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Abstract. We propose a new semi-implicit level set approach to a class of curvature
dependent flows. The method generalizes a recent algorithm proposed for the motion
by mean curvature where the interface is updated by solving the Rudin-Osher-Fatemi
(ROF) model for image regularization. Our proposal is general enough so that one can
easily extend and apply the method to other curvature dependent motions. Since the
derivation is based on a semi-implicit time discretization, this suggests that the numer-
ical scheme is stable even using a time-step significantly larger than that of the corre-
sponding explicit method. As an interesting application of the numerical approach, we
propose a new variational approach for extracting limit cycles in dynamical systems.
The resulting algorithm can automatically detect multiple limit cycles staying inside
the initial guess with no condition imposed on the number nor the location of the limit
cycles. Further, we also propose in this work an Eulerian approach based on the level
set method to test if the limit cycles are stable or unstable.
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Key words: Numerical methods for PDEs, level set method, dynamical systems, flow visualiza-
tion.

1 Introduction

Curvature dependent flows are interesting not only mathematically but also computa-
tionally. Numerically, the motion of a parametrized curve can be determined by solv-
ing the corresponding ordinary differential equation (ODE) for each discretized point
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on the curve. However, as the curve evolves, such explicit representation might require
re-meshing to obtain a better interface sampling. And worst, it might also need careful
numerical surgery if there is a topological change when the curve splits into multiple dis-
joint components. Another class of numerical algorithms is implicit methods based on
the level set approach, including the approach in [44] by regularizing the curvature term
using the Laplacian of the level set function, a modified MBO approach [12] which gen-
erates appropriate motion by diffusion, and the variational approach in [7,8] by applying
the ROF functional [40] from the image processing community.

In this paper, we propose a new semi-implicit scheme for computing a class of curva-
ture dependent evolutions of a codimension-one surface in the level set formulation. We
consider the evolution of the level set equation

φt= |∇φ|vn(κ)= |∇φ|vn

[

∇·

(

∇φ

|∇φ|

)]

, (1.1)

where the normal velocity vn(κ) defined on the interface satisfies vn(κ)κ ≥ 0. Mathe-
matically, this constraint on the normal velocity gives a stability condition in the curve
evolution. To see this, one can show that (for example in [41]) if α(s) denotes the arclength
of a curve γ(s;t)={(x(s;t),y(s;t)) : t≥0} parametrized by the parameter s at a given time
t, then we have dα= g(s;t)ds where g(s;t)=

√

x2
s +y2

s and

gt(s;t)=−g(s;t)vn(κ)κ .

Therefore, the condition vn(κ)κ ≥ 0 actually imposes a condition that the curve should
collapse under its evolution in time.

Our approach is developed based on a regularization technique. However, unlike the
regularization by a standard Laplacian as in the approach in [44], we propose to regu-
larize the geometrical flow by adding and subtracting a curvature term. Applying the
algorithm to the motion by mean curvature, we will show that our scheme reduces to
the variational functional in [7, 8]. From this point of view, our method can be regarded
as a generalization of [7, 8]. However, unlike these approaches, our interpretation allows
us to easily extend the algorithm to deal with a much wider class of curvature depen-
dent flows. Moreover, since our approach is developed based on a semi-implicit time-
discretization, the resulting numerical method has a relatively large time-step size. Even
though we do not have any theoretical estimate on the required stability condition since
the regularization is in fact a nonlinear one, we find that the numerical solution gives a
stable evolution of the interface with a marching step significantly larger than the one by
a corresponding explicit scheme. This interesting property has not yet been reported in
the work of [7, 8] which is solely based on the property of the ROF functional.

As an interesting and important application of the proposed algorithm, we develop
and apply a variational method for extracting invariant manifolds in dynamical systems.
One kind of important invariant manifolds is the Lagrangian coherent structures (LCS).
The main idea in determining the LCS is to partition the space-time domain into different
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regions according to a Lagrangian quantity advected along with passive tracers. One of
many possible Lagrangian quantities is the finite time Lyapunov exponent (FTLE) [18,
19, 42]. Numerically, the first step to compute the FTLE is to move particles in the flow
for a period of time and obtain the flow map which takes the initial particle location to
its arrival location. Mathematically, the motion of these particles in the extended phase
space satisfies a given dynamical system

ẋ(t)=u(x(t),t) (1.2)

with a given Lipschitz velocity field u : R
d×R →R

d and an initial condition x(t0) = x0.
We define the flow map Φ

T
t0

: R
d →R

d to be the mapping which takes the point x0 to the

particle location at the final time t = t0+T, i.e. Φ
T
t0
(x0) = x(t0+T) with x(t) satisfying

(1.2). Then the FTLE is computed from the Jacobian of the resulting flow map. Based on
the level set method [38] and the backward phase flow method [29], we have developed
in [28] numerical methods for moderate to long time FTLE computations which lead to
a more efficient computation of FTLE. Developed based on those algorithms in [27, 28],
we have recently proposed in [47] an efficient Eulerian numerical approach to extract
invariant sets in a continuous dynamical system in the extended phase space (the x−t
space). We have extended the idea of ergodic partition and have proposed a concept
called coherent ergodic partition for visualizing ergodic components in a continuous flow.
Another Eulerian method to study dynamical systems can be found in [48].

