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Abstract. The subject of the paper is the numerical simulation of the interaction of
two-dimensional incompressible viscous flow and a vibrating airfoil with large ampli-
tudes. The airfoil with three degrees of freedom performs rotation around an elastic
axis, oscillations in the vertical direction and rotation of a flap. The numerical simu-
lation consists of the finite element solution of the Reynolds averaged Navier-Stokes
equations combined with Spalart-Allmaras or k−ω turbulence models, coupled with a
system of nonlinear ordinary differential equations describing the airfoil motion with
consideration of large amplitudes. The time-dependent computational domain and
approximation on a moving grid are treated by the Arbitrary Lagrangian-Eulerian for-
mulation of the flow equations. Due to large values of the involved Reynolds num-
bers an application of a suitable stabilization of the finite element discretization is
employed. The developed method is used for the computation of flow-induced os-
cillations of the airfoil near the flutter instability, when the displacements of the airfoil
are large, up to ±40 degrees in rotation. The paper contains the comparison of the
numerical results obtained by both turbulence models.
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1 Introduction

The interaction of flowing fluids and vibrating structures is the main subject of aero-
elasticity, which studies the influence of aerodynamic forces on an elastic structure. The
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http://www.global-sci.com/ 146 c©2015 Global-Science Press
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flow-induced vibrations may affect negatively the operation and stability of aircrafts,
blade machines, bridges, and many other structures in mechanical or civil engineering.
The main goal of aero-elasticity is the prediction of the bounds of the structure stability,
to cure the aero-elastic instabilities leading to flutter or divergence and to analyze post-
critical regimes. This discipline is highly developed, particularly from engineering point
of view (see, e.g., the monographs [10] and [34]).

From the point of view of mathematical theory, there are not too many works dealing
with such problems, due to a high mathematical complexity of the problem, caused by
the time-dependence of the domain occupied by the fluid and coupling of the system
of equations describing flow and elastic structure. The mathematical simulation of fluid
and structure interaction requires to consider viscous, usually turbulent flow, changes
of the flow domain in time, nonlinear behaviour of the elastic structure and to solve si-
multaneously the evolution systems for the fluid flow and for the oscillating structure.
Considering the Reynolds averaged Navier-Stokes equations and a vibrating structure
with large displacements, the change of the fluid domain cannot be neglected. The meth-
ods with moving meshes [13, 25] must be employed and the application of efficient and
robust methods for the numerical solution is required.

The subject of our attention is the numerical analysis of the interaction of viscous
turbulent flow with a vibrating airfoil. Recent studies on numerical modelling of the
postflutter behaviour of airfoils in laminar two-dimensional (2D) incompressible flow
were overwieved by the authors in the previous study (Feistauer et al. [14]), where the
method allowing the solution of large amplitude flow-induced vibrations of an airfoil
with 3 degrees of freedom (3-DOF) was developed for laminar flow. However, none of
the studies mentioned in this paper deals with turbulent flow, which is necessary to take
into account for high Reynolds numbers (105−108).

For an extensive treatment of turbulent flows, one can be referred, e.g. to [27, 40, 42,
43, 46]. Turbulent flow has a three-dimensional character, but in a number of cases, two-
dimensional models are applied to the numerical simulation of turbulent flow. Similar
situation appears in theory, as can be found in [15]. In a turbulent flow simulation, tech-
niques based on the Reynolds averaged Navier-Stokes (RANS) equations are often ap-
plied. As a result, the system called Reynolds equations (see [40, Chapter 4]) is obtained.
It contains the so-called Reynolds stresses, evaluated with the aid of a turbulent viscosity
model. It can be computed from algebraic relations or it can be obtained with the aid
of the solution of additional equations for turbulence quantities, such as k and ω (see,
e.g. [40, Chapter 10]).

The effect of turbulence in aeroelastic computations is studied in civil engineering as
well as in turbomachine, nuclear and aerospace engineering applications. For example,
Baxevanou et al. [2] modeled the aeroelastic stability of a wind turbine blade section.
The Reynolds averaged Navier-Stokes equations for 2D incompressible flow were solved
numerically using the finite volume method on structured, curvilinear grids using two
versions of the k−ω high Reynolds number model of Wilcox with wall functions and
wall treatment.
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The response of suspension bridges to wind excitation was studied by Salvatori and
Spinelli [41] by numerical simulations with a specifically developed finite element pro-
gram implementing structural nonlinearities. The response under turbulent wind was
evaluated through a Monte Carlo approach. The unsteady flow field around a 2D rect-
angular bridge section was studied by Mannini et al. [31], [32] using unsteady Reynolds-
averaged Navier-Stokes (URANS) equations at Reynolds numbers from 2.6·104 to 1.8·106.
The flow was simulated by the finite-volume unstructured solver and the results obtained
with one- and two-equation turbulence models (Spalart-Allmaras, Wilcox k−ω, Menter-
SST, linearized explicit algebraic) were compared. A novel numerical algorithm for the
study of the effects of wind turbulence on bridge flutter was proposed by Caracoglia [5].
The coupled-mode flutter threshold for bending-torsional modes of a long-span bridge
is estimated in the time domain by stochastic calculus techniques.

Subcritical flutter characteristics were examined by Matsuzaki and Torii [33] using a
bending-torsion wing model subjected to atmospheric turbulence with a view to appli-
cations for flutter boundary prediction. The wing response due to random inputs was
represented by the autoregressive moving-average model. The effect of atmospheric tur-
bulence on the flutter and post-flutter dynamics of a structurally nonlinear 2D airfoil in
incompressible turbulent flow was investigated numerically by Poirel and Price [36], [38]
using a Monte Carlo approach. A general overview of random flutter in aeroelasticity
given by the random nature of a structure excitation in turbulent flow was published by
Poirel and Price in the paper [37] concentrating on a numerical flutter investigation of 2D
linear airfoil in turbulent flow.

Srinivasan et al. [45] used the finite difference method for the solution of 2D RANS
equations modelling the turbulent flow around the oscillating airfoil NACA0015 with
prescribed rotation, i.e., without any fluid-structure interaction. By testing five models of
turbulence the authors found that one-equation models provide significant improvement
over the algebraic and half-equation models but have their own limitation. A dynami-
cally shaped rigid airfoil utilizing a moving flap has been studied by Lian et al. [26] at
a Reynolds number of about 80 000, when the movement of the solid structure was pre-
scribed. The RANS equations for incompressible fluids and two different versions of the
k−ε turbulence model have been employed. A pressure-based numerical procedure was
based on the finite volume method using the moving grid. The algebraic model of tur-
bulence was applied to the numerical simulation of turbulent flow-induced vibrations of
an airfoil with two degrees of freedom (2-DOF) by Dubcova et al. [11] and [12]. Random
flutter of the 2-DOF airfoil with freeplay nonlinearity in pitch was investigated numeri-
cally by Zhao et al. [53], [54] for low, intermediate and high level of turbulence. Poirel et
al. [39] studied the low amplitude self-sustained pitch airfoil oscillations in incompress-
ible flow by 2D numerical simulations in the Reynolds number range from 5.0·104 to
1.5·105. Both laminar and URANS calculations using the SST k−ω model with a low-
Reynolds-number correction have been performed using commercial codes Gambit 2.3
and Fluent 6.3 and produced limit cycle pitching oscillations (LCO). It was shown that
turbulence tends to suppress the pitching oscillations.
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A 2-DOF airfoil moving in both pitching and plunging was studied numerically for
transonic flow by Geissler [16] based on a 2D Navier-Stokes equations solver and the
Spalart-Allmaras turbulence model. A numerical investigation of the 2-DOF bending/tor-
sion flutter characteristics of an airfoil in 2D transonic flow was carried out by Weber
et al. [51] using a time-domain method. The Reynolds averaged Navier-Stokes (RANS)
equations were used and the turbulence modeling was based either on algebraic Baldwin-
Lomax or one-equation Baldwin-Barth or Spalart-Allmaras turbulence models. The pa-
per by Wang and Zha [50] investigates the NLR7301 airfoil limit cycle oscillation (LCO)
in transonic flow caused by the flow nonlinearity of the fluid-structure interaction using
detached eddy simulation (DES) of turbulence.

Everywhere, small amplitudes of structural vibrations were considered and no effects
of large rotation amplitudes resulting in a nonlinear mass matrix for 3-DOF airfoil were
taken into account as in previous authors study Feistauer et al. [14] for laminar flow.
In the present paper we are concerned with numerical simulation of 2D viscous incom-
pressible turbulent flow past a moving airfoil during flutter cycle oscillations. The airfoil
is considered as a solid flexibly supported body with three degrees of freedom, allowing
its vertical and torsional oscillations and the rotation of a flap. The turbulence is mod-
elled by two models, namely by the one equation Spalart-Allmaras model [44] and also
by the k−ω model [23, 44].

From the above survey we can see that the Spalart-Allmaras and k−ω models are
very popular in the simulation of turbulent flow. The Spalart-Allmaras model is based
on one convection-diffusion-reaction equation only, which is its advantage in comparison
to two-equation models as k−ω model. Moreover, the Spalart-Allmaras model is recom-
mended to be applied to the simulation of turbulent flow around airfoils. On the other
hand, the two-equation k−ω model offers more sophisticated (and, thus, more adequate)
turbulence resolution. This is the reason that in our paper we consider both models and
compare them from the point of view of their stability, accuracy and reliability.

The novelty of the paper consists in the development of a numerical method for the
solution of the RANS equations in time-dependent domains, coupled with the system
describing flow induced vibrations with large amplitudes of an airfoil with three degrees
of freedom. We apply the finite element method in contrast to the above mentioned
papers, where (except the works [11,12,14]) the flow is discretized by the finite difference
or finite volume methods or even only commercial codes are used.

The time dependent computational domain and a moving grid are taken into account
with the aid of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to avoid
spurious numerical oscillations, the SUPG and div-div stabilization is applied. The so-
lution of the ordinary differential equations is carried out by the Runge-Kutta method.
Special attention is paid to the construction of the ALE mapping of a reference domain on
the computational domain at individual time instants. The resulting nonlinear discrete
algebraic systems are solved by the Oseen-like iterative processes. All components of the
realization of the solution are assembled together by a coupling procedure. The algo-
rithms of weak and strong coupling of flow and structure problems are formulated. The



150 M. Feistauer, J. Horáček and P. Sváček / Commun. Comput. Phys., 17 (2015), pp. 146-188

method was tested on a flutter problem for which the stability boundary was computed
by NASTRAN program code [28, 29].

