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Abstract. We construct and analyze conservative local discontinuous Galerkin (LDG)
methods for the Generalized Korteweg-de-Vries equation. LDG methods are designed
by writing the equation as a system and performing separate approximations to the
spatial derivatives. The main focus is on the development of conservative methods
which can preserve discrete versions of the first two invariants of the continuous solu-
tion, and a posteriori error estimates for a fully discrete approximation that is based on
the idea of dispersive reconstruction. Numerical experiments are provided to verify
the theoretical estimates.

AMS subject classifications: 65M12, 65M60, 35Q53

Key words: Discontinuous Galerkin methods, Korteweg-de-Vries equation, a posteriori error es-
timate, conservative methods.

1 Introduction

In this paper we consider the Generalized Korteweg-de Vries (GKdV) equation posed
with periodic boundary conditions

{

ut+(up+1)x+ǫuxxx =0, 0< x<1, t>0,
u(x,0)=u0(x), 0< x<1,

(1.1)

where p is a positive integer and ǫ is a positive parameter. The GKdV equation belongs
to a class of equations featuring nonlinear and dispersive effects that are widely used to
model the propagation of physical waves.
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Since the discovery of the solitons in the sixties there has been intense interest and
resulting research activity on the well-posedness as well as the numerical treatment of
(1.1) and other nonlinear dispersive equations. The problem (1.1) is locally well-posed in
a wide range of function classes, but it is also known that solutions do not exist for all
time and singularity formation may occur, as can be gleaned from [3, 23, 24]. In parallel
to the analytical developments, intense attention focused on developing methods for the
numerical treatment of (1.1) resulting in schemes belonging to all the known classes of
numerical methods including finite difference, finite element, finite volume and spectral
methods as well as “special” methods based on the inverse scattering transform. We refer
to [9] and the references therein for a survey of such works. However, it must be said that
a combination of the nonlinearity and the dispersive term uxxx (which is a derivative of
odd order) makes the rigorous treatment of issues such as stability and convergence quite
difficult. Whereas a few early works contained such rigorous treatments, the work of Shu
and coworkers in the new century on discontinuous Galerkin (DG) methods constituted
an important development through the construction of a dissipative dispersive projection
operator [11, 27]. In [9] two of the authors advanced the paradigm and showed that
a conservative version of the dissipative operator constructed in [11, 27] has beneficial
numerical properties such as slower growth of the errors over long time intervals.

As in [9], the numerical methods discussed here are the DG methods. They are char-
acterized by the use of piecewise polynomial spaces that are totally discontinuous, and
were originally devised to solve hyperbolic conservation laws with only first order spa-
tial derivatives, e.g. [13–15, 17, 18, 25]. They allow arbitrarily unstructured meshes, and
have a compact stencil; moreover, they easily accommodate arbitrary h-p adaptivity. The
DG methods were later generalized to the local DG (LDG) methods by Cockburn and
Shu to solve the convection-diffusion equation [16], motivated by successful numerical
experiments from Bassi and Rebay for the compressible Navier-Stokes equations [6]. As a
result, the LDG methods have been applied to solve various partial differential equations
(PDEs) containing higher-order derivatives. We refer to the review paper [26] for more
details. The LDG method, in contrast to the so-called primitive variable formulations, is
characterized by writing the evolution equation as a system by considering each spatial
derivative as a dependent variable, one benefit of such an approach being the simultane-
ous approximation of the spatial derivatives. For the KdV-type equations (1.1), an LDG
method was first developed in [29], in which a sub-optimal error estimate was provided
for the linearized problem. In [27], Xu and Shu proved the k+1/2-th order convergence
rate for the LDG method applied to the fully nonlinear KdV equation. Later, an opti-
mal L2 error estimate was derived in [28] for the linearized equation. Recently, there has
been a different approach in solving the KdV equations by using the DG method directly
without introducing any auxiliary variables nor rewriting the original equation into a
larger system. Cheng and Shu proposed such DG methods in [12] for PDEs involving
high-order derivatives, and an energy-conserving DG method for the KdV equation was
developed by Bona et al. in [9]. The superconvergence property of the LDG methods for
the linearized KdV equation has been studied in [20].
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In the present work we focus on two main issues. The first is to extend the conser-
vative approach of [9] to the LDG method. For the linearized KdV equation, we have
presented the a priori error estimate, and showed that such conservative methods con-
serve the first three invariants exactly. The other goal is to develop a posteriori error esti-
mates for the error, i.e., to obtain computable upper bounds on the discretization error of
the fully discrete approximations for the LDG method. Such a posteriori error estimates
enable the construction of adaptive numerical methods and will be the subject of a forth-
coming work. The idea, first described in [21], is to construct a computable function of x
and t from the numerical solution, which is smooth enough to satisfy the PDE (1.1) in the
strong sense but with a computable forcing term instead of zero. This enables the use of
a priori techniques to obtain the bounds on the error.

The paper is organized as follows: Section 2 is devoted to preliminaries and the de-
scription of the LDG numerical methods. In particular, the conservative nonlinear and
dispersive operators that are necessary for the formulation of the semidiscrete and fully
discrete approximations are introduced. In Section 3, conservation properties and opti-
mal error estimates are shown for the semidiscrete formulation of the linearized prob-
lem. In Section 4, a conservative reconstruction operator, which is different from the
one in [21], is introduced and is used to obtain an a posteriori error estimate for the
semidiscrete formulation (2.28)-(2.30). The a posteriori error estimation for a fully dis-
crete scheme based on the Backward Euler method is then derived. The technique con-
sists in using a second, more accurate scheme based on the midpoint rule, to obtain the
computable error bounds. This approach is similar to the long-standing technique used
in adaptive algorithms for initial value problems for ordinary differential equations, with
the essential difference that rigorous error bounds have been obtained. Finally, in Section
5, results of numerical experiments are reported concerning the performance of the algo-
rithms in the light of both the a priori and a posteriori theoretical estimates.