In this paper, we are going to extend these Eulerian approaches to extract another
kind of invariant manifolds in the flow. In practice, one of the most widely studied in-
variant manifolds is still the limit cycle in a dynamical system, likely because of the second
part of the Hilbert’s XVI-th problem [21]. The problem asked for both the number and
the location of limit cycles in a two dimensional dynamical system with polynomial vec-
tor fields of degree-n. Recent theoretical development and review on the problem can
be found in [11, 22], and thereafter. Even though there is still no definitely theoretical
answer to the original problem, several numerical approaches have been proposed to ap-
proximate the location of such invariant set. For example, [32] has proposed a variational
approach for limit cycle extraction by minimizing the functional

min
γ(s)

∫

s
‖γ′(s)×u(γ(s))‖2ds (1.3)

with respect to the curve γ(s), which aims to determine a curve γ(s) such that its tangent
directions ally with the velocity field. Numerically, the parametrized curve γ(s) is first
discretized and then the functional (1.3) is minimized using the gradient descent with an
initial guess of the limit cycle. Such approach is effective when there is only one single
limit cycle enclosed by the initial guess. When there are several disjointed limit cycles in
the domain of interest, surgery has to be done numerically to the parametrization γi in
order to take care of the interface splitting in the gradient descent. More discussions can
be found in some similar applications in image segmentation using the snake model [24]
or the geodesic active contour model [6].
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In this work, we follow a similar approach but propose a new variational model for
extracting the limit cycles based on the level set method. The idea is to introduce a level
set function whose zero level set implicitly represents the limit cycle, while the evolu-
tion of the zero level set is done implicitly by solving a corresponding level set equation.
To develop a computationally efficient method for the resulting variational formulation
based on the level set method and the gradient descent, we incorporate the semi-implicit
solver by treating the curvature term implicitly. The resulting algorithm can automat-
ically detect multiple limit cycles staying inside the initial guess. One does not impose
any condition on the number nor the location of the limit cycles. Further, we also propose
in this work an Eulerian approach to test the stability of the limit cycles based on the level
set method.

The rest of the paper is organized as follows. In Section 2, we will first summarize
various main approaches to the motion by mean curvature. We will compare these ap-
proaches and will conclude that they are all related through variational formulations. In
Section 3.1, we will give our proposed semi-implicit scheme for solving the motion by
mean curvature. In Section 3.2, we will generalize the numerical approach in Section 3.1
to any other curvature dependent flow. As an interesting application to the algorithm,
we propose a new variational formulation to extract limit cycles in a dynamical system in
Section 4. Extensive numerical experiments will finally be given in Section 5 to demon-
strate the stability and effectiveness of the proposed method.

2 Previous approaches to the motion by mean curvature

We first concentrate on the level set equation for the motion by mean curvature given by

φt= |∇φ|∇·

(

∇φ

|∇φ|

)

= |∇φ|κ , (2.1)

where κ=∇·(∇φ/|∇φ|) is the mean curvature [37]. This nonlinear equation can be easily
solved by the simple explicit scheme given by

φk+1−φk

∆t
= |∇φk|∇·

(

∇φk

|∇φk|

)

, (2.2)

where all derivatives are approximated by central difference. Since the curvature term
involves the second derivative of the level set function, the time step constraint for this
explicit scheme is of order ∆t =O(∆x2). This results in a computationally inefficient
numerical method.

If φk is reinitialized at each intermediate step such that |∇φk|=1, (2.2) can be reduced
to the heat equation

φk+1−φk

∆t
=∆φk .
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This approach has been discussed in [37] and a finite element method has also been im-
plemented in [25].

To relax the stability constrain in the explicit scheme, one might use the following
simple semi-implicit scheme

φk+1−φk

∆t
= |∇φk|∇·

(

∇φk+1

|∇φk|

)

. (2.3)

However, to update φk+1 from φk for each k, one has to reconstruct a sparse symmetric
positive definite matrix and invert the resulting large system of linear equations. This
could be time-consuming in practice.

The discussion in the rest of this section is definitely not meant to be a complete one
but we would like to concentrate the discussion only on methods related to the one we
are going to propose. For instance, we are not going to discuss the variational approach
in [1], the original MBO method based on the diffusion of a Heaviside function [5, 33], a
split Bregman approach for crystalline mean curvature flow [35], and etc.

2.1 Regularization by the Laplacian

To relax the time step restriction in the explicit scheme for the motion by the mean curva-
ture, [44] has proposed to regularize the flow using the Laplace operator by adding and
subtracting the Laplacian of the level set function to the evolution equation. In particular,
the paper first rewrites the evolution (2.1) as

φt=∆φ−(∆φ−|∇φ|κ)=∆φ−n·∇(|∇φ|)=∆φ−N (φ), (2.4)

where N (φ) = n·∇(|∇φ|) is a nonlinear term which measures the difference between
the curvature motion term and the linear Laplacian. Following usual explicit-implicit
methods or usual semi-implicit methods, the paper proposes to treat the linear part of
(2.4) implicitly and the nonlinear part explicitly. This gives

φk+1−φk

∆t
=∆φk+1−N (φk)

with ∆t≫O(∆x2) and therefore φk+1 can be obtained by

φk+1=(I−∆t∆)−1[φk−∆tN (φk)]. (2.5)

Since the operator (I−∆t∆) is linear, one can invert it easily using FFT. The importance
of this approach is that it regularizes the nonlinear evolution by a linear operator which
can be efficiently solved.

A similar development has recently been proposed in the phase-field community. For
example, to stabilize the evolution of the Cahn-Hilliard equation, [20] has also proposed
to add-and-subtract a term O(∆φ). Then the paper treats one of them implicitly while the
other one explicitly. Stability and convergence of the approach have also been discussed
in that paper.
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2.2 Diffusion generated motion

A diffusion generated scheme is given in [12] using signed distance functions. The idea
is to minimize the functional

EDGM(φ)=
∫

|∇φ|2+
1

∆t
|φ−d(φk)|2, (2.6)

where d(φk) represents the signed distance function obtained by reinitializing φk, i.e.
|∇d(φk)|= 1 such that φk and d(φk) share the same zero level set. Numerically, various
ways can be done to determine d(φk) from φk. A simple way is to solve the following
partial differential equation (PDE)

∂φ̃

∂τ
+sgn(φk)(|∇φ̃|−1)=0

in the artificial time direction τ with φ̃(x;τ=0)=φk. Higher order WENO-type methods
have been proposed to accurately solve this reinitialization equation [23].