All details of the method are described here. The numerical tests prove that the de-
veloped method is sufficiently accurate and robust with respect to the Reynolds number.
It allows the solution of FSI problems with large vibration amplitudes. Moreover, an
important result is the comparison of the applicability of the Spalart-Allmaras and k−ω
models of turbulence showing that the k−ω model appears to be more robust.

2 Description of the incompressible turbulent flow

We shall consider two-dimensional nonstationary flow of a viscous, incompressible fluid
in a domain Ωt depending on time t∈ [0,T], where T > 0. By Ωt and ∂Ωt we shall de-
note the closure and the boundary, respectively, of the domain Ωt. The boundary ∂Ωt

is the union of mutually disjoint parts ΓD,ΓO a ΓWt
, i.e. ∂Ωt = ΓD∪ΓO∪ΓWt

, where dif-
ferent boundary conditions are prescribed. The part ΓD represents the inlet and fixed,
impermeable walls, ΓO denotes the outlet. We assume that ΓD and ΓO are independent
of time in contrast to ΓWt, which is the moving airfoil boundary at time t. The moving
airfoil surface ΓWt consists of two parts, the profile surface Pt and the flap surface Ft, i.e.
ΓWt=Pt∪Ft. We consider the flap separated from the main body of the airfoil by a narrow
gap of a width g. See Fig. 1.
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Figure 1: Model scheme – airfoil with 3 degrees of freedom with a gap.
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2.1 Governing equations

Viscous incompressible flow is described by the velocity u = u(x,t) and the kinematic
pressure p=p(x,t) depending on x∈Ωt and t∈[0,T]. The density of the fluid ρ is assumed
to be constant. The character of the flow depends on the magnitude of the Reynolds
number Re=U∞c/ν, where ν is the kinematic viscosity, U∞ denotes the far field velocity
and c is the length of the airfoil chord. For a sufficiently small Reynolds number the flow
is laminar. With the increasing value of the Reynolds number the flow becomes turbulent.

The turbulent flow is characterized by the fact that the fluid velocity field varies sig-
nificantly and irregularly both in position and in time. The turbulence is a complicated
motion, which results from the nonlinear advection that creates interactions between dif-
ferent scales of motion, which are the principal current (or the large eddies) and the ed-
dying, random and reverse fluctuations. There are several strategies for the modelling of
turbulent flow. For main concepts, see, e.g., the monographs [40, 46, 52].

One possibility is to use the Reynolds decomposition of the flow velocity u and the
kinematic pressure p in the form

u=u+u′,

p= p+p′, (2.1)

where u is the mean part of the velocity vector, p is the mean part of the kinematic pres-
sure, and u′ and p′ are their turbulent fluctuations. As a result we get the Reynolds
averaged Navier-Stokes (RANS) equations [40, 52]

∂u

∂t
+(u·∇)u+∇p−∇·

(
2(ν+νT)D

)
=0,

∇·u=0,

in Ωt, (2.2)

where the components of the tensor D are given by

Dij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (2.3)

and the turbulent eddy viscosity coefficient νT =νT(x,t) requires further modelling.

2.2 Reynolds averaged Navier-Stokes equations

In what follows, we shall work with the averaged velocity and pressure. Because of the
simplification of notation, we shall omit the symbol ”bar” and simply write u instead of
u and p instead of p. This means that the above system will be written in the form

∂u

∂t
+(u·∇) u+∇p−∇·

(
(ν+νT)(∇u+∇Tu)

)
=0,

∇·u=0. (2.4)
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System (2.4) is equipped with the initial condition

u(x,0)=u0, x∈Ω0, (2.5)

and the boundary conditions

a) u|ΓD
=uD, b) u|ΓWt

=wD,

c) −(p−pre f )ni+(ν+νT)
2

∑
j=1

(
∂ui

∂xj
+

∂uj

∂xi

)
nj=0 on ΓO, i=1,2. (2.6)

Here n=(n1,n2) is the unit outer normal to the boundary ∂Ωt of the domain Ωt, uD is a
prescribed velocity on the part ΓD. Condition (2.6) b) represents the assumption that the
fluid adheres to the airfoil moving with the velocity wD. By pre f we denote a prescribed
reference (far field) pressure.

In numerical experiments carried out in Section 6, the initial and boundary data are
specified as

uD =u0=(U∞,0), (2.7)

where U∞ denotes the magnitude of the far-field velocity. The vector function wD denotes
the velocity of the motion of the airfoil, which is a part of the sought solution.

In the above system (2.4), the averaged velocity u, averaged pressure p and the turbu-
lent viscosity νT are unknown functions. This system has to be completed by a turbulence
model for νT . Here we shall use the Spalart-Allmaras and k−ω models.

2.3 Spalart-Allmaras one-equation turbulence model

This section is concerned with the description of the Spalart-Allmaras one-equation model
[44] for the determination of the turbulent viscosity νT .

We introduce an auxiliary function ν̃= ν̃(x,t), x∈Ωt, t∈ [0,T], which is defined as a
solution of the following initial-boundary value problem: Find ν̃ such that it satisfies the
equation

∂ν̃

∂t
+(u·∇)ν̃=∇·(ε(ν̃)∇ν̃)+

3

2
cb2

(∇ν̃)2+cb1
S̃(ν̃)ν̃−s(ν̃)ν̃2, (2.8)

in Ωt, t∈ (0,T), the initial condition

ν̃(x,0)= ν̃0(x) for x∈Ω0, (2.9)

and the boundary conditions

ν̃|ΓD
= ν̃D , ν̃|ΓWt

=0,
∂ν̃

∂n

∣∣∣
ΓO

=0. (2.10)
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The functions ε(ν̃), S̃(ν̃), s(ν̃) are defined in such way that we successively set

ωij=
1

2

(
∂ui

∂xj
−

∂uj

∂xi

)
, i, j=1,2, S=

√√√√2
2

∑
i,j=2

ω2
ij,

ε(ν̃)=
3

2
(ν+ ν̃), χ(ν̃)=

ν̃

ν
,

fv1
(ν̃)=

χ3(ν̃)

χ3(ν̃)+c3
v

, fv2(ν̃)=1−
χ(ν̃)

1+χ(ν̃) fv1
(ν̃)

,

S̃(ν̃)=

(
S+

ν̃

κ2y2
fv2(ν̃)

)
, r(ν̃)=

ν̃

S̃(ν̃)κ2y2
,

g(ν̃)= r(ν̃)+cw2(r
6(ν̃)−r(ν̃)), s(ν̃)=

cw1

y2




1+c6
w3

1+
c6

w3

g6(ν̃)




1
6

, (2.11)

where y= y(x) denotes the distance of a point x ∈Ωt from the nearest wall (e.g. airfoil
surface, channel walls, etc.) The empirical constants appearing in the above formulas are
taken from [52]:

cb1
=0.1355, cb2

=0.622, β=
2

3
, cv=7.1,

cw2 =0.3, cw3 =2.0, κ=0.41, (2.12)

and

cw1
=

cb1

κ2
+

1+cb2

β
. (2.13)

Assuming that ν̃ is known, the turbulent viscosity νT used in (2.4) is defined by the
relation

νT = ν̃ fv1
(ν̃). (2.14)

2.4 k−ω turbulence model

Another possibility is the application of two-equations turbulence models. Here k−ω
turbulence model [23, 52] will be used. In this case the turbulent viscosity νT is defined
by the relation

νT =
k

ω
, (2.15)

where the functions k= k(x,t) and ω=ω(x,t) defined for x∈Ωt, t∈ [0,T] are referred to
as the turbulent kinetic energy and the specific turbulent dissipation rate, respectively.
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They are obtained as solutions of the equations

∂k

∂t
+(u·∇)k=Pk−β∗ωk+∇·((ν+σkνT)∇k) , (2.16)

∂ω

∂t
+(u·∇)ω=Pω−βω2+∇·((ν+σωνT)∇ω)+CD, (2.17)

equipped with the initial conditions

k(x,0)= k0(x),

ω(x,0)=ω0(x),
for x∈Ω0, (2.18)

and the boundary conditions

a) k(x,t)=0, ω(x,t)=ωwall, for x∈ΓWt, t∈ (0,T),

b) k(x,t)= kD(x), ω(x,t)=ωD(x), for x∈ΓD, t∈ (0,T),

c)
∂k

∂n
(x,t)=0,

∂ω

∂n
(x,t)=0, for x∈ΓO, t∈ (0,T). (2.19)

The production terms are given by

Pk=
k

ω

2

∑
i,j=1

D2
ij, Pω =αω

2

∑
i,j=1

D2
ij,

CD =
σD

ω
max

{
2

∑
i=1

∂k

∂xi

∂ω

∂xi
,0

}
. (2.20)

(The expressions Dij are defined in a similar way as in (2.3).) The closure coefficients β,
β∗, σk, σω, αω are chosen by [23]:

β=0.075, β∗=0.09, σω =0.5, σk =
2

3
, κ=0.41, σD =0.5,

αω =
β

β∗
−σω

κ2

β∗1/2
. (2.21)

2.5 Specification of the initial and boundary conditions in turbulence models

In the Spalart-Allmaras model we choose

ν̃D = ν̃(0)= ν̃, (2.22)

where ν̃ is chosen so that (cf. (2.14))

ν̃ fv1
(ν̃))=ν/10. (2.23)



M. Feistauer, J. Horáček and P. Sváček / Commun. Comput. Phys., 17 (2015), pp. 146-188 155

As for the k−ω model, we set

ν0
T =ν, k0=ω0ν, ω0=10 s−1, (2.24)

kD =1.5·10−4U2
∞, ωD =10 s−1, ωwall =

6ν

βy2
1

, (2.25)

where y1 is the distance of the barycenter of the mesh element adjacent to the boundary
used in the finite element method (see Section 4). This means that ωwall depends on the
mesh. The definition of ωwall is motivated by the asymptotic behaviour of the specific
dissipation rate ω close to the surface – see [52, Chapter 4].

