ2).

In the above equation, σ1, σ2 are the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

.

Using the transformation

~c = U ~d, U =

(

exp(−iα/2) 0
0 exp(iα/2)

)

,

we cast the equation given above in the form

i~ ∂t
~d =

Aκ

2
σ2

~d. (2.5)
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The equation describes the transitions between the energy levels |0 >, |1 > due to the resonance
Ω = (E1 − E0)/~. The frequency of transitions between levels |0 >, |1 > reads

ν =
Aκ

2~
.

Now let us consider the parametric excitation given by

A = A0 (1 − ε sin ωt). (2.6)

Following the Rayleigh argument, [11], it can be verified that there is a parametric resonance at
the frequency

ω = ωprm =
A0κ

~

that is two times larger than the frequency of the usual resonance.
To see the physical picture of the tunneling we transform from the variables cn, c∗n to the

occupation probabilities Nk and phases φk by the canonical transformation

cn =
√

Nk exp(iφk)

so that the following equations for Poisson brackets are true, [8],

{Nk, Nm} = 0, {φk, φm} = 0, {φm, Nk} = δkm. (2.7)

Consequently, the Hamiltonian F reads

F = A sin(Ωt)
∑

mn

κmn

√

NmNn exp(−i(ωmnt − φm + φn − αmn)) (2.8)

Therefore, the Dirac equation is a Hamiltonian system with the phase-space determined by the
conjugate variables

N0, N1, . . . , Nk . . . ; φ0, φ1, . . . , φk, . . . ,

The finite Hamiltonian approximation to the system determined by the Poisson brackets indi-
cated above, is obtained by considering only variables with indices less or equal to the number of
bound states. There have been a number of approaches to describing the dynamics of solutions
to the Schrödinger equation, see [14], for example the Humishi phase space density

ρ(p, q, t) = | < p, q|ψp0,q0(t) > |2

in which the dynamics of an initial coherent state |ψp0,q0(t=0) >, where |p, q > is a coherent
state determined by values of p, q. In this paper we are using a similar quantity but employ
eigenfuctions of energy levels.

The general picture of the tunneling dynamics in the specific case we are considering, can
be visualized through the use of variables N0 = c∗0c0, the occupation probability of the ground
state, and θ = φ1−φ0, the phase shift of the phase of the ground state and the first excited level.
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It is important that there is a double resonance; the first one at frequency Ω = (E1 − E0)/~

corresponding to the transition from the ground state to the next level, and the second one
due to the parametric excitation at frequency ω = ωprm = A0κ10/~, and the frequency of the
parametric resonance is much smaller than the transition frequency Ω owing to small amplitudes
of the excitation A0 and the modulus κ10 of V10. The parametric excitation in the resonance
regime is illustrated in Fig. 9. We see that it changes considerably the dynamics of the tunneling.
The collapse of the peaks, which are characteristic of the driven tunneling without the parametric
excitation, agrees with the existence of the peak, see Fig. 10, of the entropy σ(ω) considered as
the function of the parametric excitation frequency ω in (2.6).

We may study the dynamics of the system by employing the two-dimensional window on the
phase space formed by the pair of variables N0, θ, in which θ = φ1 − φ0. It is worth noting that
Dirac’s equations can be written down with the help of the variables Nk, θkl = φk − φl, k, l =
1, 2, 3, . . . in the form of Poisson brackets with Hamiltonian

∂tNm = {Nm, F}, ∂tθkl = {θkl, F}.

We may obtain the two level approximation used above by employing the variables N0, θ = θ01,
instead of c0, c1. Suppose that there is only the resonance

Ω =
1

~
(E1 − E0).

Let us neglect Ni for i > 1 and θkl for k or l > 1, and preserve only the resonance terms in
the equations of motion indicated above.

∂tN0 = Aκ
√

N0N1 cos(θ + α),

∂tN1 = −Aκ
√

N0N1 cos(θ + α), (2.9)

∂tθ = −Aκ
N1 − N0
√

N0N1

sin(θ + α).