2.3 Rudin-Osher-Fatemi (ROF) model

Relating to (2.6) is the approach in [7, 8] given by

EC(φ)=
∫

|∇φ|+
1

2∆t
|φ−d(φk)|2 , (2.7)

which replaces the Tikhonov regularization by the total variation (TV) norm of φ. The
functional relates to the so-called Rudin-Osher-Fatemi (ROF) model for image restoration
[40]. Given an observed noisy image f , one regularizes it by looking for a bounded
variation (BV) function u such that it solves

min
u

∫

|∇u| (2.8)

with ‖u− f‖2=σ2 representing the variance of the Gaussian white noise. The semi-norm
(2.8) is called the TV norm. In practice, one introduces a Lagrange multiplier λ and
obtains the following ROF functional

EROF(u)=
∫

|∇u|+
λ

2
|u− f |2 . (2.9)

There are extensive successful results in the image processing community based on this
TV-regularization. Tremendous research has been stimulated since the paper [40] which
has proposed to use such norm for image regularization, see for example [4, 10, 37] and
thereafter.

[7, 8] has proposed to minimize the functional (2.7) at any intermediate time t = tk

such that the Lagrange multiplier λ in the ROF model is chosen to be 1/∆t and the ob-
served image f is the signed distance function of φk. Therefore, the method alternatively
minimizes (2.7) and reinitializes the minimizer φk+1 to obtain d(φk+1). A convergence
proof of this numerical scheme is given in [7].
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2.4 Comparison of various approaches

We note that all these approaches are related to variational functionals with similar forms.
It is obvious for the last two approaches (2.6) and (2.7) and we do not further comment on
this here. For the approach proposed in [44] based on the regularization using a Lapla-
cian, the evolution (2.5) can actually be rewritten as the following minimization problem

ES(φ)=
∫

|∇φ|2+
1

∆t
|φ− f (φk)|2 (2.10)

with f (φ)=φ−∆tN (φ). Given φk, one minimizes this functional to get φk+1. We can see
that the minimization problem (2.10) is the same with (2.6) except the input function f .

Moreover, there is another relationship between the functionals (2.6) and (2.10). We
have observed that in the case if [44] reinitializes any intermediate solution φk such that
|∇φk|=1, we have

N (φk)=n·∇(|∇φk|)=n·∇(1)=0

and so f (φk) = φk−∆tN (φk) = φk = d(φk). This implies that the scheme (2.10) can be
interpreted as a generalization to (2.6).

To end this section, we consider again the algorithm for (2.10). To update φk+1 from
φk, we first solve the nonlinear evolution equation

φτ+N (φ)=0 (2.11)

using an explicit method for one single time step using ∆τ≫O(∆x2). This gives f (φk).
The next step is to plug in this intermediate solution to the functional (2.10). The min-
imizer to the energy then gives φk+1. Note that the magnitude ∆t in obtaining f (φk)
clearly violates the corresponding stability condition for the evolution equation (2.11).
However, such unstable evolution is then regularized by the Tikhonov functional to give
a stable approximation to the motion by mean curvature (2.1).

3 A fast semi-implicit method

3.1 Motion by mean curvature

In this section, we introduce a semi-implicit scheme for solving the motion by mean cur-
vature in the level set method. At each step, we reformulate the iteration as a convex
optimization problem which can be solved efficiently using any recent fast algorithms.
These include the second order cone programming method [14], the fixed-point continu-
ation approach [17], methods based on the Bregman iterations [15,36], other primal-dual
approach or the Arrow-Hurwicz method [3,9,26,50], the primal-dual approach [9,13,39],
and etc.

Let ∆t≫O(∆x2) be a given time-step at time t= tk. To approximate the solution at
t= tk+1, we propose to regularize the flow by adding and subtracting a curvature term,
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i.e. we consider

φt=β∇·

(

∇φ

|∇φ|

)

−β∇·

(

∇φ

|∇φ|

)

+|∇φ|∇·

(

∇φ

|∇φ|

)

,

for some constant β> 0 which will be further discussed later this section. Numerically,
we treat the first curvature term implicitly and the second one explicitly. This gives the
following regularized discretization

φk+1−φk

∆t
=β∇·

(

∇φk+1

|∇φk+1|

)

−β∇·

(

∇φk

|∇φk|

)

+|∇φk|∇·

(

∇φk

|∇φk|

)

, (3.1)

where the term |∇φ| in the denominator is numerically regularized by
√

φ2
x+φ2

y+ǫ2.

This discretization can be reformulated as an energy minimization problem. For in-
stance, to determine φk+1 in (3.1), we minimize

∫

|∇φ|+
λ

2
|φ− f (φk)|2 (3.2)

for some constant β>0 with λ=(β∆t)−1 and

f (φ)=φ+∆t(|∇φ|−β)∇·

(

∇φ

|∇φ|

)

. (3.3)

We observe that the function f (φk) defined in (3.3) can be interpreted as an interme-
diate solution to

φτ =(|∇φ|−β)∇·

(

∇φ

|∇φ|

)

(3.4)

obtained by marching one explicit forward Euler step with the time step ∆τ ≫O(∆x2).
Numerically, even if (3.4) is well-posed (which might not be true if β≫1), one does not
expect the corresponding evolution

φk= f (φk−1)= f 2(φk−2)= ···= f k(φ0)

would give a stable approximation to (3.4) (not (2.1)) at time t= tk. However, if the solu-
tion is then regularized by the ROF functional with a suitable β, the numerical algorithm
would result in a good approximation to the motion by mean curvature.

Now, we consider a way to determine the positive quantity β. The main idea of
adding and subtracting the term βκ in (3.1) is to extract off a part from the nonlinear
term |∇φk|κ which will be treated implicitly. Numerically we propose to determine β by
minimizing the right-hand side of equation (3.4) over Ω in the L2 sense, i.e. β is chosen
to solve the following optimization problem

min
β>0

∫

Ω

[

(β−|∇φk|)κ
]2
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which gives

β=

∫

Ω
|∇φk|κ2dx
∫

Ω
κ2dx

≥0.

To the best of our knowledge, this algorithm gives a new semi-implicit scheme for
the motion by mean curvature. However, the resulting algorithm might indeed relate to
some other developed methods. To see this, if one further reinitializes all intermediate
solutions to make the level set function φk a signed distance function, i.e. |∇φk|= 1, we
have β= 1 and f (φk) = d(φk). Therefore, (3.2) reduces to the same algorithm proposed
in [7, 8].