2 The numerical approximation

In this section, we present the details of the numerical approximations. This begins with
a discussion of the notations and spatial discretization which lead directly to a semi-
discrete approximation of the continuous problem.

2.1 The meshes

Let Th denote a partition of the domain [0,1] which has the form 0=x0<x1< ···<xM=1.
These points xm are called nodes while the intervals Im = [xm,xm+1] will be referred to as
cells. The notation x−m = x+m = xm will be useful in taking account, respectively, of left- and
right-hand limits of discontinuous functions. Corresponding to the underlying spatial
periodicity of the solutions being approximated, we have taken x−0 = x−M and x+M = x+0 .
The meshes Th are assumed to be quasi-uniform, which means that if hm = xm+1−xm and
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h=hmax =maxm hm, then there is a positive constant c such that, for all m,

0< c≤ hm

h
. (2.1)

2.2 Function spaces

In addition to the usual Sobolev spaces Ws,p = Ws,p([0,1]), we will repeatedly use use
the so-called broken Sobolev spaces Ws,p(Th), which are the finite Cartesian products
ΠI∈Th

Ws,p(I). Note that if sp > 1, the elements of Ws,p(Th) are uniformly continuous
when restricted to a given cell, but they may be discontinuous across nodes. To quantify
these potential discontinuities, we introduce the following notation: for v∈Ws,p(Th),s≥1,
let v+m and v−m denote the right-hand and left-hand limits, respectively, of v at the node
xm. We adopt the standard notations in the context of DG-methods. the jump [vm] of v at
xm is defined as v+m−v−m , and the average {vm} of v at xm is 1

2(v
+
m+v−m). In all cases, the

definitions are meant to adhere to the convention that v−0 =v−M and v+M =v+0 .

Norms in the Sobolev classes Ws,p will be denoted ‖·‖Ws,p or ‖·‖Ws,p(I) when the in-
terval I might be in doubt. In case the interval I is clear from context, we will sometimes
use an unadorned norm ‖·‖ to connote the L2(I)-norm. We also introduce the classes
Lp([0,T];Ws,r) of functions u = u(x,t) which are measurable mappings from [0,T] into
Ws,r and such that

‖u‖Lp([0,T];Ws,r)=

(

∫ T

0
‖u(·,τ)‖p

Ws,r dτ

)1/p

<∞,

with the usual modification if p=∞.

The following embedding inequality (see [1]) will find frequent use in our analysis.
For v∈H1(Th)=W1,2(Th) and any cell I∈Th, there is a constant c which is independent
of the cell I such that

‖v‖L∞(I)≤ c
(

h−1/2
I ‖v‖L2(I)+h1/2

I ‖vx‖L2(I)

)

, (2.2)

where hI is the length of I. Note that (2.2) may also be viewed as a trace inequality.

2.3 The discontinuous polynomial spaces

The spatial numerical approximations will be sought in the space of discontinuous, piece-
wise polynomial functions V

q
h subordinate to the mesh Th, which is defined by

V
q
h ={v : v

∣

∣

Im
∈Pq(Im), m=1,··· ,M}.

Here Pq is the space of polynomials of degree q. The spaces V
q
h have well known, local

approximation and inverse properties which are spelled out here for convenience (cf. [5],



254 O. Karakashian and Y. Xing / Commun. Comput. Phys., 20 (2016), pp. 250-278

[10]). Let q be fixed and let i, j be such that 0≤ j≤ i≤ q+1. Then, for any cell I and any v
in H j(I), there exists a χ∈Pq(I) such that

|v−χ|j,I≤ ch
i−j
I |v|i,I , (2.3)

where |v|i,I denotes the seminorm ‖v(i)‖L2(I) on the Sobolev space Hi(I) and the constant
c is independent of hI . The above property continues to hold if the Lp-based Sobolev
spaces replace the L2-based classes H j. In particular, it holds for the L∞ norm, which is to
say, with i, j as above, there is a χ∈Pq(I) such that

|∂j
x(v−χ)|L∞(I)≤ ch

i−j
I |∂i

xv|L∞(I). (2.4)

The equally well-known inverse inequality is given by

|χ|j,I≤ ch
−j
I |χ|0,I , (2.5)

for all χ∈Pq(I) (see [10]).

2.4 The weak formulation

It is well-known that the first step for formulating an LDG method is to rewrite the given
PDE as a first order system by introducing auxiliary variables. For the GKDV equation
(1.1), we have

ut+(up+1)x+ǫwx =0, (x,t)∈ [0,1]×(0,T], (2.6)

w=vx, (x,t)∈ [0,1]×[0,T], (2.7)

v=ux, (x,t)∈ [0,1]×[0,T]. (2.8)

Multiplying (2.6)-(2.8) by test functions φ, ψ and ϕ in H1(Th) and integrating by parts,
we see that the above equations can be written as

∑
I∈Th

(ut,φ)I− ∑
I∈Th

(up+1,φx)I−
M−1

∑
m=0

u
p+1
m [φ]m− ∑

I∈Th

ǫ(w,φx)I−
M−1

∑
m=0

ǫwm[φ]m =0, (2.9)

∑
I∈Th

(w,ψ)I =− ∑
I∈Th

(v,ψx)I−
M−1

∑
m=0

vm[ψ]m, (2.10)

∑
I∈Th

(v,ϕ)I =− ∑
I∈Th

(u,ϕx)I−
M−1

∑
m=0

um[ϕ]m, (2.11)

using the fact that u,v,w are smooth, where (·,·) denotes the L2 inner product, that is,

( f ,g)I =
∫

I f g dx and ( f ,g)=
∫ 1

0 f gdx.
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As done in the construction of DG methods, we shall replace the u,v,w terms in the
four “jump” terms that appeared during the process of integration by parts by appro-
priate flux terms that ensure correct transmission of information across the cells when
u,v and w are replaced by discontinuous functions. Furthermore, our specific choices are
also guided by the desire to construct conservative schemes in a sense that will be made
precise shortly.