2.6 Arbitrary Lagrangian-Eulerian method

In order to simulate flow in a moving domain Ωt, we employ the arbitrary Lagrangian-
Eulerian (ALE) method (cf. [35]), based on a regular one-to-one ALE mapping

At : Ω0 7→Ωt, Y∈Ω0 7→ x(Y,t)=At(Y)∈Ωt, t∈ [0,T]. (2.26)

At is the identity in the part of the boundary ∂Ωt, where there is no interaction with
the body and also there is no deformation of the boundary. The reference domain Ω0 is
identical with the domain occupied by the fluid at the initial time t=0. The coordinates
of points x ∈ Ωt are called the spatial coordinates, the coordinates of points Y ∈ Ω0 are
called the ALE coordinates or the reference coordinates.

Now we define the domain velocity

w̃(Y,t)=
∂At(Y)

∂t
=

∂x(Y,t)

∂t
. (2.27)

This velocity can be expressed in the spatial coordinates as

w(x,t)= w̃
(
A−1

t (x),t
)

. (2.28)

Further, for any function f = f (x,t), x∈Ωt, t∈ [0,T] we set f̃ (Y,t)= f (At(Y),t) and define
its ALE derivative by

DA

Dt
f (x,t)=

∂ f̃

∂t
(Y,t), Y=A−1

t (x). (2.29)

The application of the chain rule gives

DA

Dt
f =

∂ f

∂t
+w·∇ f . (2.30)
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2.7 Governing equations in the ALE form

Using relation (2.30), the Reynolds averaged Navier-Stokes equations and the turbulence
models can be rewritten in the ALE form. First, the Reynolds averaged Navier-Stokes
system reads

DAu

Dt
+((u−w)·∇) u+∇p−∇·

(
(ν+νT)(∇u+∇uT)

)
=0, (2.31)

∇·u=0. (2.32)

Further, the Spalart-Allmaras equation (2.8) has the ALE form

DAν̃

Dt
+((u−w)·∇)ν̃=∇·(ε(ν̃)∇ν̃)+

3

2
cb2

(∇ν̃)2+cb1
S̃(ν̃)ν̃−s(ν̃)ν̃2, (2.33)

and the k−ω turbulence model has the ALE form

DAk

Dt
+((u−w)·∇)k=Pk−β∗ωk+∇·((ν+σkνT)∇k) , (2.34)

DAω

Dt
+((u−w)·∇)ω=Pω−βω2+∇·((ν+σωνT)∇ω)+CD. (2.35)

3 Nonlinear equations of the airfoil motion

The deformation of the computational domain depends on the motion of the airfoil,
which is described by the rotation angle α = α(t) of the whole airfoil around an elastic
axis EA, the rotation angle β= β(t) of the flap around an elastic axis EF and the verti-
cal displacement h = h(t) of the whole airfoil, see Fig. 1. The functions α(t), β(t) and
h(t) form a solution of the following system of nonlinear ordinary differential equations
(see [20]):

mḧ+
[
(Sα−Sβ)cosα+Sβcos(α+β)

]
α̈+Sβ β̈cos(α+β)

−(Sα−Sβ)α̇
2sinα−Sβ(α̇+ β̇)2sin(α+β)+Dhh ḣ+khhh=L,

[
(Sα−Sβ)cosα+Sβcos(α+β)

]
ḧ+
[
(Iα−2dPFSβ)+2dPFSβcosβ

]
α̈

+
[
Iβ+dPFSβ cosβ

]
β̈−dPFSβ β̇2sinβ−2dPFSβα̇β̇sinβ+Dααα̇+kααα=Mα,

Sβcos(α+β)ḧ+
[
Iβ+dPFSβcosβ

]
α̈+ Iββ̈+dPFSβα̇2sinβ+Dβββ̇+kβββ=Mβ. (3.1)

Here L is the vertical component of the aerodynamical force acting on the whole airfoil,
Mα is the torsional moment of the aerodynamical force acting on the whole airfoil with
respect to the axis EA, Mβ is the torsional moment of the aerodynamical force acting on
the flap of the airfoil with respect to the flap axis EF, Dhh, Dαα, Dββ are the coefficients of
a structural damping, Sα, Iα and m denote the static moment of the whole airfoil around
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the elastic axis EA, the moment of inertia of the whole airfoil around the elastic axis EA
and the mass of the whole profile, respectively, the coefficient Sβ is the static moment of
the flap of the airfoil around the flap axis EF and Iβ is the moment of inertia of the flap of
the airfoil around the flap axis EF. The constants khh,kαα,kββ denote the spring stiffness
of the flexible support of the airfoil and dPF is the distance between the elastic axis EA
and the flap axis EF.

System (3.1) is equipped with the initial conditions

α(0)=α0, α̇(0)=α1,

β(0)=β0, β̇(0)=β1,

h(0)=h0, ḣ(0)=h1. (3.2)

The interaction between the flow and the airfoil is given by the non-stationary force
component L and the moments Mα and Mβ defined by

L=−l
∫

Pt∪Ft

2

∑
j=1

τ2jnj dS, (3.3)

Mα=−l
∫

Pt∪Ft

2

∑
i,j=1

τijnj(−1)i
(

x1+δ1i
−xEA

1+δ1i

)
dS, (3.4)

Mβ=−l
∫

Ft

2

∑
i,j=1

τijnj(−1)i
(

x1+δ1i
−xEF

1+δ1i

)
dS, (3.5)

where l is the depth of the segment of the airfoil, n=(n1,n2) is the outer unit normal to ∂Ωt

on ΓWt=Pt∪Ft, the symbol δij is the Kronecker symbol defined by δij=1 for i= j and δij=0

for i 6= j, x1 and x2 are the coordinates of points on ΓWt, xEA
i , i= 1,2, are the coordinates

of the current location of the elastic axis EA and xEF
i , i = 1,2, are the coordinates of the

current location of the flap elastic axis EF. The stress tensor components are given by the
relation

τij =̺

[
−pδij+(ν+νT)

(
∂ui

∂xj
+

∂uj

∂xi

)]
. (3.6)

The interaction of the fluid and the airfoil is formed by the solution of the turbulent
flow problem consisting of equations (2.31), (2.32) equipped with conditions (2.5), (2.6)
and completed by the turbulence model (2.33), (2.9), (2.10) or (2.34), (2.35), (2.18), (2.19),
which are coupled with the structural model (3.1), (3.2) via (3.3)-(3.6). In what follows, we
shall be concerned with the discretization of the flow problem and describe the algorithm
for the numerical solution of the complete fluid-structure interaction problem.



158 M. Feistauer, J. Horáček and P. Sváček / Commun. Comput. Phys., 17 (2015), pp. 146-188

4 Discretization of the flow problem

4.1 Time discretization

In order to discretize the flow problem in time, we construct an equidistant partition of
the time interval [0,T] formed by time instants 0 = t0 < t1 < ···< T, tn = nτ, n= 0,1,··· ,
with a time step τ > 0. We use the approximations u(tn)≈ un, p(tn)≈ pn and w(tn)≈
wn at time tn for the velocity, the pressure and the domain velocity, respectively. The
ALE derivative will be approximated by the second-order backward difference formula
(known as BDF2). For a given point Y∈Ω0 from the reference configuration on a given
time level tn we can write

Atn−1
(Y)= xn−1∈Ωtn−1

, Atn(Y)= xn ∈Ωtn , Atn+1
(Y)= xn+1∈Ωtn+1

. (4.1)

Using definition (2.29), where we set f :=u, we shall approximate the ALE derivative of
the velocity at time tn+1 and point xn+1 by the formula

DAu

Dt
(xn+1,tn+1)≈

3ũn+1(Y)−4ũn(Y)+ũn−1(Y)

2τ

=
3un+1(xn+1)−4un(xn)+un−1(xn−1)

2τ
. (4.2)

Taking into account that Atn+1
(A−1

ti
(xi))∈Ωtn+1

, we introduce the functions ûi =ui◦Ati
◦

A−1
tn+1

, i=n,n−1, obtained by the transformation of un and un−1 to the domain Ω :=Ωtn+1
.

Now the implicit scheme for the unknown functions u := un+1 : Ω 7→ IR2 and p := pn+1 :
Ω 7→ IR read

3u−4ûn+ûn−1

2τ
+((u−wn+1)·∇)u+∇p−∇·

(
(ν+νT)(∇u+∇Tu)

)
=0, (4.3)

∇·u=0, (4.4)

considered in Ω. We assume that u and p satisfy the boundary conditions (2.6).

Remark 4.1. In what follows, if we have a sequence f i : Ωti
→ IR, i = 0,1,··· , and fix an

index n, then we set f̂ i = f i◦Ati
◦A−1

tn+1
, which are functions defined in Ωtn+1

.

4.2 Finite element space discretization of the RANS system

Let us assume that the approximation of the turbulent viscosity νT is known at time tn+1.
The starting point for the space discretization of system (4.3), (4.4) by the finite element
method is the weak formulation. For simplicity we set Ω=Ωtn+1

, ΓW =ΓWtn+1
, u=un+1,

p= pn+1. We define the velocity and pressure function spaces

W=[H1(Ω)]2, X={v∈W;v|ΓD∪ΓW
=0}, Q= L2(Ω), (4.5)



M. Feistauer, J. Horáček and P. Sváček / Commun. Comput. Phys., 17 (2015), pp. 146-188 159

where L2(Ω) is the Lebesgue space of square integrable functions over the domain Ω

and H1(Ω) is the Sobolev space of functions square integrable together with their first
order derivatives. Further, if σ⊂ IR2, then by (·,·)σ we denote the scalar product in L2(σ):
(ϕ,ψ)σ=

∫
σ

ϕψdx. Moreover, by ‖·‖σ we shall denote the norm defined as ‖ϕ‖σ=maxσ|ϕ|.
The weak formulation is obtained in a standard way. Eq. (4.3) is multiplied by a test

function v ∈ X and Eq. (4.4) is multiplied by a test function q ∈ Q, integrated over the
domain Ω, Green’s theorem is applied, the boundary condition (2.6), c) is used and the
resulting integral identities are summed. In this way we get the forms

aNS(νT ,U∗,U,V)=
3

2τ
(u,v)Ω+

(
(ν+νT)(∇u+∇Tu),∇v

)
Ω

+
(
((u∗−wn+1)·∇)u,v

)
Ω
−(p,∇·v)Ω+(∇·u,q)Ω,

fNS(V)=
1

2τ

(
4ûn−ûn−1,v

)
Ω
−
∫

ΓO

pre f v·ndS, (4.6)

where we use the notation U=(u,p), U∗=(u∗,p∗), V=(v,q).
We define a weak solution as a couple U=(u,p)∈W×Q such that u satisfies the bound-

ary conditions (2.6), a)-b), and the identity

aNS(νT ,U,U,V)= fNS(V) ∀ V=(v,q)∈X×Q. (4.7)