Note that from the above equations we have N0 + N1 = const or owing to the chosen approxi-
mation N0 + N1 = 1. Thus we may cast the equations in the form

∂tN0 = Aκ
√

N0(1 − N0) cos(θ + α),

∂tθ = −Aκ
1 − 2N0

√

N0(1 − N0)
cos(θ + α),

which is equivalent to (2.4).
Thus, we obtain the rotating wave approximation, [10], which is a 2-dimensional approx-

imation to the exact Hamiltonian system of Dirac’s equations. We may utilize the variables
N0, θ employed above for constructing a 2-dimensional window on the phase space of Dirac’s
equations. For this end, we shall consider solutions to the Dirac equations truncated up to the
six energy levels, which correspond to the six bound states of our two-well potential, and take
their projections N0(t), θ(t) at the moment of time t in plane N0θ. The picture we obtain in this
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Figure 3: Phase picture in 2-d N0 − θ window on Dirac’s system. Resonance amplitude A0 = 0.3, no

parametic excitation. Initial position trajectory: N0 = 0.9191, N1 = 0.3939, Ni = 0, i ≥ 2; the system

initial state is a mixture of the first two states.
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Figure 4: Phase picture in 2-d N0 − θ window on Dirac’s system. Separaterixe solution. Resonance

amplitude A0 = 0.3, no parametic excitation. Initial position trajectory: N0 = 0.9137, N1 = 0.4062,

Ni = 0, i ≥ 2; θ = π/2. The system initial state is a mixture of the first two states.
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Figure 5: Phase picture in 2-d N0 − θ window on Dirac’s system. The trjectory corresponds to the

breakdown of the periodic solution. Resonance amplitude A0 = 0.3, ε = 0.1, the frequency 0.01690.

Initial position trajectory: N0 = 0.6332, N1 = 0.7739, Ni = 0, i ≥ 2; the system initial state is a mixture

of the first two states.

way, strongly depends on the form of the excitation potential V given by (2.6). In case there is
no parametric excitation, that is the amplitude A is constant, the rotating wave approximation
is good enough and its phase picture agrees with that obtained through the 2-dimensional N0θ
window on Dirac’s system, see Figs. 3-4.

The dynamics drastically changes in case there is the parametric excitation at the resonance
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Figure 6: Phase picture in 2-d N0 − θ window on Dirac’s system. The trjectory corresponds to the

breakdown of the periodic solution. Resonance amplitude A0 = 0.3, ε = 0.1, the frequency 0.01690.

Initial position trajectory: N0 = 0.6332, N1 = 0.7739, Ni = 0, i ≥ 2; the system initial state is a mixture

of the first two states.

frequency ωprm

A(t) = A0 (1 − ε sinωprmt)

as is shown in Figs. 5-6.
In fact, the width, W (see Fig. 7), of the stripe spanned by the trajectory in plane N0 − θ is

the maximal one in the resonance regime. Therefore, on considering the width W against the
frequency ω of the parametric excitation, we obtain a graphic description of the onset of the
resonance. As is shown in Fig. 8, the resonance has a fine structure given by the presence of two
peaks, close to each other.

The fine structure is important for numerical modelling the parametric resonance, for by
choosing ω = ωmin, where ωmin corresponds to the minimum of W , we get into the region inside
which the resonance is to all purposes absent.

During the period of time T a trajectory of the approximate system spends the time τn in
the set Fnn+1. The time can be found by considering the trajectory in plane (N0 − θ), where
θ = φ1 − φ0, see Fig. 2. We obtain in this way a coarse-grained probability distribution on the
phase space of the approximate system, and therefore an approximate probability distribution
for the quantum problem. It should be noted that the averaging procedure given above by (1.6)
is correct, as can be seen by comparing the averages for various large values of the period of
time T , see Fig. 13.

3 Visualization

The visualization of the tunneling dynamics relies on Dirac’s equations, which give an equivalent
Hamiltonian formulation of the Schrödinger equation, and comprises the two steps. First, we
use the (N0 − θ) window on the phase space of Dirac’s equations, see Figs. 5 - 6, and obtain a
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Figure 7: Width of the stripe spanned by the trajectory in (N0 − θ) window consists of two halves - w1

and w2, top and bottom respectively, which are calculated by considering intersections of a trajectory

with axis N0. Full width W = w1 + w2.

graphic picture of the onset of the parametric resonance, as well as a means for its quantitative
analysis. Second, we use the Shaw-Takens method, [13], for the visualizing the state-space of a
dynamical system. For this end, we consider a variable X characteristic of the system, and form
a time series that comprises the values of X at moments of time τn, n = 0, 1, 2, . . . , τ being
the lag-time, so that

X0 = X(0), X1 = X(τ), X2 = X(2τ), . . . , Xk = X(kτ), . . .