For the nonlinear jump term, we consider the “flux”

u
p+1
m ← (ûp+1)m :=

1

p+2

p+1

∑
j=0

(u+
m)

p+1−j(u−m)
j, (2.12)

and define the nonlinear formN : H1(Th)×H1(Th)→R by

N (u,φ)=− ∑
I∈Th

(up+1,φx)I−
M−1

∑
m=0

(ûp+1)m [φm]. (2.13)

For the terms um,vm and wm in the remaining three jump terms, we define the fluxes
by

um← ûm :={u}m, vm← v̂m :={v}m , wm← ŵm :={w}m,

and the corresponding bilinear form D : H1(Th)×H1(Th)→R by

D(s,ψ)=− ∑
I∈Th

(s,φx)I−
M−1

∑
m=0

{s}m [φ]m. (2.14)

With the formsN andD at hand, the weak formulation of (2.6)-(2.8) can be expressed
as

(ut,φ)+N (u,φ)+ǫD(w,φ)=0, ∀φ∈H1(Th), (2.15)

(w,ψ)=D(v,ψ), ∀ψ∈H1(Th), (2.16)

(v,ϕ)=D(u,ϕ), ∀ϕ∈H1(Th). (2.17)

Next, we exhibit some properties of the forms introduced above.

Lemma 2.1. The form N defined by (2.13) is:

(i) consistent in the sense that for all u ∈ C1[0,1] (periodicity is included in the definition of
C1[0,1]), there holds

N (u,φ)=((up+1)x,φ), ∀ φ∈H1(Th); (2.18)

(ii) conservative in the sense that

N (φ,φ)=0, ∀ φ∈H1(Th). (2.19)
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Using the Riesz Representation Theorem, we can define the nonlinear operator N :
H1(Th)→V

q
h via

(N (u),φ)=N (u,φ), ∀φ∈V
q
h . (2.20)

For the bilinear formD, we see that it possesses the following skew-adjointness prop-
erty.

Lemma 2.2. The form D defined by (2.14) satisfies

D(φ,ψ)=−D(ψ,φ), ∀ φ,ψ∈H1(Th), and thus D(φ,φ)=0, ∀ φ∈H1(Th). (2.21)

Proof. Using the definition ofD, integration by parts and the identity [φψ]m={φ}m[ψ]m+
[φ]m{ψ}m, we obtain

D(φ,ψ)=− ∑
I∈Th

(φ,ψx)I−
M−1

∑
m=0

{φ}m[ψ]m

= ∑
I∈Th

(φx,ψ)I+
M−1

∑
m=0

[φψ]m−
M−1

∑
m=0

{φ}m[ψ]m =−D(ψ,φ).

The fact that D(φ,φ)=0 is now an easy consequence.

We may also define the linear operator D : H1(Th)→V
q
h by

(D(u),φ)=D(u,φ), ∀φ∈V
q
h . (2.22)

The bilinear form D and thus the associated linear operator corresponds to a discrete
version of the first-order differentiation operator. Indeed, we have

Lemma 2.3. Let u∈C0[0,1]∩H1(Th). Then,

D(u,φ)=(ux,φ), ∀ φ∈H1(Th). (2.23)

In operator form, this can be expressed as

Du=P0ux, (2.24)

where P0 : L2(0,1)→V
q
h is the L2 projection operator into V

q
h .

Proof. Using integration by parts in (2.14) and the identity [uφ]m ={u}m[φ]m+[u]m{φ}m,
we arrive at

D(u,φ)= ∑
I∈Th

(ux,φ)I+
M−1

∑
m=0

[u]m{φ}m, ∀ φ∈H1(Th).

Since u is continuous and also periodic, the jumps [u]m vanish. Now it is easily shown
that u∈H1(0,1). Hence, it follows thatD(u,φ)=∑I∈Th

(ux,φ)I=(ux,φ), establishing (2.23).

To prove (2.24), it suffices to observe that (Du,φ)=D(u,φ)=(ux,φ), ∀ φ∈V
q
h .
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Remark 2.1. It is clear from the discussion above and in particular (2.21) and (2.24) that
(Du,u)=0. This is a discrete version of the fact that (ux,u)=0 for smooth and periodic u
and motivates calling the operatorD conservative since it preserves a property that holds
at the continuous level.

As an immediate consequence of the preceding lemma we have

Lemma 2.4. (i) The form D defined by (2.14) is consistent in the sense that for u∈C2[0,1]∩
H3(Th) and w=uxx, there holds

D(w,φ)=(uxxx,φ), ∀ φ∈H1(Th). (2.25)

(ii) The form D defined by (2.14) is conservative in the sense that for any u∈H1(Th) there holds

D(w,u)=0 where w,v∈V
q
h are given by w=Dv, v=Du. (2.26)

Proof. It is clear that uxx belongs to C0[0,1]∩H1(Th); therefore (2.25) follows readily from
(2.23). As for (ii), we have

D(w,u)=D(DDu,u)=−D(u,DDu)=−(Du,DDu)

=−(DDu,Du)=−D(Du,Du)=0 (2.27)

using the skew-adjointness property (2.21).

With the operatorsN and D, we can now introduce a semidiscrete LDG formulation
for the problem (1.1) expressed as the system (2.6)-(2.8): we define uh,vh,wh : [0,T]→V

q
h ,

the semidiscrete approximation of u,ux,uxx, respectively by

uht+N (uh)+Dwh=0, 0< t, (2.28)

wh=Dvh, 0< t, (2.29)

vh =Duh. 0< t, (2.30)

with initial data u0
h,v0

h,w0
h approximating u0,u0

x,u0
xx respectively and satisfying, in addi-

tion, the following compatibility conditions.

v0
h =Du0

h, w0
h=Dv0

h. (2.31)