In order to apply the finite element method to the numerical solution, we assume that
the domain Ω∆ is a polygonal approximation of the computational domain at time tn+1.
By ΓD∆ and ΓW∆ we shall denote the parts of ∂Ω∆ approximating ΓD and ΓW , respectively.
Further, by T∆ we denote a triangulation of Ω∆ formed by a finite number of closed
triangles. The parameter ∆ denotes the maximal size of elements K∈T∆. We assume that
any two different triangles are either disjoint or intersect each other in a common face
or in a common vertex (cf., e.g. [6]). We use the Taylor-Hood P2/P1 elements [48]. This
means that

Q∆ ={q∈C(Ω∆);q|K ∈P1(K) ∀K∈T∆},

W∆ ={v∈ [C(Ω∆)]
2;v|K ∈ [P2(K)]2 ∀K∈T∆},

X∆ ={v∈W∆;v|ΓD∆∪ΓW∆
=0}. (4.8)

Here the symbol Pk(K) denotes the space of all polynomials on K of degree ≤k. The cou-
ple (X∆,Q∆) satisfies the Babuška-Brezzi condition (see, e.g. [3,4,49]), which is important
for the stability of the finite element scheme. The domain velocity wn+1 at time tn+1 is
approximated by a function w∆ =wn+1

∆
, we use the approximations ûi ≈ ûi

∆, i= n,n−1.
Further, the forms aNS and fNS will be modified so that in (4.6) we shall write Ω∆ instead
of Ω.

Now the approximate solution of the flow problem is defined as a couple U∆=(u∆,p∆)∈
W∆×Q∆ such that

aNS(νT ,U∆,U∆,V∆)= fNS(V∆), ∀V∆ =(v∆,q∆)∈X∆×Q∆, (4.9)
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and u∆ satisfies approximately the Dirichlet boundary conditions (2.6), a), b). This means
that these conditions are satisfied at the nodes, i.e., the vertices and midpoints of sides of
elements lying on the approximations ΓD∆ and ΓW∆ of ΓD and ΓW , respectively.

By the symbol Re =U∞c/ν we denote the Reynolds number. Here U∞ denotes the
magnitude of the far-field velocity and c is the length of the airfoil chord. For high
Reynolds numbers approximate solutions can contain nonphysical spurious oscillations.
In order to avoid them, we shall apply the streamline-diffusion (also called the SUPG –
streamline upwind Petrov-Galerkin) stabilization and the div-div stabilization. For a ve-
locity vector u∗ we introduce the transport velocity w∗=w∗(u∗)=u∗−wn+1

∆
and define

the forms

ℓNS(νT ,U∗,U,V)= ∑
K∈T∆

δK

(
3

2τ
u−∇·((ν+νT)(∇u+∇Tu)),v

)

K

+ ∑
K∈T∆

δK ((w
∗ ·∇)u+∇p, (w ·∇)v)K ,

FNS(V)= ∑
K∈T∆

δK

(
1

2τ
(4ûn−ûn−1), (w·∇)v

)

K

,

PNS(U,V)= ∑
K∈T∆

τK(∇·u,∇·v)K. (4.10)

Here
U=(u,p), U∗=(u∗,p), V=(v,q),

and δK,τK ≥ 0 are parameters defined on the basis of results from [17] and [30] and our
numerical experiments and tests. We put

δK =δ∗
hK

2‖w∗‖K
ξ(ℜw∗

K ), (4.11)

where ‖w∗‖K =maxK|w
∗|, hK is the size of K measured in the direction of w∗ and

ℜw∗

K =
hK‖w∗‖K

2ν
, ξ(ℜw∗

K )=min

(
ℜw∗

K

6
,1

)
. (4.12)

The parameters τK are defined by

τK =τ∗hK‖w∗‖K, τ∗∈ (0,1]. (4.13)

In practical computations we use the values δ∗=0.025 and τ∗=1.
The solution of the stabilized discrete problem is such a couple U∆=(u∆,p∆)∈W∆×Q∆

that u∆ satisfies the boundary conditions (2.6), a), b) at the nodes lying on ΓD∆∪ΓW and

aNS(νT ,U∆,U∆,V∆)+ℓNS(νT ,U∆,U∆,V∆)+PNS(U∆,V∆)

= fNS(V∆)+FNS(V∆), ∀V∆=(v∆,q∆)∈X∆×Q∆. (4.14)

The couple (u∆,p∆) represents the approximate solution on the time level tn+1 defined in
the approximation of the domain Ωtn+1

.
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Remark 4.2. The above procedure can also be used for the numerical solution of laminar
flow. We simply set νT = 0 and solve problem (4.14). To this end, the following Oseen
iterative process can be used. Starting from an initial approximation Un+1

∆,0 at time tn+1

and assuming that the iteration Un+1
∆,m has already been computed, we define Un+1

∆,m+1 =
(u∆,m+1,p∆,m+1)∈W∆×Q∆ satisfying (2.6), a), b) at the nodes on ΓD∆∪ΓW∆ and

aNS(0,Un+1
∆,m ,Un+1

∆,m+1,V∆)+ℓNS(0,Un+1
∆,m ,Un+1

∆,m+1,V∆)+PNS(U
n+1
∆,m+1,V∆)

= fNS(V∆)+FNS(V∆), ∀V∆=(v∆,q∆)∈X∆×Q∆. (4.15)

We obtain a sequence Un+1
∆,m , m=0,1,··· , and assume that it converges to the solution Un+1

∆

of Eq. (4.14) with νT = 0. We set U1
∆,0 =(u0

∆,p) and for each time level tn+1, n≥ 1, we set

Un+1
∆,0 = (2ûn

∆−ûn−1
∆ ,pn

∆). The numerical realization of the Oseen iterations is described
e.g. in [14].

4.3 Discretization of the Spalart-Allmaras turbulence equation

Eq. (2.33) is discretized in time similarly as the RANS system (2.31)-(2.32) by the second-
order backward difference formula. At every time tk we approximate ν̃(tk)≈ ν̃k. Let us
assume that we have already obtained the approximations un and ν̃n. Then, as in Remark
4.1, we set

̂̃νn−1
= ν̃n−1◦Atn−1

◦A−1
tn+1

, ̂̃νn
= ν̃n◦Atn ◦A

−1
tn+1

, (4.16)

which is the transformation of the functions ν̃n−1, ν̃n from the domains Ωtn−1
, Ωtn to Ωtn+1

.

For simplicity we shall use the notation ψ for the function ν̃(n+1).

Because of computing the numerical solution of Eq. (2.33) at time tn+1 we shall use
the following linearization of nonlinear terms:

ε(ψ)∇ψ≈ ε(̂̃νn
)∇ψ,

(∇ψ)2≈∇̂̃νn
·∇ψ,

s(ψ)ψ2 ≈ s(̂̃νn
)
[
(̂̃νn

)2+2̂̃νn
(ψ−̂̃νn

)
]
= s(̂̃νn

)(2̂̃νn
ψ−(̂̃νn

)2),

S̃(ψ)ψ≈ S̃(̂̃νn
)̂̃νn

. (4.17)

The error of this linearization is of order O(τ) (similarly in (4.49)). Nevertheless, it ap-
pears that the changes in other terms are larger, because in FSI simulations, the time step
must be sufficiently small. If there is a need to increase the accuracy, it is possible to apply
a simple iterative process. However, our numerical experiments showed that at most one
iteration was necessary. On the basis of (4.17) we obtain the following linearized scheme
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for the computation of the function ψ:

3ψ−4̂̃νn
+̂̃νn−1

2∆t
+(u−w)·∇ψ

=div(ε(̂̃νn
)∇ψ)+

3

2
cb2

∇̂̃νn
·∇ψ+cb1

S̃(̂̃νn
)̂̃νn

−s(̂̃νn
)(2̂̃νn

ψ−(̂̃νn
)2), n=0,1,··· , (4.18)

which is equipped with the boundary conditions (2.10), rewritten now for the function
ψ:

ψ|ΓD
= ν̃D, ψ|ΓW

=0,
∂ψ

∂n

∣∣∣
ΓO

=0. (4.19)

The space discretization of problem (4.18)-(4.19) is carried out by the finite element
method over the triangulation T∆ of the domain Ω∆, which is a polygonal approximation
of the domain Ωtn+1

. We define the spaces

V∆ =
{

ϕ∈C(Ω∆); ϕ|K ∈P1(K) ∀K∈T∆

}
, (4.20)

V0
∆ ={ϕ∈V∆; ϕ=0 on ΓD∆∪ΓW∆}, (4.21)

and the forms

Bsa(u,ψ,ϕ)=
3

2∆t
(ψ,ϕ)Ω∆

+(ε(̂̃νn
)∇ψ,∇ϕ)Ω∆

+((u−w)·∇ψ,ϕ)Ω∆
−

(
3

2
cb2

∇̂̃νn
·∇ψ−2s(̂̃νn

)̂̃νn
ψ,ϕ

)

Ω∆

, (4.22)

Lsa(ϕ)=
1

2∆t
(2̂̃νn

−̂̃νn−1
,ϕ)Ω∆

+(cb1
S̃(̂̃νn

)̂̃νn
+s(̂̃νn

)(̂̃νn
)2,ϕ)Ω∆

. (4.23)

Assuming that u is known, the approximate solution of problem (4.18), (4.19) is de-
fined as a function ψ∆ ∈V∆ satisfying the Dirichlet boundary conditions (4.19) at the ver-
tices lying on ΓD∆∪ΓW∆ such that

Bsa(u,ψ∆,ϕ∆)= Lsa(ϕ∆), ∀ϕ∆∈V0
∆. (4.24)

In the case of large Reynolds numbers, we apply the SUPG stabilization, combined
with discontinuity capturing (DC) introducing an additional dissipation in the crosswind
direction. (See, e.g., [21] and [7].) To this end, we define the vector-valued function

b=b(u)=u−wn+1
∆

−
3

2
cb2

∇̂̃νn
. (4.25)
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By ψ∗ we denote an auxiliary variable (approximation of ψ) and introduce the forms

Bsa
SUPG(u,ψ,ϕ)= ∑

K∈T∆

δ̃K

(
3ψ

2∆t
+b·∇ψ−div(ε(̂̃νn

)∇ψ)+2s(̂̃νn
)̂̃νn

ψ,b·∇ϕ

)