Indeed there is an advantage of reinitializing all intermediate solutions in our deriva-
tion. Since all one cares is the zero level set, one can actually concentrate all computa-
tional power within a small neighborhood of {x : φk(x)=0}. Instead of minimizing (2.7)
over the whole computational domain Ω, one can first determine a computational tube
Γ

k = {x : |φ(x;tk)|<γ} for each time step tk and then minimize the functional (2.7) over
only Γ

k rather than Ω. This leads to the following algorithm.

Algorithm 3.1: Local Level Set Semi-Implicit Method for the Motion by Mean Curvature

1. Initialization. Given γ=O(∆x), ∆t≫O(∆x2) and a signed distance function φ(x;t0) with the
initial interface given by {x : φ(x;t0)=0}.

2. Iteration. For k=0,1,··· ,N

(a) Determine the computation tube Γ
k ={x : |φ(x;tk)|<γ}.

(b) Solve the ROF functional (2.9) with λ=(∆t)−1 and f =φ(x;tk) in Γ
k.

(c) Reinitialize the solution for a few steps to get φ(x;tk+1).

Although this local level set method can speed up the whole computational complex-
ity by a factor of N where N is the number of mesh points in one dimension, the choice
of the radius of the tube γ could depend on ∆t and also the number of steps in the reini-
tialization process. As a result, we leave it as a future work and we are going to use the
following full level set version in this paper instead.

Algorithm 3.2: Full Level Set Semi-Implicit Method for the motion by mean curvature

1. Initialization. Initialize ∆t ≫O(∆x2) and a signed distance function φ(x;t0) with the initial
interface given by {x : φ(x;t0)=0}.

2. Iteration. For k=0,1,··· ,N

(a) Minimize the ROF functional (3.2) with λ=(β∆t)−1 and f = f (φk) given by (3.3).

(b) Reinitialize the solution for a few steps to get φ(x;tk+1).
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Even though the approach in this section is only a small generalization of the one
proposed in [7, 8], we have introduced a different derivation from the point of view of
a semi-implicit scheme for the equation. As we will see later in the next section, such
derivation provides a simple and natural way to extend the regularization technique to a
wide class of curvature dependent flows.

3.2 Motions depending on curvature

In this section, we are going to extend Algorithm 3.2 to other curvature dependent mo-
tions. In the level set formulation, the evolution of the interface under the flow vn=vn(κ)
(assuming that vn ·κ ≥ 0) can be computed by solving the level set equation (1.1). Gen-
eralizing the above approach, we regularize this evolution by adding and subtracting a
curvature term with some weight β>0. This gives

φt= |∇φ|vn(κ)=βκ−βκ+|∇φ|vn (κ).

Numerically, we treat the first curvature term implicitly and the second one explicitly.
Therefore, φk+1 can be determined by minimizing the same functional (3.2) with λ =
(β∆t)−1 and

f (φ)=φ+∆t

{

|∇φ|vn

[

∇·

(

∇φ

|∇φ|

)]

−β∇·

(

∇φ

|∇φ|

)}

.

Once again, the amount of the regularization (i.e. the magnitude of β) is chosen to min-
imize the L2 difference in the update formula in f (φ), i.e. we minimize the following
function with respect to β

min
β>0

∫

Ω

[|∇φ|vn−βκ]2 .

This leads to

β=

∫

Ω
|∇φ|vn(κ)κdx
∫

Ω
κ2dx

,

which is always positive if vn(κ)κ>0.

4 Application to limit cycles extraction

As an important and interesting application of the proposed semi-implicit scheme, we
are going to develop a fast numerical approach to determine both the number and the
location of limit cycles of a dynamical system (in which the velocity field is not necessary
to be in the form of a polynomial as described in the original Hilbert’s problem) in a finite
computational domain.

Definition 4.1. We consider a planar dynamical system given by x′(t) = u(x(t)) where
u :R2→R

2 is a smooth function. A closed trajectory x(t) satisfying the system is called a
limit cycle if at least one other trajectory spirals into it either as time approaches positive
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infinity or as time approaches negative infinity. If all nearby trajectories spiral into this
closed curve as time goes to infinity (negative infinity), we call it a stable (an unstable)
limit cycle.

Our idea is developed based on [45, 46] for geometric surface processing via normal
maps. Assuming that a closed curve is implicitly represented as the zero level set of a
function φ(x) : Ω→R, [45, 46] have proposed to iteratively regularize the following two
steps:

1. Obtain the normal vector field nk+1 with the level set function φk fixed by minimizing

En(n)=
∫

Ω

G(|(∇n)[I−P(φk)]|2),

where I is the identity matrix, P is the projection matrix, and G′(x) is the edge stopping function.

2. Determine the level set function φk+1 with the normal vector field nk+1 fixed by minimizing

Eφ(φ)=
∫

Ω

|∇φ|

(

1−
∇φ

|∇φ|
·nk+1

)

.

We concentrate on the second energy Eφ(φ) which measures the discrepancy between the

regularized normal vector field nk+1 and the normal of the level set from the function φ.
It is clear that the energy is always positive and is minimized if the normal vector nk+1

pointing the same direction as the unit vector ∇φ/|∇φ|.
In this paper, we follow a similar approach as in the second step of the iterative pro-

cedure. We want to determine a curve γ(s) such that the tangent is parallel to the given
normalized velocity field u, i.e. the normal vector is perpendicular to u with ‖u‖=1. We
propose the following variational formulation of finding a curve γ which minimizes

E(γ)=
∫

γ

(

ǫ+
∣

∣

∣
(γ′(s))⊥ ·u

∣

∣

∣

)

ds.

When the curve γ is represented implicitly using the zero level set of a function φ, we
obtain

E(φ)=
∫

Ω

δ(φ)|∇φ|(ǫ+|n·u|),

where n=∇φ/|∇φ| is the normal defined along each level curve. The term |n·u| enforces
that the normal vector on the curve is perpendicular to the vector field u everywhere.
This implies that this closed curve coincides with a certain streamline of u and hence it is
a candidate for limit cycles. The positive regularization parameter ǫ in the functional is
chosen to regularize the total length of the curve γ and so the interface will shrink toward
the limit cycles if they exist. As a result, given an initial guess (a closed curve), we expect
that the zero level set of φ will converge to and will coincide with all limit cycles inside.