Remark 2.2. The two relations (conditions) w0
h=Dv0

h and v0
h =Du0

h in (2.31) are the com-
patibility conditions implied by (2.29) and (2.30) as t→0+. These compatibility conditions
are unavoidable and appear in the proof of error estimates. However, this leads to the
difficulty of generating initial approximations which must satisfy these constraints and
which at the same time must be optimal order approximations for all three variables.
This is indeed a problem for LDG type methods that does not exist for primitive variable
formulations. A general procedure for constructing such initial approximations has been
devised and will be the subject of a forthcoming work [22].
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Theorem 2.1. Suppose there exist initial approximations satisfying (2.31). Then, there exists
a unique solution uh,vh,wh to the system (2.28)-(2.30). Furthermore, uh has the two discrete
conservation properties

(uh(t),1)=(u0
h,1), ‖uh(t)‖=‖u0

h‖, t≥0. (2.32)

Proof. The system (2.28)-(2.30) can be written in the equivalent form

uht+N (uh)+ǫD3uh =0, t>0, uh(0)=u0
h. (2.33)

Since V
q
h is finite dimensional, N ,D are continuous as operators on V

q
h . To show that a

unique global in time solution exists, it suffices to produce the a priori bound ‖uh(t)‖∞≤
c, t≥0. Indeed, multiplying (2.33) by uh, integrating over [0,1] with respect to x and using
(2.29), we obtain

1

2

d

dt
‖uh(t)‖2+N (uh,uh)+ǫD(wh,uh)=0.

Note that in view of (2.19) and (2.26) we have N (uh,uh) = 0 and D(wh,uh) = 0. Thus
‖uh(t)‖=‖u0

h‖, establishing the second conservation law in (2.32). Since all norms on V
q
h

are equivalent, it follows that ‖uh‖L∞ is bounded for all t≥0 by a constant that may de-
pend on the dimension of V

q
h . Finally, the first conservation law of (2.32) is a consequence

of the fact that N (·,1)=D(·,1)=0. This concludes the proof.

3 A priori error estimates

For parabolic and hyperbolic equations, a crucial tool in deriving error estimates has been
the so-called Elliptic Projection of the solution u. Since differential operators of odd order
lack the positivity property of −∆, devising an appropriate projection for them turns out
to be much more arduous.

We construct a projection operator P : H1(Th)→V
q
h as follows

(Pu,v)I =(u,v)I , ∀v∈Pq−1(I), I∈Th,

{Pu}m ={u}m, m=0,··· ,M−1.
(3.1)

The operator P is related to the first-order conservative derivative operator D through

DPu=Du, ∀u∈H1(Th). (3.2)

In view of this relationship, we refer to P as a conservative projection operator.
To put things in perspective, P is the analog of the projection operator, which we

denote here by P+, used in [29] and defined by

(P+u,v)I =(u,v)I , ∀v∈Pq−1(I), I∈Th,

(P+u)m=u+
m, m=0,··· ,M−1.

(3.3)
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Indeed, the operator P+ is related through the identity D+P+u=D+u to the first-order
derivative operator D+ : H1(Th)→V

q
h defined by

(D+u,v) :=− ∑
I∈Th

(u,vx)I−
M−1

∑
m=0

u+
m[v]m .

Furthermore, it is easily proved that (D+v,v)=− 1
2 ∑

M−1
m=0 |[v]m |2, ∀v∈H1(Th). In view of

the fact that (D+v,v) is negative, we label both operatorsD+ and P+ (the latter solely by
association) as dissipative.

In contrast to P+, the operator P is global in its definition, due to the coupling across
cells including the two endpoints. As a consequence, the analysis of its properties in-
cluding existence, uniqueness and approximation properties are nontrivial and require
certain conditions which are spelled out in the next theorem.

Theorem 3.1. Suppose u is sufficiently smooth and periodic. Further assume that q≥0 is even
and that the number of cells in Th is odd. Then, the operator P is well-defined and possesses the
following approximation properties: For j=0,1 and p=2,∞, there holds

‖u−Pu‖W j,p(I)≤ ch
1−j
I

(

∑
I∈T N

h

h
q
I‖u‖Wq+1,∞(I)+ ∑

I∈Th\T N
h

h
q+1
I ‖u‖Wq+2,∞(I)

)

,

≡E(u,q,h, j,p), (3.4)

for a constant c independent of I, where T N
h is the set of cells whose length differs from at least

one of its two immediate neighbors.

The proof is rather lengthy and is omitted here since it follows the development along
the lines of Propositions 3.1 and 3.2 of [9].

Remark 3.1. In general, the cardinality #{T N
h } can be as large as M, in which case the

estimate (3.4) is O(hq) and is quasi optimal. For a uniform mesh, #{T N
h }= 0 and yields

the optimal estimate O(hq+1). Between these two extremes, it is possible to achieve ex-
treme local refinements while at the same time keeping #{T N

h } quite small. This can
be accomplished by implementing refinement in “patches”, by which we mean a refine-
ment wherein various subsets of contiguous cells are refined uniformly. This scheme of
refinement is very well suited to the simulation of localized singularities.

Remark 3.2. Numerically, we can observe the optimal convergence rate when the polyno-
mial order q is even, and sub-optimal convergence rate for odd q. We have tried various
different approaches to derive a priori error estimate of the conservative LDG method for
the nonlinear problem, and the best we can obtain is the (q−1/2)-th convergence. The
main difficulty lies in the combination of the nonlinear term and the choice of conserva-
tive numerical fluxes for the dispersive term. Below we show the proof of the optimal
convergence for the linearized equation.
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3.1 A priori error estimates and conservative properties for the linearized
equation

For the linearized equation ut+ux+ǫuxxx =0, we have the following numerical method

uht+Duh+ǫDwh =0, (3.5)

wh=Dvh, (3.6)

vh =Duh. (3.7)

Theorem 3.2. Let uh,vh,wh be the numerical solutions of the semi-discrete LDG methods (3.5)-
(3.7). In addition to the two discrete conservation properties (2.32), we have

‖vh(t)‖=‖v0
h‖, ‖wh(t)‖=‖w0

h‖, t≥0. (3.8)

Moreover, the first three invariants of the linearized KdV equation, given by:

I1=
∫

udx, I2=
∫

u2dx, I3=
∫

(ǫu2
x−u2)dx, (3.9)

are conserved by the solutions of the LDG methods (3.5)-(3.7).