K

, (4.26)

Lsa
SUPG(u,ϕ)= ∑

K∈T∆

δ̃K

(
4̂̃νn

−̂̃νn−1

2∆t
+cb1

S̃(̂̃νn
)̂̃νn

+s(̂̃νn
)(̂̃νn

)2,b·∇ϕ

)

K

, (4.27)

Bsa
DC(u,ψ∗,ψ,ϕ)= ∑

K∈T∆

αK(ψ
∗)(∇ψ,∇ϕ)K

+ ∑
K∈T∆

(
(max(αK(ψ

∗)−α′
K,0)−αK(ψ

∗))
b⊗b

‖b‖2
K

∇ψ,∇ϕ

)

K

. (4.28)

Here

δ̃K =

(
4‖ε(̂̃νn

)‖K

h2
K

+
2‖b‖K

hK
+‖s(̂̃νn

)‖K

)−1

, (4.29)

b⊗b=

(
b2

1, b1b2

b1b2, b2
2

)
(4.30)

and

α′
K = δ̃K‖b‖2

K. (4.31)

The norm ‖b‖2
K is defined by

‖b‖K =maxK(|b1|+|b2|). (4.32)

Similarly we define the norms ‖ε(̂̃νn
)‖K and ‖s(̂̃νn

)‖K.
Further, we define the local element residuals

resK(ψ
∗)=

3ψ∗−4̂̃νn
+̂̃νn−1

2∆t
+b·∇ψ∗−div(ε(̂̃νn

)∇ψ∗)−s(̂̃νn
)(̂̃νn

)2

−cb1
S̃(̂̃νn

)+2s(̂̃νn
)̂̃νn

ψ∗, (4.33)

and set

αK(ψ
∗)=





1

2
AK(ψ

∗)hK
‖resK(ψ

∗)‖K

‖∇ψ∗‖K
if ‖∇ψ∗‖K 6=0,

0 elsewhere,
(4.34)

where hK is the characteristics length of the element K (we use the size of the element K
measured in the direction of b), AK is given by

AK(ψ
∗)=max

(
0, 0.7−

2ε(̂̃νn
)

‖a1(ψ∗)‖KhK

)
(4.35)
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with

a1(ψ
∗)=

resK(ψ
∗)

‖∇ψ∗‖K
. (4.36)

Now let us define the complete stabilized Spalart-Allmaras turbulence model forms

Bsa
TM(u,ψ∗,ψ,ϕ)=Bsa(u,ψ,ϕ)+Bsa

SUPG(u,ψ,ϕ)+Bsa
DC(u,ψ∗,ψ,ϕ), (4.37)

Lsa
TM(u∆,ϕ)= Lsa(ϕ)+Lsa

SUPG(u,ϕ). (4.38)

Then (provided the finite element approximation u∆ of the flow velocity at time tn+1 is
given), the stabilized discrete problem for ψ is formulated in the following way: Find ψ∆∈
V∆ satisfying the Dirichlet boundary conditions (4.19) at the vertices lying on ΓD∆∪ΓW∆

such that
Bsa

TM(u,ψ∆,ψ∆,ϕ∆)= Lsa
TM(u,ϕ∆) ∀ϕ∆∈V0

∆. (4.39)

4.3.1 The solution of the complete Spalart-Allmaras turbulent flow problem

Summarizing (4.10), (2.14) and (4.39), we can formulate the scheme for the computation
of turbulent flow at the time instant tn+1 in the polygonal approximation Ω∆ of the do-
main Ωtn+1

: Find U∆=(u∆,p∆), ψ∆, ν̃∆, νT∆
such that

a) U∆=(u∆,p∆)∈W∆×Q∆,

u∆ satisfies (2.6), a), b) at the nodes lying on ΓD∆ and ΓW∆,

aNS(νT∆,U∆,U∆,V∆)+ℓNS(νT∆,U∆,U∆,V∆)+PNS(U∆,V∆)

= fNS(V∆)+FNS(V∆) ∀V∆∈X∆×Q∆,

b) ψ∆ ∈V∆,

Bsa
TM(u∆,ψ∆,ψ∆,ϕ∆)= Lsa

TM(u∆,ϕ∆) ∀ϕ∆∈V0
∆,

c) ν̃∆ =ψ∆,

d) νT∆ = ν̃∆ fv1
(ν̃∆). (4.40)

If we obtain the solution of this problem, then (un+1
∆

,pn+1
∆

)=(u∆,p∆), ν̃
(n+1)
∆

= ν̃∆=ψ∆ and

ν
(n+1)
T∆

=νT∆ represent the approximate solution of the Spalart-Allmaras turbulence model
at time tn+1. The solution of problem (4.40) is carried out with the use of the following
Oseen-like iterative process.

4.3.2 Algorithm for the solution of the discrete Spalart-Allmaras turbulent flow

problem at time tn+1

(0) In the beginning of the time marching process set n=0, U−1
∆

=U0
∆=(u0,pre f ), ν̃

(−1)
∆

=

ν̃
(0)
∆

= ν̃∆, where ν̃∆ is chosen so that ν̃∆ fv1
(ν̃∆)=ν/10 (see the conditions specified in

(2.7) and Section 2.5). Then find ψ∗
∆∈V∆ satisfying the Dirichlet boundary conditions

(4.19) at the vertices lying on ΓD∆∪ΓW∆ and

Bsa(u0,ψ∗
∆,ϕ∆)+Bsa

SUPG(u
0,ψ∗

∆,ϕ∆)= Lsa
TM(u0,ϕ∆) ∀ϕ∆∈V0

∆. (4.41)
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(In this way we get the initial value of ψ∗
∆.)

(1) Let ε>0 be given. Let the approximation Ω∆ of the domain Ωtn+1
and wn+1

∆
, ûn−1

∆
, ûn

∆,

̂̃νn−1

∆ , ̂̃νn

∆, ν̂T∆ (quantities transformed to the approximation of the domain Ω∆tn+1
by

Remark 4.1) have already been determined. Set

ν∗∆ := ν̂n
T∆, ψ∗

∆ := ̂̃νn

∆, U∗
∆ :=(ûn

∆, p̂n
∆). (4.42)

(2) Find U∆ =(u∆,p∆)∈W∆×Q∆ such that u∆ satisfies the boundary conditions (2.6) at
the nodes on ΓD∆∪ΓW∆ and

aNS(ν
∗
T∆,U∗

∆,U∆,V∆)+ℓNS(ν
∗
T∆,U∗

∆,U∆,V∆)+PNS(U∆,V∆)

= fNS(V∆)+FNS(V∆) ∀V∆∈X∆×Q∆. (4.43)

(3) Find ψ∆ ∈ V∆ such that it satisfies the Dirichlet conditions (4.19) at the vertices on
ΓD∆∪ΓW∆ and

Bsa
TM(u∆,ψ∗

∆,ψ∆,ϕ∆)= Lsa
TM(u∆,ϕ∆) ∀ϕ∆∈V0

∆. (4.44)

(4) Set ν̃∆ :=ψ∆, νT∆ := ν̃∆ fv1
(ν̃∆).

(5) If

‖ν∗T∆−νT∆‖< ε and ‖U∗
∆−U∆‖< ε, (4.45)

then set

U
(n+1)
∆

:=U∆, ν̃
(n+1)
∆

:=ψ∆, ν
(n+1)
T∆

:=νT∆, (4.46)

else

ν∗T∆ :=νT∆, U∗
∆ :=U∆, ψ∗

∆ :=ψ∆, (4.47)

and go to (2).

Remark 4.3. In order to increase the stability of this algorithm, it is suitable to apply a
few inner iterations in (4.44) of the following form: Set ψ∆,0 :=ψ∗

∆ and for i=0,··· ,l (l=1
or 2) find ψ∆,i+1 ∈V∆ such that it satisfies the Dirichlet conditions (4.19) at the vertices
from ΓD∆∪ΓW∆ and

Bsa
TM(u∆,ψ∆,i,ψ∆,i+1,ϕ∆)= Lsa

TM(u∆,ϕ∆) ∀ϕ∆∈V0
∆. (4.48)

Then put ψ∆ =ψ∆,l+1.
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4.4 Discretization of the k−ω turbulence model

The discretization of the k−ω system (2.34), (2.35) is carried out in a similar way as in
the previous section. The time derivative is approximated by the second-order backward
difference formula, use suitable test functions ϕk and ϕω for the obtained approxima-
tions for k and ω, respectively. Then we use the notation introduced in Remark 4.1 and
introduce the following linearized approximations:

β∗ωk(tn+1)≈2β∗ω̂nkn+1−β∗ω̂nk̂n,

βω2(tn+1)≈2βω̂nωn+1−β(ω̂n)2,

Pk(tn+1)≈ P̂k(tn), Pω(tn+1)≈ P̂ω(tn). (4.49)

Further, we use the notation

εk =ν+σk ν̂n
T , εω =ν+σω ν̂n

T , Λ∗=(k∗,ω∗),

Λ=(k,ω), Φ=(ϕk,ϕω), w=w(u)=u−wn+1
∆

. (4.50)

Then we get the following forms:

Bkω(u;Λ,Φ)=(εk∇k,∇ϕk)Ω+

(
3k

2∆t
+(w·∇)k+2β∗ω̂nk,ϕk

)

Ω

+(εω∇ω,∇ϕω)Ω+

(
3ω

2∆t
+(w·∇)k+2βω̂nω,ϕω

)

Ω

, (4.51)

Lkω(Φ)=
(4k̂n− k̂n−1

2∆t
+ P̂k(tn)+β∗ k̂nω̂n,ϕk

)
Ω

+
(4ω̂n−ω̂n−1

2∆t
+β(ω̂n)2+ P̂ω(tn)+ĈD(tn),ϕω

)
Ω∆

. (4.52)

Because of the SUPG and DC stabilization, we define the forms

Bkω
SUPG(u;Λ,Φ)= ∑

K∈T∆

δKk

( 3k

2∆t
+w·∇k+2β∗ω̂nk+∇·(εk∇k) ,w·∇ϕk

)
K

+ ∑
K∈T∆

δKω

( 3ω

2∆t
+w·∇ω+2βω̂nω+∇·(εω∇ω),w·∇ϕω

)
K

, (4.53)