The optimality condition for minimizing this energy is given by

−δ(φ)∇·

[

ǫ
∇φ

|∇φ|
+

(

∇φ·u

|∇φ·u|

)

u

]

=0
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in the domain Ω with the boundary condition on ∂Ω given by

[

ǫ
∇φ

|∇φ|
+

(

∇φ·u

|∇φ·u|

)

u

]

·ν=0

with ν the outward normal of the boundary. To minimize the energy E(φ), we apply
the variational level set approach in [49] and numerically solve the following gradient
descent equation

φτ =−
dE(φ)

dφ
=ǫ|∇φ|∇·

∇φ

|∇φ|
+|∇φ|∇·[S(∇φ·u)u] , (4.1)

where S(x)= x/|x|.
Since this gives a nonlinear equation, explicit schemes will not be satisfactory because

we need to obtain the steady state solution for any given initial condition. Again we
apply the semi-implicit scheme in Section 3 and propose to regularize the evolution by
adding and subtracting a curvature term. This gives

φτ =βκ−βκ+ǫ|∇φ|κ+|∇φ|∇·[S(∇φ·u)u] .

Numerically, we treat the first curvature term implicitly and all other terms on the right-
hand side explicitly. Then φk+1 is determined by minimizing the functional (3.2) with
λ=(β∆t)−1 and

f (φ)=φ+∆t{(ǫ|∇φ|−β)κ+|∇φ|∇·[S(∇φ·u)u]} .

Minimizing the L2 difference in the update formula in f (φ), we obtain

β=

∫

Ω
κ|∇φk|

{

ǫκ+∇·
[

S(∇φk ·u)u
]}

dx
∫

Ω
κ2dx

.

In the above construction, note that the method only tries to determine a closed curve
that follows a streamline of u. The algorithm does not distinguish if the corresponding
limit cycle is a stable one, an unstable one, or neither. Here, we first propose a simple
Eulerian method to test if the zero level set gives an unstable limit cycle. Then we will
extend the approach for stable cycles.

Let Fτ2
τ1

: R
2 → R

2 be the flow map of the velocity field u, i.e. a particle located at
x at time τ1 will be located at Fτ2

τ1
(x) at time τ2. Let φ∞(x) be the steady state solution

to equation (4.1) and ψ(x,τ) = φ∞(F0
τ (x)) which denotes the level set value at the take-

off location corresponding to its arrival location x at time τ. Since the value ψ(x,τ) is
constant along a particle trajectory, the material derivative of ψ(x,τ) equals to zero, i.e.

Dψ(x,τ)

Dτ
=0,
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which implies the following level set equation, or the Liouville equation,

∂ψ(x,τ)

∂τ
+(u·∇)ψ(x,τ)=0 (4.2)

with the initial condition ψ(x,0)= φ∞(x). If the limit cycle is an unstable one, particles
near the zero level set at time τ = 0 will flow outward. Therefore, for any τ > 0, we
will be able to find a tube Γδ = {|φ∞(x)| ≤ δ} around the zero level set of φ∞(x) so that
|ψ(x,τ)|< |ψ(x,0)| for any x ∈ Γδ. This property provides a nice numerical test for the
stability of the limit cycle. We solve the level set equation (4.2) for some τ>0 and try to
determine the set Γδ for some constant δ>0. If

1

|Γδ|

∫

Γδ

∣

∣

∣

∣

ψ(x,τ)

ψ(x,0)

∣

∣

∣

∣

dx<1,

where |Γδ|=
∫

Γδ
dx is the area of the tube Γδ, we conclude that the limit cycle is an unstable

one.
To check if a limit cycle is a stable one, we consider the following lemma.

Lemma 4.1. Γ is a stable limit cycle of the planar system x′(t)=u(x(t)) if and only if it is an
unstable limit cycle of the system x′(t)=−u(x(t)).

Therefore, if the limit cycle is stable, it becomes unstable if we reverse the time direc-
tion and so we propose to check the quantity

1

|Γδ|

∫

Γδ

∣

∣

∣

∣

ψ(x,−τ)

ψ(x,0)

∣

∣

∣

∣

dx

for some δ,τ > 0. If it is less than 1, we conclude that the limit cycle is a stable one. A
summary of this algorithm is given here.

Algorithm 4.1: Classification of the limit cycle

1. Initialize ψ(x,0)=φ∞(x). Pick δ>0.

2. Solve the level set equation (4.2) both forward in time and backward in time to obtain ψ(x,τ)
and ψ(x,−τ).

3. Determine
1

|Γδ|

∫

Γδ

∣

∣

∣

∣

ψ(x,τ)

ψ(x,0)

∣

∣

∣

∣

dx and
1

|Γδ|

∫

Γδ

∣

∣

∣

∣

ψ(x,−τ)

ψ(x,0)

∣

∣

∣

∣

dx .

4. If the first quantity is less than 1, then the limit cycle is an unstable one. If the second quantity
is less than 1, then the limit cycle is stable. Otherwise, the test is inconclusive.

Numerically, the level set equation (4.2) can be solved by any well-established robust
and high order accurate numerical methods, such as WENO5-TVDRK2 [16, 30, 43]. For
moderate to large τ, it is also possible to apply the backward phase flow method devel-
oped in [28] in order to obtain a more computational efficient method.
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5 Examples

5.1 Motion by mean curvature

In the first example, as a benchmark, we consider the motion by mean curvature. We
consider the evolution of a circle under the motion. The exact radius of the solution can

be computed explicitly and is given by r(t) =
√

r2
0−2t, where r0 is the initial radius of

the circle and is chosen to be 0.25. Since the circle shrinks and disappears at t=0.5r2
0, we

compute the solution only up to t= t f = 0.4r2
0. The final radius of the circle is given by

r(t f )=0.11180.