Next, we consider the series of vectors

Y0 = (X0, X1, . . . , Xd), Y1 = (X1, X2, . . . , Xd+1), . . .

According to the general belief, points Y0, Y1, Y2, . . . , Yk, . . . of d-dimensional space form a set
that serves a visualization of the state-space for the given problem. It is to be noted that the final
outcome depends on a number of premises, and first of all on the value of the time-lag τ and the
dimension d of the visualization window. The wise choice of τ is dictated by characteristic times
of the motion under the investigation, so that for certain values of τ the visualization picture
is coherent enough whereas for others it is not meaningful. Therefore, using the Shaw-Takens
method one has to compare pictures obtained for different values of the lag-time.

In this paper we are applying the Shaw-Takens method to: (1) the tunneling dynamics in the
presence of a parametric excitation, and (2) in the absence of the latter. For the last, there is
obtained the picture of a torus in 3d-space, fairly well drawn, without sudden modifications due
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Figure 8: Width of the stripe against the excitation frequency (in procents of maximum width). The

line at the bottom shows the width value in the absence of the parametric resonance. The maximum

at ω = ωprm = 0.01690 corresponding to the peak of Fig. 10. Resonance amplitude A0 = 0.3, ε = 0.1.

Initial conditions for the entropy curve are N0 = 0.8320, N1 = 0.5547, Ni = 0, i ≥ 2; the system initial

state is a mixture of the first two states.

to changes in the lag-time, but only continuos deformations of the initial picture. In contrast, if
the parametric excitation at the resonant frequency is present, the choice of the lag-time is very
important for obtaining a meaningful visualization. There is a tendency of suddenly changing
the shape of the visualization owing to the choice of the lag-time, see Fig. 11.

In particular, we obtain the visualization of the state-space of two kinds. The first one has
the shape of a cloud with an inside blurred nucleus whose structure is not clear. The second
one has the shape of tangled pipes of various diameter and irregularly located. The change of
the lag-time is accompanied by a transition from the first one to the second, and vice versa.

4 Numerical modelling

The study of the parametric resonance even for the simplest model given by the rotating wave
approximation requires the use of numerical simulation. The situation becomes even more com-
plicated when one tries to accommodate the neglected terms and higher frequency oscillations,
which substantially influence the tunneling dynamics. At this point it is worthwhile to note that
we take into account the bound states and neglect the continuous part of the spectrum.

The Dirac equations without any simplifications and approximations, read

i~ ∂t ck = A sinΩt
∑

m

exp(i[
(En − Em)

~
t + αnm])κnm cm (4.1)
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Figure 9: Probability density ρ(N0) for the distribution of N0 with A0 = 0.3; 6 six bound states (levels

confined to the well). Dashed line - no parametric excitation. Solid line - parametric excitation, ε = 0.1,

parametric frequency ω = ωprm = 0.01690. Initial conditions for both distributions are N0 = 0.8320,

N1 = 0.5547, Ni = 0, i ≥ 2; the system initial state is a mixture of the first two states.

0.01 0.015 0.02 0.025
5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
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no parametric excitation
parametric excitation

Figure 10: Entropy σ against the frequency ω of the parametric excitation. The line at the bottom shows

the entropy value in the absence of the parametric resonance. The maximum at ω = ωprm = 0.01690

corresponding to the second peak of Fig. 8. Resonance amplitude A0 = 0.3, ε = 0.1. Initial conditions

for the entropy curve are N0 = 0.8320, N1 = 0.5547, Ni = 0, i ≥ 2; the system initial state is a mixture

of the first two states.

The first question to be resolved is how many terms on the rhs we shall take to obtain a
meaningful approximation. The answer depends on the size of the potential well, especially its
depth.
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Figure 11: Different visualizations of the state-space in the driven regime with parametric excitation

compared to non-parametric regime. First line corresponds to the driven regime without parametric

excitation; regular torii are seen. Lag-time for (1.a-c) is 60. Pictures (2.a-4.c) correspond to the driven

regime with parametric excitation. Lag-time is equal to: (2.a-c) 60; (3.a-c) 330; (4.a-c) 660. Indices a,b,c

correspond to the three different projections of the 3d Shaw-Takens space. Dimension of the Shaw-Takens

window is equal to 3. All trajectories calculated for the same initial conditions. General initial position

trajectory: N0 = 0.8320, N1 = 0.5547, Ni = 0, i ≥ 2; the system initial state is a mixture of the first two

states. Resonance amplitude A0 = 0.3. Parametric excitation ε = 0.1, frequency 0.01690 (the last three

lines).