Lkω
SUPG(u;Φ)= ∑

K∈T∆

δKk

(4k̂n− k̂n−1

2∆t
+ P̂k(tn)+β∗ k̂nω̂n,w·∇ϕk)

)
K

+ ∑
K∈T∆

δKω

(4ω̂n−ω̂n−1

2∆t
+β(ω̂n)2+ P̂ω(tn)+ĈD(tn),w·∇ϕk)

)
K

, (4.54)
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Bkω
DC(u;Λ∗,Φ)= ∑

K∈T∆

(
αKk∇k,∇ϕk

)
K
+ ∑

K∈T∆

(
αKω∇ω,∇ϕω

)
K

+ ∑
K∈T∆

∫

K

(
(αKk−α′

Kk)
+−αKk

)
∇k·

(
w⊗w

‖w‖2
K

)
∇ϕkdx

+ ∑
K∈T∆

∫

K

(
(αKω−α′

Kω)
+−αKω

)
∇ω ·

(
w⊗w

‖w‖2
K

)
∇ϕω dx. (4.55)

We use the following notation. The parameters δKk,δKω are defined by

δKk =

(
4‖εk‖K

h2
K

+
2‖w‖K

hK
+2β∗‖ω̂n‖K

)−1

,

δKω =

(
4‖εω‖K

h2
K

+
2‖w‖K

hK
+2β‖ω̂n‖K

)−1

. (4.56)

The discontinuity capturing coefficients α′
Kkω and α′

Kω are determined by

α′
Kk =δKk ‖w‖K, α′

Kω =δKω‖w‖K. (4.57)

The definitions of the discontinuity capturing coefficients αKk and αKω are based on
the local element residuals

res1(k
∗)=

3k∗−4k̂n+ k̂n−1

2∆t
+w·∇k∗+2β∗ω̂nk∗−β∗ω̂n k̂n− P̂k(tn)−∇·(εk∇k∗) (4.58)

and

res2(ω
∗)=

3ω∗−4ω̂n+ω̂n−1

2∆t
+w·∇ω∗+2βω̂nω∗−β∗(ω̂n)2− P̂ω(tn)−ĈD(tn)

−∇·(εω∇ω∗). (4.59)

We set

αKk =αKk(k
∗)=

1

2
AKk(k

∗)hK
‖res1(k

∗)‖K

‖∇k∗‖K
, (4.60)

αKω =αKω(ω
∗)=

1

2
AKωhK(ω

∗)
‖res2(ω∗)‖K

‖∇ω∗‖K
, (4.61)

if ‖∇k∗‖K 6=0 and ‖∇ω∗‖K 6=0, otherwise,

αKk=0, αKω =0. (4.62)

Here,

AKk(k
∗)=

(
0.7−

2εk

‖a1‖KhK

)+

, AKω =

(
0.7−

2εω

‖a2‖KhK

)+

, (4.63)
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with

a1=
res1(k

∗)

‖∇k∗‖2
K

∇k∗, a2=
res2(ω∗)

‖∇ω∗‖2
K

∇∗ω. (4.64)

Finally, we define the stabilized k−ω turbulence model forms BTM=Bkω
TM and LTM=

Lkω
TM:

Bkω
TM(u;Λ∗,Λ,Φ)=Bkω(u;Λ,Φ)+Bkω

SUPG(u;Λ,Φ)+Bkω
DC(u;Λ∗,Λ,Φ), (4.65)

Lkω
TM(u;Φ)= Lkω(Φ)+Lkω

SUPG(u;Φ). (4.66)

4.4.1 The solution of the problem for computing the quantities k and ω

Now we shall introduce the discrete problem for the determination of the approximations
to the functions k and ω at time tn+1, provided the approximate solution has already been
computed on previous time levels. We use again the finite-dimensional spaces V∆ and V0

∆

defined by (4.20) and set Vω
∆ =V k

∆ =V0
∆.

The nonlinear stabilization problem reads: Find Λ∆ =(k∆,ω∆)∈ [V∆]
2 satisfying con-

ditions (2.19) a), b) at the vertices lying on ΓD∆∪ΓW∆ and

Bkω
TM(u;Λ∆,Λ∆,Φ∆)= Lkω

TM(u;Φ∆), ∀Φ∆ =(ϕk∆,ϕω∆)∈V k
∆×Vω

∆ . (4.67)

4.4.2 The solution of the complete discrete k−ω turbulent flow problem at time tn+1

We want to find U∆ =(u∆,p∆), Λ∆ =(k∆,ω∆) and νT∆ such that the following conditions
are satisfied:

a) U∆ satisfies (4.40), a).

b) Λ∆ = (k∆,ω∆)∈ [V∆]
2 satisfies conditions (2.19), a) at the vertices lying on ΓD∆∪ΓW∆

and (4.67).

c) The relation νT∆ = k∆/ω∆ is satisfied.

4.4.3 Algorithm for the solution of the discrete k−ω turbulent flow problem at time

tn+1

(0) In the beginning of the time marching process set n=0, U−1
∆

=U0
∆ =(u0,pre f ), ν−1

T∆
=

ν0
T∆=ν, k−1

∆
=k0

∆=10ν, ω−1
∆

=ω0
∆=10 (see the conditions specified in (2.7) and Section

2.5). Then find Λ∗
∆=(k∗∆,ω∗

∆)∈[V∆]
2 satisfying conditions (2.19), a), b) at vertices lying

on ΓD∆∪ΓW∆ and

Bkω(u0
∆;Λ∗

∆,Φ∆)+Bkω
SUPG(u

0
∆;Λ∗

∆,Φ∆)= Lkω
TM(u0

∆,Φ∆) ∀Φ∆ ∈V k
∆×Vω

∆ . (4.68)

(1) Let ε>0 be given. Let the approximation Ω∆ of the domain Ωtn+1
and wn+1

∆
, ûn−1

∆ , ûn
∆,

k̂n−1
∆

, k̂n
∆, ω̂n−1

∆
, ω̂n

∆, ν̂n
T∆, P̂k(tn), P̂ω(tn), ĈD(tn) (quantities transformed to the domain

Ω∆ by Remark 4.1) have already been determined. Set U∗
∆ =(ûn

∆, p̂n
∆), k∗∆ := k̂n

∆, ω∗
∆ :=

ω̂n
∆, ν∗T∆ := ν̂n

T∆= k∗∆/ω∗
∆.
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(2) Find U∆ = (u∆,p∆)∈ W∆×Q∆ such that u satisfies the boundary conditions (2.6) at
nodes on ΓD∆∪ΓW∆ and

aNS(ν
∗
T∆,U∗

∆,U∆,V∆)+ℓNS(ν
∗
T∆,U∗

∆,U∆,V∆)+PNS(U∆,V∆)

= fNS(V∆)+FNS(V∆) ∀V∆∈X∆×Q∆. (4.69)

(3) Find Λ∆=(k∆,ω∆)∈ [V∆]
2 satisfying conditions (2.19, a), b) at vertices lying on ΓD∆∪

ΓW∆ and

Bkω
TM(u∆,Λ∗

∆,Λ∆,Φ∆)= Lkω
TM(u∆,Φ∆) ∀Φ∆ =(ϕk∆,ϕω∆)∈V k

∆×Vω
∆ . (4.70)

(4) Set νT∆ := k∆/ω∆.

(5) If
‖ν∗T∆−νT∆‖< ε and ‖U∗

∆−U∆‖< ε, (4.71)

then set

Un+1
∆

:=U∆, kn+1
∆

:= k∆, ωn+1
∆

:=ω∆, νn+1
T∆

:= k∆/ω∆, (4.72)

else

U∗
∆ :=U∆, k∗∆ := k∆, ω∗

∆ :=ω∆, ν∗T∆k∗∆/ω∗
∆, (4.73)

and go to (2).

5 The realization of the coupled fluid-structure interaction

problem

In this section we shall describe the algorithm of the numerical realization of the complete
fluid-structure interaction problem.

5.1 Construction of the ALE mapping for three degrees of freedom

The ALE mapping is constructed with the use of the linear equations describing the de-
formation of elastic bodies:

∇[(λ+µ)∇·d]+∇·(µ∇d)=0 in Ω0, (5.1)

where d = (d1,d2) is a displacement defined in Ω0. The Lamé coefficients λ and µ are
computed by

λ=
Eaσa

(1+σa)(1−2Ea)
, µ=

Ea

2+2σa
, (5.2)

where Ea is an artificial Young modulus and σa is an artificial Poisson ratio.
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The boundary conditions for d are prescribed by

d|ΓD∪ΓO
=0 (5.3)

and on ΓW0
they are determined by the functions h(t), α(t), β(t):

d1=X1cosα−X2sinα,

d2=X1sinα+X2cosα+h,
Y=(X1,X2)∈P0, (5.4)

for the main part of the airfoil and

d1=X1cos(α+β)−X2sin(α+β)+dPF cosα,

d2=X1sin(α+β)+X2 cos(α+β)+dPF sinα+h,
Y=(X1,X2)∈F0, (5.5)

for the flap of the airfoil.

The solution of equations (5.1) gives us the ALE mapping of Ω0 onto Ωt by the relation

At(Y)=Y+d(Y), Y∈Ω0, (5.6)

for each time t.

System (5.1) is discretized by the conforming piecewise linear finite elements on the
mesh T 0

∆ used for computing the velocity and pressure fields in the beginning of the
computational process in the polygonal approximation Ω0∆ of the domain Ω0.