Proof. First, taking the time derivative of (3.7), using the test functions −wh, (uh)t,vh in
(3.5)-(3.7) and summing them, we obtain

1

2

d

dt
‖vh‖2−(Duh,wh)=0, (3.10)

where we have also used the skew-symmetry property (2.21) of the operator D. Using
the test functions vh and wh in (3.6) and (3.7), respectively, and subtracting, we obtain
(Duh,wh)=(Dvh,vh)=0. Therefore, it follows that d

dt‖vh‖2=0, which leads to the conser-
vation of the L2 norm of vh in time.

Taking time derivatives in (3.6) and (3.7), using the test functions −(vh)t,ǫwh, (uh)t

and summing them, we obtain

ǫ

2

d

dt
‖wh‖2−(Duh,(vh)t)=0.

From (3.7), we have (Duh,(vh)t)=(vh,(vh)t), therefore,

ǫ

2

d

dt
‖wh‖2− 1

2

d

dt
‖vh‖2 =0,

which leads to the conservation of the L2 norm of wh in time. The conservation of the
three invariants I1, I2 and I3 is a straightforward extension.
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Theorem 3.3. Assume that the solution u of the linearized equation is sufficiently smooth and
periodic. Also, assume that q≥ 0 is even, the number of cells in Th is odd, and there exist ini-
tial approximations u0

h,v0
h,w0

h satisfying the compatibility conditions (2.31) and the optimality
conditions

‖u0−u0
h‖+‖u0

x−v0
h‖+ǫ‖u0

xx−w0
h‖=O(hq+1). (3.11)

Then, there holds the estimate

‖u(t)−uh(t)‖+‖ux(t)−vh(t)‖+ǫ‖uxx(t)−wh(t)‖
≤cect max

k=0,1;ℓ=0,1,2
0≤s≤t

E(∂k
t ∂ℓxu(s),q,h,0,2), (3.12)

where the quantity E is defined in (3.4).

Proof. Let P0 denote the standard L2 projection. Applying P0 to the system (2.6)-(2.8)
(without the nonlinear term), using (2.24) and (3.2), we arrive at the system

(Pu)t+DPu+ǫDPw=−P0η
(u)
t , (3.13)

Pw=DPv−P0η(w), (3.14)

Pv=DPu−P0η(v), (3.15)

with the consistency terms η(u),η(v),η(w) given by

η(u)=u−Pu, η(v)=v−Pv, η(w)=w−Pw.

Subtracting each term in (3.13)-(3.15) from the corresponding term in (3.5)-(3.7), we
obtain the system

ζ
(u)
t +Dζ(u)+ǫDζ(w)=P0η

(u)
t , (3.16)

ζ(w)=Dζ(v)+P0η(w), (3.17)

ζ(v)=Dζ(u)+P0η(v), (3.18)

for the error terms

ζ(u)=uh−Pu, ζ(v)=vh−Pv, ζ(w)=wh−Pw.

Using the test functions ζ(u),ζ(v),−ζ(w) in (3.16)-(3.18), we obtain after summing

1

2

d

dt
‖ζ(u)‖2=(η

(u)
t ,ζ(u))+(η(w),ζ(v))−(η(v),ζ(w)). (3.19)

We can use Gronwall’s inequality on the term ζ(u), however, this requires estimates for
the terms ζ(v) and ζ(w). Taking time derivatives in (3.17) and (3.18), using the test func-

tions −ζ
(v)
t ,ǫζ(w),ζ

(u)
t , we obtain

ǫ

2

d

dt
‖ζ(w)‖2−(Dζ(u),ζ

(v)
t )=ǫ(η

(w)
t ,ζ(w))+(η

(v)
t ,ζ

(u)
t )−(η(u)

t ,ζ
(v)
t ).
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From (3.18) we readily obtain (Dζ(u),ζ
(v)
t ) = 1

2
d
dt‖ζ(v)‖2−(η(v),ζ

(v)
t ). Using this in the

above, we get

ǫ

2

d

dt
‖ζ(w)‖2− 1

2

d

dt
‖ζ(v)‖2 =ǫ(η

(w)
t ,ζ(w))+(η

(v)
t ,ζ

(u)
t )−(η(u)

t ,ζ
(v)
t )−(η(v),ζ

(v)
t ). (3.20)

Now, taking the time derivative of (3.18), using the test functions 0,ζ
(u)
t ,ζ(v), we obtain

1

2

d

dt
‖ζ(v)‖2=−(ζ(w),ζ

(u)
t )+(η(w),ζ

(u)
t )+(η

(v)
t ,ζ(v)).

Note that from (3.16) we have ζ
(u)
t =−Dζ(u)−ǫDζ(w)+P0η

(u)
t . Using this in the first term

on the right side of the above identity, it follows from (2.21) that

1

2

d

dt
‖ζ(v)‖2=(ζ(w),Dζ(u))+(η

(v)
t ,ζ(v))−(η(u)

t ,ζ(w))+(η(w),ζ
(u)
t ). (3.21)

Using the test functions ζ(v) and ζ(w) with (3.17) and (3.18), respectively, and subtracting,
we see that (ζ(w),Dζ(u))=(η(w),ζ(v))−(η(v),ζ(w)). Using this in (3.21), it follows that

1

2

d

dt
‖ζ(v)‖2=(η(w),ζ(v))−(η(v),ζ(w))+(η

(v)
t ,ζ(v))−(η(u)

t ,ζ(w))+(η(w),ζ
(u)
t ). (3.22)

We next multiply (3.22) by 2 and add to the sum of (3.19) and (3.20). This yields

1

2

d

dt

(

‖ζ(u)‖2+‖ζ(v)‖2+ǫ‖ζ(w)‖2
)

=(A,ζ(u))+(B,ζ(v))+(C,ζ(w))+(D,ζ
(u)
t )+(E,ζ

(v)
t ),

(3.23)
where the time dependent quantities A,B,C,D,E are given by

A=η
(u)
t , B=2η

(v)
t +3η(w), C=−3η(v)+ǫη

(w)
t −2η

(u)
t ,

D=η
(v)
t +2η(w), E=−η(v)−η

(u)
t .