Fig. 1(a) and (b) show the solutions at various time levels and on various mesh sizes,
but with a fixed ∆t given by ∆t= t f /32. The finest solution is computed using a mesh
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Figure 1: (Example 5.1) Motion by mean curvature of an initial circle of radius r0 = 0.25 with t f = 0.4r2
0.

Solutions at (a) t= t f /2 and (b) t= t f with a fixed ∆t= t f /32 and different ∆x’s. For ∆x=1/32, ∆t=0.8∆x2.

For ∆x=1/64, ∆t=3.2∆x2. For ∆x=1/128, ∆t=12.8∆x2. Solutions at (c) t= t f /2 and (d) t= t f with a fixed

∆x= 1/128 and different ∆t’s. For ∆t= t f /32, ∆t= 12.8∆x2. For ∆t= t f /64, ∆t= 6.4∆x2. For ∆t= t f /128,

∆t=3.2∆x2. The exact solution is plotted using small blue circles.
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Figure 2: (Example 5.1) Convergence test on the numerical scheme for the motion by mean curvature of an

initial circle of radius r0 =0.25 with t f =0.4r2
0.

of size ∆x = 1/128 (equivalent to ∆t = 12.8∆x2) which clearly violates the usual time
step restriction for a usual explicit method. In Fig. 1(c) and (d), we demonstrate the
convergence behavior for the time refinement. We have fixed the underlying mesh in
these figures with ∆x=1/128 but vary the number of steps marching to the same t= t f .
For the least number of time iterations, we choose ∆t = t f /32 which is equivalent to

∆t= 12.8∆x2. These figures show clearly that Algorithm 3.2 is stable for large time steps
which violates the stability condition in typical explicit methods.

To study the order of convergence, we first fix ∆x=1/128 and vary ∆t from 0.2
28 to 0.2

211

to calculate the L∞ error of our numerical result at t= t f defined by

E=max
θ

|r∆x(θ)−rexact| .

Fig. 2(a) shows the variation of error with respect to the change of ∆t. It is plotted after
taking logarithms of both quantities and hence the slope of the line denotes the order
of convergence with respect to ∆t which is approximately 1 (1.1525). In Fig. 2(b), we let
∆t=1.6∆x2 and vary ∆x from 1/32 to 1/256 and the slope is about 2 (2.5336).

As a comparison, we have also shown some results by the explicit scheme in Fig. 3.
In Fig. 3(a), we have fixed ∆x=1/64 and have used various ∆t’s in the computations. We
find that the solution becomes unstable when we increase ∆t to t f /64 which corresponds

to ∆t = 1.6∆x2. In Fig. 3(b), we fix ∆x = 1/128 and, once again, the solution becomes
unstable when we increase ∆t over 1.6∆x2. As a result, our semi-implicit scheme has
greatly relaxed the time-step restriction compared to the explicit scheme.

5.2 Affine invariant motion by curvature

In this part we study the affine invariant motion by curvature [2,12,34] where the normal
velocity depends on the cubic root of the curvature, i.e.
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Figure 3: (Example 5.1) Motion by mean curvature of an initial circle of radius r0 =0.25 with t f =0.4r2
0 using

the explicit scheme. Solutions at t= t f with (a) ∆x = 1/64, (b) ∆x = 1/128 and different ∆t’s. The exact
solution is plotted using small blue circles.

φt= |∇φ|κ1/3 .

Like in Section 5.1, we first compute the evolution of a circle initially centered at
(0.5,0.5) of radius r0 = 0.25. The exact radius of the solution can be computed explicitly

and is given by r(t)=(r
4
3
0 −

4
3 t)

3
4 . We also compute the solution up to t f =0.4r2

0 =0.025.

Fig. 4(a) shows the solutions on various mesh sizes but with a fixed ∆t given by ∆t=
t f /32. In Fig. 4(b) we have fixed the underlying mesh with ∆x = 1/128 but vary the
number of steps marching to the same t= t f .
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Figure 4: (Example 5.2) Affine invariant motion by curvature of an initial circle of radius r0=0.25 with t f =0.4r2
0.

(a) Solutions at t= t f with a fixed ∆t= t f /32 and different ∆x’s. (b) Solutions at t= t f with a fixed ∆x=1/128
and different ∆t’s. The little blue circles correspond to the exact solution.
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Figure 5: (Example 5.2) Convergence test on the numerical scheme using the affine invariant motion by curvature

of an initial circle of radius r0 =0.25 with t f =0.4r2
0.

We have also tested the convergence of our numerical solution in Fig. 5 using ∆t=
1.2∆x2 and different ∆x. The slope is about 2 which implies that the error is second order
with respect to ∆x and first order with respect to ∆t.

Another interesting example is the evolution of a 3-folded star shape up to t= t f =

7.5×10−2. Fig. 6(a) shows the solutions at t= t f with the same time step ∆t= t f /64 but
different ∆x’s. We can see that the solutions remain stable even we have taken a large
time step of ∆t = 76.8∆x2 which clearly violates the expected stability condition for an
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Figure 6: (Example 5.2) Affine invariant motion by curvature of an initial 3-folded star shape with t f =7.5×10−2.

(a) Solutions at t= t f with a fixed ∆t= t f /64 and different ∆x’s. For ∆x=1/32, ∆t=1.2∆x2. For ∆x=1/64,

∆t=4.8∆x2. For ∆x=1/128, ∆t=19.2∆x2. For ∆x=1/256, ∆t=76.8∆x2. (b) Solutions at t= t f with a fixed

∆x= 1/128 and different ∆t’s. For ∆x= 1/32, ∆t= 38.4∆x2. For ∆x= 1/64, ∆t= 19.2∆x2. For ∆x= 1/128,
∆t=9.6∆x2.
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explicit scheme. In Fig. 6(b), we fix ∆x = 1/128 and then recompute the solution using
different ∆t’s so that the ratio of ∆t to ∆x2 ranges from 9.6 to 38.4. All these solutions do
not satisfy the expected stability condition of the explicit scheme.

5.3 Min-curvature flow

In this example, we consider the following min-curvature flow given by

φt= |∇φ|min(0,κ).