We introduce the finite element spaces

X∆ ={d∆ =(d∆1,d∆2); d∆i|K ∈P1(K) ∀K∈T 0
∆ , i=1,2},

V∆ ={ϕ∆ ∈X∆;ϕ∆(Y)=0 for all vertices Y∈∂Ω0}, (5.7)

and the form

B∆(d∆,ϕ∆)=((λ+µ)(∇·d∆),(∇·ϕ∆))Ω0∆
+(µ∇d,∇ϕ∆)Ω0∆

. (5.8)

Then the approximate solution of problem (5.1), (5.3)-(5.5) is defined as a function d∆∈X∆

satisfying the Dirichlet boundary conditions defined by (5.3)-(5.5) with the values of h, α,
β at time tn+1 and considered at the vertices lying on ∂Ω0 and the identity

B∆(d∆,ϕ∆)=0 ∀ϕ∆ ∈V∆. (5.9)

It is possible to choose the Lamé coefficients λ and µ as constants, but it is more
suitable to define them by (5.2), where the parameters Ea and σa are piecewise constant
on the mesh T 0

∆
. We define them by

σa|K =0.25, Ea|K =
1

meas(K)
, (5.10)
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where meas(K) denotes the area of an element K. The mesh around the airfoil is typically
refined into smaller triangles. Since smaller triangles imply the larger Young modulus Ea

in (5.10), the mesh around the airfoil moves with the airfoil and its deformation is small.
If the displacement d∆ is computed at time tn+1, then, in view of (5.6), the approxima-

tion of the ALE mapping is obtained in the form

Atn+1∆(Y)=Y+d∆(Y), Y∈Ω0∆. (5.11)

Of course, in practical computations, this formula is applied to vertices Y of the triangu-
lation T 0

∆ only and Atn+1∆ is defined as a piecewise linear mapping.
The knowledge of the ALE mapping at the time instants tn−1, tn, tn+1 allows us to

approximate the domain velocity with the aid of the second-order backward difference
formula

wn+1
∆

(x)=
3x−4Atn∆(A

−1
tn+1∆(x))+Atn−1∆(A

−1
tn+1∆(x))

2τ
, x∈Ωtn+1∆. (5.12)

5.2 Discretization of the structural problem

In order to solve equations (3.1) of motion describing the airfoil vibrations, we transform
them to a first-order system. We introduce the following notation:

Z(t)=(ḣ(t),α̇(t), β̇(t))T , f =(L,Mα,Mβ)
T, (5.13)

K=




khh 0 0
0 kαα 0
0 0 kββ


, D=




Dhh 0 0
0 Dαα 0
0 0 Dββ


, (5.14)

M=(Mij)
3
i,j=1, (5.15)

where the components of the nonlinear mass matrix M=M(Z) read

M11=m, M12=(Sα−Sβ)cosα+Sβ cos(α+β), M13=Sβcos(α+β),

M21=M12, M22= Iα−2dPFSβ+2dPFSβ cosβ, M23= Iβ+dPFSβ cosβ,

M31=M13, M32=M23, M33= Iβ. (5.16)

Further, we introduce the following notation: O – zero 3×3 matrix, I – unit 3×3 matrix,
0 – 3-dimensional zero vector and g – the vector of nonlinearities:

g=




(Sα−Sβ)α̇
2sinα+Sβ(α̇+ β̇)2sin(α+β)

dPFSβ β̇2sinβ+2(dPFSβ)α̇β̇sinβ

−dPFSβα̇2sinβ


. (5.17)

Then system (3.1) is equivalent to the first-order system

Ż=h(t,Z), (5.18)
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where h is the vector function defined by

h(t,Z)=

(
M

−1(Z) O

O I

)((
f (t)

0

)
−

(
D O

O K

)
Z+

(
g
0

))
. (5.19)

This system is equipped with the initial condition prescribing the value Z(0) given by
conditions (3.2). The initial value problem for system (5.18) is solved by the fourth-order
Runge-Kutta method. In the step from tn to tn+1 one needs the evaluation of the values
f (t̂) at discrete instants t̂∈ [tn,tn+1]. They are obtained by a linear extrapolation from the
interval [tn−1,tn] to [tn,tn+1]. If the values f (tn) and f (tn+1) have already been approxi-
mated, then f (t̂) is computed by the linear interpolation in the interval [tn,tn+1].

5.3 Computation of aerodynamic forces acting on the airfoil

In the case when the flap is not separated from the main body of the airfoil, the aerody-
namic forces L, Mα, Mβ at time tn+1 are computed from (3.3)-(3.5) by using the approx-
imation of the stress tensor (3.6) known from the solution U∆ =(u∆,p∆) of the stabilized
discrete flow problem (4.40) and extrapolated to the boundary. The integrals in (3.3)-(3.5)
are computed with the aid of numerical quadratures. In the case, when the flap is sep-
arated from the main body of the airfoil, i.e. Pt∩Ft =∅, the force and moments can be
computed on the basis of a weak formulation similarly as in Sváček et al. [47].

5.4 Coupling procedure

In the solution of the complete coupled fluid-structure interaction problem it is necessary
to apply a suitable coupling procedure. See, e.g. Badia and Codina [1] for a general
framework. Here we apply the following algorithm.

(0) Prescribe ε> 0 – the measure of accuracy in the coupling procedure, and an integer
M≥0 – the maximal number of iterations in the coupling procedure.

(1) Assume that the solution U∆ = (u∆,p∆) of the discrete flow problem (4.40) and the
force L and torsional moments Mα and Mβ computed from (3.3)-(3.5) are known at
time levels tn−1 and tn.

(2) Extrapolate linearly L, Mα and Mβ from the interval [tn−1,tn] to [tn,tn+1]. Set m :=0.

(3) Prediction of h,α, β: Compute the displacement h and the angles α and β at time tn+1

as the solution of system (5.18) by the Runge-Kutta method. Denote it by h∗, α∗, β∗.

(4) On the basis of h∗,α∗, β∗ determine the position of the airfoil at time tn+1, the domain
Ωtn+1∆, the ALE mapping Atn+1∆ and the domain velocity wn+1

∆
.

(5) Solve the nonlinear discrete stabilized problem (4.40) at time tn+1 by the Oseen-like
iterative algorithm 4.3.2.

(6) Correction of h, α, β: Compute L, Mα and Mβ from (3.3)-(3.5) at time tn+1 and inter-
polate L, Mα and Mβ on [tn,tn+1]. Compute h, α, β at time tn+1 from (5.18) by the
Runge-Kutta method.
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(7) If |h∗−h|+|α∗−α|+|β∗−β|≥ ε and m<M, set h∗=h, α∗=α, β∗=β, m :=m+1 and go
to 4. Otherwise, n :=n+1 and go to (2).

If M = 0, then we get a loose (weak) coupling of the flow and structural problems.
With increasing M and decreasing ε, the coupling becomes stronger.

Remark 5.1. The assumption that the approximate solution U∆ and the quantities L, Mα,
Mβ are known at time instants tn−1 and tn is satisfied in practical computations, because
the computational process starts with a fixed airfoil and flap, which are released after
several time steps.

Remark 5.2. It follows from the above algorithm that on different time levels different
meshes are used. However, in our case it is not necessary to use a complete remeshing,
because the mesh is only deformed, as follows from Section 5.1. The complete remeshing
is necessary in the case, when the mesh becomes strongly distorted, which happens only
rarely, when the vibration amplitudes become very large. In this situation, some mesh
patterns can be constructed in advance before the FSI process and used only if needed.

On the other hand, there is a question, if it is suitable to apply techniques that do
not require mesh updating in time, as, for example, the fictitious domain method (see,
e.g., [22]), because the meshes have to be strongly refined around the moving airfoil (see
Fig. 2), in order to get an accurate resolution of aerodynamical forces acting on the airfoil.

6 Numerical experiments

We performed computations for the airfoil configurations considered in [28], where the
authors computed the stability bounds of a wing profile model by MSC.NASTRAN,
which is based on a linear description of the structure behaviour.

The numerical simulation was carried out for the airfoil NACA 0012 of the total length
(including the gap and flap – see Fig. 1) c=0.3 m. The axes EA and EF are placed at 40%
and 80%, respectively, of the length of the whole airfoil measured from the leading edge.
The following structural parameters in equations (3.1) were used:

m=0.086622kg, khh =105.109N/m,

kαα =3.69558Nm/rad, kββ =0.2Nm/rad,

Sα=−0.000779598kgm, Sβ =0kgm,

Iα=0.000487291kgm2 , Iβ =0.0000341104kgm2 ,

dPF =0.140001m, l=0.079m.

The damping coefficients Dhh, Dαα, Dββ were assumed to be zero. The gap between the
main lifting surface and the flap was varied from g=0% to g=7% of the flap chord length
L f =0.068 m.
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Figure 2: Detail of anisotropically adapted mesh for NACA 0012 airfoil for the gap g=2.4% (nondeformed and
deformed position).

Fig. 2 shows examples of the triangulation around the airfoil in the channel. The mesh
was anisotropically adapted by the method described in [9], using the combination of the
software Angener [8] and the open source software GMSH [18, 19]. The total number of
fluid finite elements was approximately 60 000 depending on the gap size.

The structural initial conditions in all computations were set to

h(0)=−1.5 mm, α(0)=1◦ for g≤1.26% or h(0)=−5 mm, α(0)=3◦ for g>1.26%

and β(0)= ḣ(0)= α̇(0)= β̇(0)=0. (6.1)

The computational process started from the solution of the flow past a fixed airfoil at
time t=−0.01 s. At time t= 0 the airfoil was released and the computation of the real
interaction started. (Cf. Remark 5.1.) Computations were carried out with the time step
τ=0.01c/U∞ for the kinematic viscosity ν=1.5·10−5 m2/s, the air density ρ=1.225 kg/m3

and the far-field flow velocity U∞ = 6−12 m/s corresponding to the Reynolds numbers
between 1.2·105 and 2.4·105. The computational process was finished either by approach-
ing time T=2 s in aeroelastic stable cases or if the process failed due to high vibration am-
plitudes, when the aeroelastic instability appeared for the unstable limit cycle oscillation
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(LCO) and the amplitude of the flap exceeded a limit value by which the computational
mesh was degenerated. The total computer time for the computation of the responses
h(t), α(t), β(t) for t=0−2 s on a PC with Intel i7 processor and 4GB memory was about
3 days.

This shows that the developed method is applicable to a complicated FSI problem
even on a PC, but at the cost of a long CPU time. The most demanding part of the com-
putational process is formed by the realization of linearized problems. Of course, for
practical applications it is necessary to apply the method on high-performance comput-
ers. It is also suitable to use parallel processes, e.g., in the solution of the construction of
linear systems and their solution. However, this is out of the subject of this paper.

The frequency analysis of the dynamic response was carried out with the aid of the
Fourier transform

G( fn)=
∫ T

0
g(t)e−2πi fnt dt (6.2)

with g = h, α or β, and fn = n∆ f ∈ [0,50], ∆ f = 0.1 Hz, approximated by the rectangle
formula

G( fn)=
N−1

∑
k=0

g(tk)e−2πi fntk ∆t. (6.3)

Here i is the imaginary unit, ∆t=T/N and N is the number of time steps in the interval
[0,T). The results of the frequency analysis are shown in graphs of the quantity

|G( fn)|=
√
ℜ2(G( fn))+ℑ2(G( fn)).