We shall apply integration over [0,t] to (3.23). As a preliminary step, we see that
integration by parts applied to the last two terms of (3.23) yields

∫ t

0
(D,ζ

(u)
t )ds=(D(t),ζ(u)(t))−(D(0),ζ(u)(0))−

∫ t

0
(Dt,ζ

(u))ds, (3.24)

∫ t

0
(E,ζ

(v)
t )ds=(E(t),ζ(v)(t))−(E(0),ζ(v)(0))−

∫ t

0
(Et,ζ

(v))ds. (3.25)

Introducing the quantity Q(t) :=‖ζ(u)‖2+‖ζ(v)‖2+ǫ‖ζ(w)‖2, it follows from (3.23)-(3.25),
the Cauchy-Schwarz and arithmetic-geometric mean inequalities, that for any δ>0,

Q(t)≤Q(0)+δQ(t)+
∫ t

0
Q(s)ds+K, (3.26)
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where

K=‖D(0)‖2+‖E(0)‖2+
1

δ

(

‖D(t)‖2+‖E(t)‖2
)

+
∫ t

0

(

‖A‖2+‖B‖2+
1

ǫ
‖C‖2+‖Dt‖2+‖Et‖2

)

ds.

Choosing δ=1/2, Gronwall’s inequality applied to (3.26) yields

Q(t)≤ ce2t
(

Q(0)+K
)

, t≥0. (3.27)

Note that Q(0)=O(hq+1) by (3.11). Furthermore, K is defined in terms of η(u),η(v),η(w)

and their time derivatives and therefore is bounded by

max
0≤s≤t

max
k=0,1;ℓ=0,1,2

E(∂k
t ∂ℓxu(s),q,h,0,2)

in view of (3.4). Hence, Q(t) is also bounded by the right side of (3.12). Finally, the
estimate (3.12) follows from this fact and the triangle inequality.

4 A posteriori error estimates

Our approach to a posteriori error estimation is based on the idea of reconstruction which
is displayed in the following result.

Theorem 4.1. For q≥2, there exists a unique reconstruction operator R : V
q
h →C2[0,1]∩V

q+3
h

satisfying

(R(u))xxx =D3u,

(R(u))(x+m)={u}m,

(R(u))x(x+m)={vh}m, vh :=Du,

(R(u))xx(x+m)={wh}m, wh :=Dvh,

(4.1)

with the last three constraints holding for m=0,··· ,M−1.

Proof. The existence ofD3u being obvious, let us denote it by ψh. Now let σ=R(u)∈V
q+3
h

be the third antiderivative of ψh. The three constants generated from the integration can
now be chosen so that the last three constraints in (4.1) are satisfied.

It remains to show that σ belongs to C2[0,1]. For a fixed I=[xm,xm+1], m=0,··· ,M−1,
let χ denote the characteristic function of I, we have

(σxxx,χ)I =σxx(x−m+1)−σxx(x+m). (4.2)

On the other hand, note that by definition,

(D3u,χ)=(Dwh,χ)=−(wh,χx)I−
M−1

∑
j=0

{wh}j[χ]j =−{wh}m+{wh}m+1. (4.3)
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Now the fourth equation of (4.1) stipulates that σxx(x+m)={wh}m for each m in the range
0,··· ,M−1. Hence comparing (4.2) and (4.3) we obtain

σxx(x−m+1)={wh}m+1=σxx(x+m+1), m=0,··· ,M−1, (4.4)

which shows that σxx is continuous on [0,1] and also periodic, the latter following from
the case m=M−1.

To show that σx is continuous and periodic, we use the test function (x−xm)χ. Argu-
ing as above, we obtain

hmσxx(x−m+1)−
(

σx(x−m+1)−σx(x+m)
)

=−(wh,χ)+hm{wh}m+1. (4.5)

We already showed in (4.4) that σxx(x−m+1)={wh}m+1. Hence (4.5) simplifies to

σx(x−m+1)−σx(x+m)=(wh,χ). (4.6)

Since wh=Dvh, it follows that

(wh,χ)=−{vh}m+{vh}m+1. (4.7)

Using this in (4.6) and the third equation of (4.1) it follows that

σx(x−m+1)={vh}m+1=σx(x+m+1), (4.8)

which shows that σx is continuous and periodic.
Finally, to show that σ is also continuous and periodic, we use the test function (x−

xm)2χ. In this case we obtain

h2
mσxx(x−m+1)−2hmσx(x−m+1)+2σ(x−m+1)−2σ(x+m)=−2(wh,(x−xm)χ)+h2

m{wh}m+1,

which in view of (4.4) gives

hmσx(x−m+1)−σ(x−m+1)+σ(x+m)=(wh,(x−xm)χ).

Using the latter identity and the facts that wh=Dvh and vh =Du, we obtain

hmσx(x−m+1)−σ(x−m+1)+σ(x+m)=−(vh,χ)+hm{vh}m+1

=−(Du,χ)+hm{vh}m+1

={u}m−{u}m+1+hm{vh}m+1.

It follows from (4.8) and the second equation of (4.1) that σ(x−m+1) is equal to {u}m+1

which again in view of the second equation of (4.1) is equal to σ(x+m+1). This concludes
the proof of the theorem.

Remark 4.1. The construction of σ is local to each cell I∈Th and proceeds along the lines
outlined in [21]. In particular, the coefficients of σ|I in terms of the Legendre polynomials
are given as the solution of a linear system with a (q+4)×(q+4) upper triangular matrix
which happens to be independent of I.
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4.1 A posteriori estimate for the semidiscrete approximation

We let σ=Ruh denote the reconstruction of the semidiscrete approximation uh according
to Theorem 4.1 above. We readily have

σxxx =D3uh=Dwh.