This flow has been proposed for surface regularization in image processing [31]. The
function vn is chosen so that the interface locally stays unmoved if the curvature is pos-
itive and it expands locally if the curvature is negative. The motion becomes stationary
when the curvature is everywhere non-negative, which gives the convex hull of the ini-
tial shape. The algorithm proposed in [12] requires that the normal velocity is an odd,
increasing, and Lipschitz function in κ. These requirements make it difficult for that par-
ticular scheme to be generalized for this nonlinear evolution.

Fig. 7 considers the evolution of an initial 3-folded star shape at different time levels
under this min-curvature flow for time up to t= t f =0.04. Similar to the previous exam-

ple, we have tested our algorithm using various ∆x and ∆t such that the ratio ∆t/∆x2

ranges from 0.32 to 5.12. In Fig. 8 we have listed some of them. For a relatively large ∆x
or a relatively large ∆t, the solution is not accurate at all since the convex region (κ>0) of
the interface could shrink in time (Fig. 8(a) with ∆x=1/8) and the concave region (κ<0)
of the interface could over-expand and form a convex region (Fig. 8(b) with ∆t= t f /32).
However, we do not see any instability in the evolution. The time step is chosen not ac-
cording to the stability condition (O(∆x2)), but according to the accuracy consideration.
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Figure 7: (Example 5.3) Min-Curvature flow of an initial 3-folded star shape with t f = 0.04 using ∆x= 1/128

and ∆t= t f /512. Evolution of the interface at t=0, t f /4, t f /2, 3t f /4, and t f plotted in dashed red, dashed
blue, solid black, solid red and solid blue, respectively.
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Figure 8: (Example 5.3) Min-Curvature flow of an initial 3-folded star shape with t f =0.04. (a) Solutions at t=t f

with a fixed ∆t= t f /128 and different ∆x’s. For ∆x=1/32, ∆t=0.32∆x2. For ∆x=1/64, ∆t=1.28∆x2. For

∆x=1/128, ∆t=5.12∆x2. (b) Solutions at t= t f with a fixed ∆x=1/128 and different ∆t’s. For ∆t= t f /256,

∆t=2.56∆x2. For ∆t= t f /512, ∆t=1.28∆x2. For ∆t= t f /1024, ∆t=0.64∆x2.

5.4 Computational time

To further look at the computational efficiency of the proposed numerical approach, we
compare the computational (CPU) time of the explicit scheme (2.2), the simple semi-
implicit scheme (2.3) and the proposed numerical approach. The numerical results are
obtained using a laptop computer with a 2.5 GHz Intel core i7 processor. Fig. 9(a) shows
the computational time for solving the motion by mean curvature on a fixed ∆x=1/128
but various ∆t’s. The blue solid line on the bottom is the computational time (in second)
for the simple explicit scheme. For ∆t > t f /256, the solution becomes unstable and so
we do not report the corresponding computational time here. The computational times
for the simple semi-implicit scheme (2.3) for different ∆t’s are shown using the red dash
line. The sparse matrix at each time step is constructed using the MATLAB sparse data
structure and is inverted using the backslash operator rather than any specific iterative
solver. The computational times for each iteration of both schemes depend only on the
mesh size, which implies that the CPU time is inversely proportional to ∆t. This explains
why the curve plotted in the log-log scale has slope approximately −1.

The computational time for the proposed scheme is shown using the black dash dot
line, in the middle of two curves. At each intermediate step, we propose to solve one
ROF functional to update the level set function using an iterative scheme. We agree that
it is indeed more expensive than an explicit update using (2.2) since iterative scheme
has to be used to minimize the ROF functional. In the current paper we are following
the first order primal-dual algorithm [9] which might not be the latest algorithm in the
field. Nevertheless, the proposed scheme is already faster than the simple semi-implicit
scheme (2.3). We expect that the proposed method can definitely be further improved
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Figure 9: (a) Total computational (CPU) time (in second) for the motion by mean curvature of the explicit
scheme (2.2), the simple semi-implicit scheme (2.3) and the proposed numerical approach vs ∆t using ∆x=
1/128. (b) Error in the final solution vs the total computational (CPU) time for various schemes using ∆x=
1/128. (c) Error in the final solution vs the total computational (CPU) time for various schemes using ∆x=
1/256. (d) Computational times (in second) for the affine invariant motion by curvature and the min-curvature
flow using the proposed numerical regularization approach.

later as the computational time of the ROF solver is further shortened. More importantly,
the computational time for the proposed algorithm does not increase linearly like the
explicit scheme and the simple semi-implicit scheme. The average CPU time for each
time iteration decreases as we decrease ∆t. This is because the level set function φk+1 is
more similar to φk for smaller ∆t, which implies that the number of iterations required
to minimize the ROF function is reduced. Therefore, the CPU time for each iteration is
reduced.

Another way to consider the efficiency of the proposed algorithm is to look at the
amount of computational time we spent to achieve certain accuracy in the solution. In
Fig. 9(b), we plot the infinity-error in the location of the zero level set versus the CPU time
for the data we have collected in (a). In order to achieve an accuracy of approximately
4×10−4, we found that the time we spent on the proposed scheme (using the current
ROF solver) is already shorter than that of the explicit scheme, and is also one order
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magnitude faster than that using the simple semi-implicit scheme. However, we have to
be careful interpreting these data when it involves measuring errors in the solution. In
particular, since the error in the solution is expected to be of order O(∆t+∆x2) and these
data are obtained on a fixed mesh ∆x= 1/128, we do not expect errors from the scheme
can be reduced indefinitely as we refine ∆t, i.e. increase the CPU time. This explains
for example why the blue solid line is not a straight line of slope −1. In Fig. 9(c), we
have repeated the calculations but on a mesh ∆x=1/256 and have obtained some similar
trends in the behavior of the numerical solutions.

We have also collected the computational times for the affine invariant motion by
curvature (the blue solid line) and the min-curvature flow (the red dash line), as shown
in Fig. 9(d). Similar to the motion by mean curvature, the computational time for the
affine invariant motion by curvature shows the same trend. As we decrease ∆t (while
fixing the final time), the CPU time increases but still slower than 1/∆t. Concerning the
min-curvature flow, on the other hand, we find that for a relatively large ∆t, the overall
computational time is longer. This is because the change in the solution is significant
and, therefore, the current ROF solver requires more iterations to achieve the required
accuracy.