We shall use dimensionless units that are convenient for the needs of the numerical simulation.

tR = νSt, xR = x/x0 (4.2)

where νS and x0 are the characteristic frequency and the length. The dimensionless expression
for energy reads

UR =
νS

~
U
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Figure 12: Regularization of potential U with respect to the integration mesh. Bold line gives the initial

continuous potential; dashed line indicates potential Udiscr used in the numerical simulation for the chosen

integration step.

Using the dimensionless variables we may cast the Schrödinger equation in the form

i
∂

∂tR
ψ = −λ

∂2

∂ x2
R

ψ + UR ψ + VR(x, t)ψ (4.3)

where the excitation potential VR reads

VR = i AR sin(ΩRtR)

The numerical simulation uses the following values of the potential’s parameters

D = 0.876, L0 = 2.337, L1 = 2.045, U0 = 13.82, U1 = 11.91

chosen in such a way that the discrete part of the spectrum comprises 6 levels

E0 = −12.5998; E1 = −10.4388; E2 = −9.11647;

E3 = −6.38743; E4 = −4.06214; E5 = −1.03578.

The quasi-classical approximation does not work in this case, since the de Broglie wave-length
is comparable with the characteristic size of the system. For the chosen parameters of the well
the ground state |0 > corresponds to the particle’s being almost totally confined to the left part
of the well, whereas the first excited level |1 > corresponds to its confinement to the right one.
Therefore the transitions |0 > |1 > correspond to the tunneling from one part of the double-
well to the other. The circumstance is important for understanding the system’s dynamics and
one should keep it in mind while considering Figs. 1, 2, and 9.

In what follows the scale frequency νS is chosen in such a way that the dimensionless constant
λ be equal to 1. If we consider the spatial scale L of the order 3 · 10−8 cm and the mass of the
particle 1.8 · 10−24 g, we shall have νS of the order 50 GHz. The size of the amplitude of the
excitation should be of the order 1, that is by an order of magnitude less than the depth of the
well.
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We preserve on the right hand side of (4.1) all the terms corresponding to E0, E1, ..., E5 and
neglect the whole continuous spectrum. For the present paper the key point is the observation
that the time averages given by (1.2), converge. We made the verification of this statement, see
Fig. 13, which indicates that the statement appears to be true. At the same time, it should be
noted that besides simple model cases like the motion inside the rectangular well, we do not
know any analytical arguments in its favour.

It is important that there is an alternative method of finding numerical solutions to the
Schrödinger equation, i.e. the finite difference approximation. For this end we use the Cranck-
Nicholson method, [16, 17]. In the case of the rectangular potential the behavior of second
derivatives of the wave function at the edges of the well requires special attention, since for
long periods of calculation time, or the number of steps, they may generate considerable errors.
The difficulty can be overcome, nevertheless, by a regularization procedure. From a formal
point of view the Schrödinger equation looks rather similar to the equation of heat conduction,
and therefore one could expect that the methods employed for solving numerically the latter,
be acceptable for the Schrödinger one. But, it is necessary to take into account the complex
structure of the wave equation and its solution, in contrast to the heat equation dealing with real
quantities. The circumstance is adequately expressed by the phase of the wave function, which
is a source of instabilities peculiar to the quantum phenomena. For example, they are to be
accommodated in networks of the Josephson junctions and thus bring out serious difficulties for
their use in electronic devices. Nevertheless the numerical methods used for the heat conduction
equation are employed for the Schrödinger one, as well. The reason for this is twofold. For one
thing, so far, there has been nothing better, and for another they work well enough, at least if
one is looking carefully after them. The method widely used is the Cranck-Nicholson one, and
its modification the DUFUR method. There is also the fractional step method using the Fourier
transform in momentum at every second step of the integration. The Cranck-Nicholson method
admits a considerable modification, [16], using recent developments in computer algebra systems
such as Maple.