Hence, from the semidiscrete equation uht+N (uh)+ǫDwh=0 we have

σt+(σp+1)x+ǫσxxx =σt−uht+(σp+1)x−N (uh) :=η. (4.9)

Note that η is a computable function and more importantly, that (4.9) holds in the strong
sense, i.e. pointwise except at the spatial nodes. This makes it possible to prove the
following a posteriori estimate for the GKdV equation:

Theorem 4.2. Let σ and η be defined as above and let e= σ−u where u is the solution of the
GKdV equation. We have

‖e(t)‖2≤ ect
(

‖e(0)‖2+
∫ t

0
e−cτ‖η(τ)‖2 dτ

)

, (4.10)

where the constant c depends on σ and u.

Proof. Comparing this to the GKdV equation, we get

et+(σp+1)x−(up+1)x+ǫexxx =η. (4.11)

Multiplying (4.11) with e and integrating with respect to x, we obtain in view of the
periodic boundary conditions

1

2

d

dt
‖e(t)‖2−(ψ,ex)=(η,e)≤ 1

2
‖η‖2+

1

2
‖e‖2, (4.12)

where ψ :=σp+1−up+1. Now observe that

(ψ,ex)=
(

e
p

∑
j=0

σp−juj,ex

)

=−1

2

(

(
p

∑
j=0

σp−juj
)

x
,e2

)

≤ 1

2
c‖e‖2, (4.13)

where c depends on ‖σ‖W1,∞ and ‖u‖W1,∞ . Using this estimate in (4.12), the desired esti-
mate (4.10) can be obtained by using the Gronwall’s lemma.

4.2 A posteriori error estimates for a fully discrete scheme

The approach we will follow in deriving a posteriori error estimates for fully discrete
approximations is to form a pair of two time-stepping schemes. The first is used to gen-
erate the fully discrete approximations and the second to supply the estimation. The
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difficulty here resides mainly in the fact that fully discrete approximations are indeed
discrete whereby there is a need for a function which is continuous in time and satisfies
the same differential equation as (1.1) with a computable right hand side.

Let 0≤ t0 < t1 < ···< tN =T be a partition of the interval [0,T] and κn = tn+1−tn. The
fully discrete approximations un to u(·,tn) generated by the Implicit Euler method are
given by

un+1−un+κnN (un+1)+κnǫDwn+1=0, (4.14)

wn+1=Dvn+1, vn+1=Dun+1, (4.15)

which is equivalent to

un+1−un+κnN (un+1)+κnǫD3un+1=0, (4.16)

with u0 :=uh(0).
In order to estimate the errors of the Implicit Euler method we will use, at every step,

the Midpoint rule which is given by

un,1
M −un+

κn

2
N (un,1

M )+
κn

2
ǫDwn,1

M =un,1
M −un+

κn

2
N (un,1

M )+
κn

2
ǫD3un,1

M =0, (4.17)

un+1
M =2un,1

M −un, wn,1
M =Dvn,1

M , vn,1
M =Dun,1

M . (4.18)

Note that we are using the same value un generated by the Implicit Euler method as initial
value for the Midpoint rule and we are using the subscript M for the approximations
generated by the Midpoint rule.

That both of these schemes are well defined can be established by using a variant
of Brouwer’s fixed point theorem (cf. [4]). Uniqueness and convergence can be proved
under appropriate CFL type conditions.

In addition, the convergence rates

‖u(·,tn)−un‖=O(hq+κ), κ= max
0≤n≤N

κn,

can be obtained, for details see [4, 19].
To derive a posteriori estimates for these schemes we combine ideas of [2, 21] and of

the semidiscrete case considered previously. Notice first that we make the simplifying
assumption that the finite element spaces do not change with time. The general case can
be treated also along the lines of [21] but we do not insist on this in the present paper.

The fully discrete reconstruction is defined as the function Û : [0,T]→C2[0,1]∩V
q+3
h

which on each interval In=[tn,tn+1] is given by

Û(t)=R
[

un+
∫ t

tn
F(s)ds

]

, (4.19)

here F(·) is the affine in t function given by

F(t)=−ℓ1/2(t)
{

N (un,1
M )+ǫD3un,1

M

}

−ℓ1(t)
{

N (un+1)+ǫD3un+1
}

, (4.20)
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where ℓ1/2(t) and ℓ1(t) are the two basis functions of the space of affine functions in t on
In corresponding to the nodes tn,1 :=(tn+tn+1)/2 and tn+1 respectively. More specifically

ℓ1/2(t)=−
2

κn
(t−tn+1), ℓ1(t)=

2

κn
(t−tn,1).

Notice that Û is a computable piecewise polynomial function. Furthermore, the
next lemma shows that it is related to the continuous in t function U(t) =
(

(tn+1−t)un+(t−tn)un+1)
)

/κn, i.e. the affine interpolant of the nodal values un and
un+1.

Lemma 4.1. Let U(t) be given as above. Then

Û(t)=R
{

U(t)+
[3

4
ℓ̂1/2(t)+ ℓ̂1(t)

]

(

un+1
M −un+1

)

}

, (4.21)

where the quadratic functions ℓ̂1/2(t) and ℓ̂1(t) are given by

ℓ̂1/2(t)=−
4

κ2
n

(t−tn)(t−tn+1), ℓ̂1(t)=
2

κ2
n

(t−tn)(t−tn,1).