5.5 Application to limit cycles extraction

In this section, we will apply the fast semi-implicit scheme to extract limit cycles of dif-
ferent planar dynamical systems as described in Section 4. The first example is taken
from [32] where the dynamical system is given by

ẋ1=−x2+x1(x2
1+x2

2−1),

ẋ2= x1+x2(x2
1+x2

2−1). (5.1)

It can be determined that x2
1+x2

2 =1 is a stable limit cycle by using the polar coordinates
transform. In this example, we use a circle of radius 1.5 as our initial condition. As shown
in Fig. 10, our numerical approach gives a solution (blue curve) which matches very well
with the exact solution (red curve).

Another example is the Van der Pol Oscillator and the corresponding dynamical sys-
tem is given by

ẋ1= kx2,

ẋ2=−kx1+ǫ(1−(kx1)
2)kx2 , (5.2)

where k is used to scale the axis and ǫ is a parameter which determines the shape of the
limit cycle. Fig. 11 shows the numerical solution to (5.2) with (a) k= 3, ǫ= 0.2, (b) k= 4,
ǫ = 0.5. In our numerical implementation, we have chosen ∆x = 1/64, ∆t = 0.8∆x2 for
Fig. 11(a) and ∆x=1/32, ∆t=2∆x2 for Fig. 11(b). As we can see, both of them match very
well with exact locations of the limit cycles.
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Figure 10: (Example 5.5) Numerical approximation to the limit cycle of (5.1). The blue closed curve is the

numerical approximation obtained by our proposed scheme with ∆x=1/32 and ∆t=1.5∆x2. The black one is
the initial guess and the red one is the exact location of the limit cycle. This result is obtained after only a few
hundred iterations.
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Figure 11: (Example 5.5) Numerical approximation to the limit cycle of (5.2) with (a) k=3, ǫ=0.2, (b) k=4,
ǫ=0.5. The blue closed curve is our numerical approximation, the black one is the initial guess and the red one
is the exact location of the limit cycle.

As we have demonstrated in Section 4, our semi-implicit scheme can also deal with
cases with multiple limit cycles. To check this point, we have artificially constructed an
example with three limit cycles based on system (5.2). Since system (5.2) has a unique
limit cycle within the domain [−1,1]×[−3,3] for k=6 and ǫ=0.2, we propose to periodi-
cally extend this system horizontally to the computational domain [−3,3]×[−3,3] which
will consequently contain three congruent limit cycles. Several intermediate evolutions
of the interface are shown in Fig. 12(a)-(e). In our implementation, we choose ∆x=3/64,
∆t=5∆x2, and the steady state solution can be obtained after a few thousand iterations.
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Figure 12: (Example 5.5) Numerical approximation to the three limit cycles of the system obtained by periodically
extending system (5.2) horizontally with k=6, ǫ=0.2. (a-e) The blue curves show the evolution of the interface
and the red ones are the three limit cycles. (f) Trajectories of several Lagrangian particles.
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Figure 13: (Example 5.5) Solutions to the level set equation (4.2). (a) ψ(x,−20), (b) ψ(x,20). The limit cycle
is also plotted on top of the solutions using a solid red line.

As a comparison, we randomly choose one hundred initial locations and plot their trajec-
tories from t=0 to t=100 in Fig. 12(f). In practice, it is not straight-forward to determine
all limit cycles within a finite computational domain in the typical Lagrangian frame-
work. One might need to shoot out many rays in order to have a better confidence in
capturing all stable limit cycles. In our variational framework, the evolution of the zero
level set will be able to capture multiple disjoint limit cycles at once.

To further classify the stability of the limit cycle, we follow Algorithm 4.1 to obtain
the solution to the level set equation (4.2). We consider the example corresponding to
Fig. 11(a). In the figure, the blue closed curve is indeed the zero level contour of the steady
state solution φ∞(x). In this case, we solve Eq. (4.2) both backward in time to τ =−20
and forward in time to τ=20, respectively, with the initial condition ψ(x,0)=φ∞(x). The
solutions ψ(x,−20) and ψ(x,20) are shown in Fig. 13(a) and (b), respectively. Fig. 13(a)
shows that |ψ(x,−20)| is less than ∆x = 3/64 in the middle square-shaped bulk, while
Fig. 13(b) shows that |ψ(x,20)| is greater than approximately 10∆x for almost any x in
the whole computational domain. As a result, we can conclude that the limit cycle in
Fig. 11(a) is a stable one. We can also obtain the same conclusion from our Algorithm 4.1.
For example, we have picked δ=3∆x and we have

∫

Γδ

∣

∣

∣

∣

ψ(x,−20)

ψ(x,0)

∣

∣

∣

∣

dx=0.1937 and
∫

Γδ

∣

∣

∣

∣

ψ(x,20)

ψ(x,0)

∣

∣

∣

∣

dx=20.7458

while |Γδ|=0.3982. As a result, we have 1
|Γδ|

∫

Γδ

∣

∣

∣

ψ(x,−20)
ψ(x,0)

∣

∣

∣
dx<1 and hence the limit cycle

in Fig. 11(a) is a stable one according to Algorithm 4.1.

6 Conclusion

In this paper, we have proposed a new semi-implicit scheme to compute a class of curva-
ture dependent flows, which is developed based on adding-and-subtracting a curvature
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term. This scheme extends a previous approach proposed in [7, 8], while it is still sim-
ple enough to be extended to a much wider class of curvature dependent motions. Be-
cause the proposed algorithm is derived based on the semi-implicit time discretization,
the time-step size can be greatly relaxed comparing to the typical explicit scheme, i.e.
∆t≫∆x2. As an interesting and important application, we have applied our scheme to
extract limit cycles of planar dynamical systems. We have demonstrated that the method
can automatically extract multiple disconnected limit cycles inside a computational do-
main. Future extensions include applying to higher order geometrical motions such as
the motion by surface diffusion and the Willmore flow.
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