The rectangular barrier studied in this paper has certain advantages even from the com-
putational standpoint, since it admits the explicit calculation of the stationary states. At the
same time it presents serious difficulties for analytical treatment, for example, the quasi-classical
approximation, owing to its non-differentiable form. The latter may result in fatal errors in the
regimes of long-time calculations. Fortunately, a regularization procedure that serves as a cure
to the trouble, can be devised .

The primary course of numerical errors due to the rectangular potential is the incompatibility
of the integration mesh and the parameters of the continuous initial problem, specifically, the
sites of the mesh being out of step with the characteristic points of the potential, see Fig. 12. In
fact, the function representing the potential has a discontinuity at point x of the well boundary.
This may result in substantial numerical errors. Therefore, we shall choose a discrete form that
could mimic a continuous version of the potential and at the same time be acceptable by giving
the correct result in the limit of the integration step in x tending to zero. The recipe is as
follows: for a given step in x the boundaries of the well are to be adjusted to the sites of the
mesh and the parameters of the potential changed in such a way that the discrepancy between
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Figure 13: Figs a− c illustrate coarse-grained probability distribution ρ(N0) calculated by averaging over

time periods 15000, 30000, 60000 respectively. In Fig d three distributions a, b, c are plotted together.

Resonance amplitude A0 = 0.3, no parametic excitation. General initial position trajectory: N0 = 0.8320,

N1 = 0.5547, Ni = 0, i ≥ 2; the system initial state is a mixture of the first two states.

the continuous and the discrete forms of the well disappear.

The main point is the wise adjustment of the discrete form of the well potential. We have
chosen the most simple one as shown in Fig. 12.

At this point it should be noted that the resonance value ωprm for the parametric excitation
was obtained above by using the rough approximation of rotating wave, and that higher resonant
values are to be expected. One may choose the width W of the ring filled by the system trajectory
in N0−θ plane as a numerical estimate of the effect produced by the parametric pumping. Then,
by changing the frequency of the parametric excitation one may find the resonant value as that
which corresponds to the maximum of W against ω, see Figs. 5, 6.

So far only the main frequency close to A0κ10/~ of the parametric resonance has been
considered; higher values of the frequencies are to be expected. We have found the value of
frequency 4A0κ10~ through our calculations with Dirac’s equations. Generally, one may expect
a multiplet of resonant frequencies, which could have an important bearing on experimental
work.
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5 Conclusion: Chaotic dynamics due to a non-mono-chromatic

pulse

The parametric resonance of the driven tunneling results in the increase in the width of the
stripe spanned by the system’s trajectory in the 2-dimensional (N0 − θ) window on the phase
space of Dirac’s system. The chaotic dynamics that accompanies it, reveals itself through the
peak of the Shannon entropy, σ(ω) which is a function of the modulation frequency.

It is important that the frequency of the resonance parametric excitation ωprm depends on
the amplitude A0 of the driving pulse. In fact, the main resonance frequency is close to

ω∗ =
A0κ10

~

where κ10 is a matrix element determined by the well. It is worth noting that higher resonances
are also possible.

The important point is that, for small values of A which are likely to be employed, the values
of ω∗ are small, and owing to the equation

V =

{

A0 sinΩt −
A0

2
ε cos[(Ω − ω∗)t] +

A0

2
ε cos[(Ω + ω∗)t]

}

(−i~
∂

∂x
)

the parametric excitation corresponds to the triplet structure of the pulse V , that is its being
determined by the main contribution at frequency Ω = (E1−E0)/~ and two satellites at Ω±ω∗,
of less amplitude.

The triplet structure could have an important bearing on the experimental results related
to the tunneling in the double-well potential. In fact, if a monochromatic pulse at resonant
frequency Ω = (E1 − E0)/~ is employed, there is no parametric excitation and the dynamics of
the occupation probability has the usual form. In contrast, a poor quality non-monochromatic
pulse may contain the triplet indicated above and result in the deformation of the tunneling
dynamics.

Acknowledgments

This work was supported by the Grants NS - 1988.2003.1, and RFFI 01-01-00583, 03-02-16173,
04-04-49645.

References

[1] D.T. Monteiro, S.M. Owen, D.S. Saraga, Philos. Trans. Roy. Soc. London Ser. A 357 (1999) 1359.
[2] M. Grifoni, P. Hänggi, Phys. Rep. 304 (1998) 229.
[3] M. Holthaus, Phys. Rev. Lett. 69 (1992) 1596.
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