6.1 Numerical results – flutter analysis

Figs. 3-7 show examples of the computed functions h(t), α(t), β(t), the corresponding
spectra and the phase diagrams for Spalart-Allmaras and k−ω turbulence models and
several far-field flow velocities U∞. For the smaller flow velocity the amplitudes for the
vertical displacement h and the rotations α, β are decreasing in time and the system is
stable (see Fig. 3). The spectra show three frequencies that belong to the vertical motion
of the airfoil and to the rotations the main lifting part of the profile and of the flap. The
lowest frequency at about 5.5 Hz belongs to the vertical airfoil motion h and the two
higher frequencies at about 12 Hz and 15 Hz belong to the airfoil and the flap rotations
α and β, respectively. Comparing the results in Figs. 3-5 we can see that the damping of
vibrations decreases with the far-field flow velocity and is lower for the Spalart-Allmaras
turbulence model than for the k−ω model. Nevertheless, the system is still stable in
all three cases presented in these figures. By increasing the far-field flow velocity up to
U∞ = 11 m/s the vibration regime can be considered as LCO with a small amplitude
less than 3 degrees for the flap rotation β and the highest frequency belonging to this
motion becomes the most dominant in the spectra (see Fig. 6). The system is still stable,
if the model k−ω is used, but a ”catastrophic” type of flutter with a negative damping
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Figure 3: Airfoil with gap 0.54%: Functions h(t), α(t), β(t) (left), their spectra (middle) and phase diagrams
(right) for k−ω turbulence model and far-field airflow velocity 7 m/s.

and quickly increasing vibration amplitudes appear in this case according to the Spalart-
Allmaras turbulence model. For the higher flow velocity U∞ = 12 m/s, the system is
becoming unstable by a “catastrophic“ flutter also by using the k−ω model (see Fig. 7).
In this case, the rotation amplitudes are increasing very fast and the angle β for the flap
reaches values up to about 5 degrees after about 2 s oscillating with the dominant flutter
frequency of about 15 Hz.

These results are in agreement with the NASTRAN computations, according to which
the system becomes unstable by flutter in torsion for the far-field flow velocity at 11.3 m/s
and the flutter frequency fcr =14.9 Hz (see Table 1 and [28, 29]).

The functions h(t), α(t), β(t) computed by the Spalart-Allmaras turbulence model
and the k−ω turbulence model are compared in Fig. 8. Both models give nearly identical
results in the beginning of the transient regime just after releasing the airfoil at the time
t= 0 s. However, after about 1 s the differences in the vibration amplitudes for the two
turbulence models are getting remarkable. The k−ω turbulence model gives smaller
vibration amplitudes. The airfoil is more damped by the aerodynamic forces computed
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Table 1: Comparison of the results computed by NASTRAN without considering the gap between the airfoil
and the flap [28,29] and by the developed finite element method for eigen-frequencies f (computed by the FEM
for the gap 0.54%), for far-field airflow velocity 6 m/s, for critical flutter velocities UF and flutter frequencies
fcr.

h – bending β – flap torsion α – torsion UF fcr flutter

f [Hz] f [Hz] f [Hz] [m/s] [Hz] type

NASTRAN 5.39 11.4 15.2 11.3 14.9 α – torsion

FEM 5.38 11.5 15.0 11.1 14.92
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Figure 4: Airfoil with gap 0.54%: Functions h(t), α(t), β(t) (left), their spectra (middle) and phase diagrams
(right) for k−ω (full line) and Spalart-Allmaras turbulence model (dashed line) and far-field airflow velocity 9
m/s.

by the k−ω turbulence model and the system is more stable comparing to the use of the
Spalart-Allmaras model.

This behaviour is demonstrated in Fig. 9, which shows the damping ratio D=ln α0/αn
2πn ,

calculated from n cycles of the time response of the airfoil for the rotation angle ampli-
tudes α0 and αn, in dependence on the far-field air flow velocity for three different gaps.
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Figure 5: Airfoil with gap 0.54%: Functions h(t), α(t), β(t) (left), their spectra (middle) and phase diagrams
(right) for k−ω (full line) and Spalart-Allmaras turbulence model (dashed line) and far-field airflow velocity 10
m/s.

If the damping ratio D>0, the system is stable, and when D<0, the system is unstable by
coupled mode flutter for the rotations α and β. For example, for the gap width g=3.74%
and the far-field air flow velocity 10 m/s the system is stable (D>0) when using the k−ω
turbulence model and unstable (D<0) by flutter when the Spalart-Allmaras turbulence
model is used.

The critical flutter velocities UF evaluated from the damping ratio of the numerically
simulated time signals are shown in Fig. 10 in dependence on the gap width between the
airfoil and the flap. The flutter velocity UF≈11.1 m/s computed for the smallest gap g=
0.54% by using the k−ω turbulence model is in good agreement with the flutter velocity
11.32 m/s computed by NASTRAN (see [28] and [29]), where no gap was considered
and the linear theory was used. The use of the Spalart Allmaras model in the numerical
simulations results in the lower flutter velocities and by increasing the gap width the
flutter velocities are getting lower. We should note here that for the gap shape considered
(see Fig. 2) it is impossible to simulate properly the cases for zero or very narrow gaps due
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Figure 6: Airfoil with gap 0.54%: Functions h(t), α(t), β(t) (left), their spectra (middle) and phase diagrams
(right) for k−ω (full line) and Spalart-Allmaras turbulence model (dashed line) and far-field airflow velocity 11
m/s.

to a technically limited maximum of the angle for the flap rotation and related meshing
problems due to contacts of the moving profile and flap surfaces.

Comparison of the presented finite element method with MSC.NASTRAN compu-
tations is summarized in Table 1. It shows the vibration frequencies for all three dis-
placements h(t), α(t), β(t) for a low far-field flow velocity and the critical flutter velocity
together with the corresponding frequency computed by the presented finite element
method, compared with the NASTRAN computations.

6.2 Numerical simulation of post flutter behaviour with large vibration
amplitudes

Up to now, the vibration amplitudes in all examples presented did not exceed extremely
high values as can be encountered for the far-field flow velocities higher than the flut-
ter velocity. Such example is presented in Figs. 11-14 for the far-field velocity U∞ = 11
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Figure 7: Airfoil with gap 0.54%: Functions h(t), α(t), β(t) (left), their spectra (middle) and phase diagrams
(right) for k−ω (full line) and Spalart-Allmaras turbulence model (dashed line) and far-field airflow velocity 12
m/s.

m/s and the gap 6.95%. The vibration amplitude for the flap is growing up to nearly 40
degrees when the numerical simulation failed due to a large computational mesh defor-
mation. The corresponding computed velocity flow fields around the fluttering airfoil
are shown in Figs. 12-14 at several time instants marked in Fig. 11. The shown velocity
is defined as the magnitude of the velocity related to the far-field velocity. It is possible
to see clearly the flow separation on the flap surface, especially on the detailed snapshots
viewing the velocity flow field around the flap.

7 Conclusion

The paper was concerned with the numerical solution of airfoil vibrations induced by
turbulent flow. The motion of the airfoil with three degrees of freedom is described by
a system of three second-order nonlinear ordinary differential equations for the vertical
displacement and rotation angles of the main airfoil body and the flap. The flow is mod-
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Figure 8: Functions h(t), α(t), β(t) computed by the Spalart-Allmaras (dashed line) and k−ω (solid line)
turbulence models for the far-field velocity 10m/s and the gaps: 0.54% (left), 3.74% (middle) and 5.58%
(right).

Figure 9: Aerodynamic damping versus far-field flow velocity for the gaps of the width 0.54%, 3.74% and 5.28%.
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Figure 10: Flutter velocity computed by NASTRAN (∆) and by the developed method using the Spalart-Allmaras
(dashed line) or k−ω turbulence model (full line) in dependence on the gap between the airfoil and the flap.
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Figure 11: Functions h(t), α(t), β(t) computed by the k−ω model for U∞=11 m/s and the gap width 6.95%.

elled by the incompressible Reynolds averaged Navier-Stokes equations (RANS) with
the Spalart-Allmaras and k−ω turbulence models.

The developed method is based on several important ingredients:

• second-order BDF time discretization and the space discretization by the FEM for
the solution of the RANS system coupled with the partial differential equations
describing the turbulence models,

• SUPG and div-div stabilization of the FEM for the RANS equations,

• SUPG and discontinuity capturing stabilizations of the FEM for the turbulence
models,

• construction of the ALE mapping and the ALE velocity,

• algorithms for the realization of the solution of turbulent flow and of the fluid-
structure interaction coupling.

Numerical experiments proved that the developed technique is robust with respect
to the magnitude of the Reynolds number and allows the simulation of airfoil vibrations
with large amplitudes.

The results of the numerical simulation show that the flutter stability boundary of the
airfoil with three degrees of freedom can be sensitive to the gap width between the flap
and the main airfoil lifting surface. This is caused by an interaction of the main airstream
with the airflow through the gap. This aside flow influences the vortex shedding at the
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Figure 12: Velocity distribution around the fluttering profile for U∞ =11 m/s computed by the k−ω model at
several time instants marked in Fig. 11 including a detail around the flap. Part I.
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Figure 13: Velocity distribution around the fluttering profile for U∞ =11 m/s computed by the k−ω model at
several time instants marked in Fig. 11 including a detail around the flap. Part II.
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Figure 14: Velocity distribution around the fluttering profile for U∞ =11 m/s computed by the k−ω model at
several time instants marked in Fig. 11 including a detail around the flap. Part III.

airfoil trailing edge, the limit cycle oscillation amplitudes and the critical flutter velocity.
However, the results have to be accepted with a caution, because the critical flutter flow
velocity of the system studied was very low and the influence of the flow inside the gap
on the aeroelastic behavior of the airfoil can be reduced in cases of higher far-field airflow
velocities.

The airflow transition to the turbulence on the profile surface as well as the flow
separation is influenced by the airfoil vibration. The k−ω turbulence model corresponds
better to the NASTRAN computation of the critical flutter velocity and this turbulence
model seems better than the Spalart Allmaras model also for numerical simulation of the
post flutter behavior of the system when the vibration amplitudes, especially for the flap
rotation, are large.
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There are several subjects of a further research:

• comparison of computational results with wind-tunnel experiments,
• increase of the speed of computational processes,
• extension to the numerical simulation of compressible flow,
• theoretical analysis of qualitative properties of the developed numerical technique.
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