Proof. Since F(t) is affine, and the midpoint rule of quadrature is exact for such functions,
from (4.19), (4.20) and (4.17) we obtain

Û(tn+1)=R
{

un+
∫ tn+1

tn
F(s)ds

}

=R
{

un+κnF(tn,1)
}

=R
{

un−κn

(N (un,1
M )+ǫD3un,1

M

)

}

=Run+1
M

=R{un+1}+R{un+1
M −un+1}. (4.22)

Also, since ℓ1/2(t
n)=2, ℓ1(t

n)=−1, ℓ1/2(t
n,1)=1, ℓ1(tn,1)=0 and the trapezoidal rule is

exact for affine functions, we obtain from (4.17) and (4.14)

Û(tn,1)=R
{

un+
κn

4

[

F(tn)+F(tn,1)
]}

=R
{

un− κn

4

[

3
(

N (un,1
M )+ǫD3un,1

M

)

−
(

N (un+1)+ǫD3un+1
)]}

=R
{

1

2
un+

3

4
un+1

M − 1

4
un+1

}

=R
{

1

2

(

un+un+1
)

+
3

4

(

un+1
M −un+1

)

}

=R
{

U(tn,1)+
3

4

(

un+1
M −un+1

)

}

. (4.23)

Finally, since Û(tn)=Run =RU(tn), the result (4.21) follows from (4.22) and (4.23) and
the fact that ℓ̃1/2(t) and ℓ̃1(t) are the Lagrange basis functions corresponding to the points
tn,1 and tn+1 respectively.
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We next derive an error equation for ρ(t) := Û(t)−u(t).

Lemma 4.2. ρ(t) satisfies

ρt+
(

Ûp+1
)

x
−
(

up+1
)

x
+ǫρxxx =E1+E2+E3, (4.24)

where the error indicators E1,E2,E3 are given by

E1=
(

Ûp+1
)

x
−R

{

ℓ1/2(t)N
(

un,1
M

)

+ℓ1(t)N
(

un+1
)

}

, (4.25)

E2=ǫ
(

I−R)D3
(

U(t)+
1

2
ℓ1/2(t)(u

n+1
M −un+1)

)

, (4.26)

E3=ǫ

[

3

4
ℓ̂1/2(t)+ ℓ̂1(t)−

1

2
ℓ1/2(t)

]

D3
(

un+1
M −un+1

)

. (4.27)

Proof. From the definitions of F(t) and U(t) we have

Ût=RF(t)=−R
{

ℓ1/2(t)
(

N (un,1
M )+ǫD3un,1

M

)

+ℓ1(t)
(

N (un+1)+ǫD3un+1
)

}

=−R
{

ℓ1/2(t)N (un,1
M )+ℓ1(t)N (un+1)+ǫD3U(t)+

1

2
ǫℓ1/2(t)D3

(

un+1
M −un+1

)

}

,

(4.28)

where we have used the linearity of the operator D. On the other hand, from (4.21) it
follows that

Ûxxx(t)=D3U(t)+

[

3

4
ℓ̂1/2(t)+ ℓ̂1(t)

]

D3
(

un+1
M −un+1

)

. (4.29)

Combining (4.28) and (4.29), adding
(

Ûp+1
)

x
to both sides and using (1.1) we obtain

(4.24).

The next result provides the a posteriori estimate for the fully discrete scheme gener-
ated by the Backward Euler scheme (4.14). In doing so we also define the error indicator

En
4 =

1√
κn

(

Û(tn)−Û(tn−)
)

=− 1√
κn

(

R
(

un
M−un

)

)

, n=1,2,··· , (4.30)

which appears due to the fact that the function Û(t) is discontinuous at the temporal
nodes t1,··· ,tN−1.

Theorem 4.3. Let un be the solution of the fully discrete scheme (4.14), and let Û the discrete
reconstruction defined by (4.19). With the error indicators E1,E2,E3,E4 given by (4.25), (4.26),
(4.27) and (4.30), there holds the a posteriori error estimate

‖u(tn)−un‖≤‖un−Run‖+cectn

(

‖u0−Ru0‖2+
3

∑
i=1

∫ tn

0
‖Ei(s)‖2ds+

n

∑
j=1

‖E j
4‖2

)1/2

, (4.31)

where c is a constant that depends only on u and Û.
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Proof. Letting E :=E1+E2+E3, multiplying both sides of (4.24) by ρ and integrating with
respect to x gives

1

2

d

dt
‖ρ(t)‖2+

(

(

Ûp+1)x−
(

up+1
)

x
,ρ(t)

)

=
(E(t),ρ(t)), tn≤ t≤ tn+1. (4.32)

We would like to use Gronwall’s Lemma. However, we have to deal with the complica-
tion arising from the fact that Û and thus ρ has jumps at t1,··· ,tN−1. Now as done in the
semidiscrete case, we have the bound

∣

∣

∣

(

(

Ûp+1)x−
(

up+1
)

x
,ρ(t)

)
∣

∣

∣
=

1

2

∣

∣

∣

p

∑
j=0

(

(ujρp−j)x,ρ2
)

∣

∣

∣
≤ c‖ρ(t)‖2 , (4.33)

where c depends on the maxtn≤t≤tn+1‖u(t)‖1,∞ and maxtn≤t≤tn+1‖Û(t)‖1,∞. Thus integrat-
ing (4.32) from tn to t∈ [tn ,tn+1] and using the arithmetic-geometric mean inequality, we
obtain

‖ρ(t)‖2≤‖ρ(tn)‖2+c
∫ t

tn
‖ρ(s)‖2 ds+c

∫ t

tn
‖E(s)‖2 ds. (4.34)

From the mean value theorem for integrals we obtain,

max
tn≤t≤tn+1

‖ρ(t)‖2≤ (1+cκn)

(

‖ρ(tn)‖2+c
∫ tn+1

tn
‖E(s)‖2 ds

)

. (4.35)

In particular, we have

‖ρ(tn+1−)‖2≤ (1+cκn)

(

‖ρ(tn)‖2+c
∫ tn+1

tn
‖E(s)‖2 ds

)

. (4.36)

Now, since u is a smooth function of t, we have

‖ρ(tn)‖2−‖ρ(tn−)‖2=
(

Û(tn)−Û(tn−),ρ(tn)+ρ(tn−)
)

, (4.37)

from which we easily obtain

‖ρ(tn)‖2≤ (1+cκn)
(

‖ρ(tn−)‖2+
1

κn
‖Û(tn)−Û(tn−)‖2

)

. (4.38)

Using (4.38) in (4.36) and a discrete version of Gronwall’s Lemma, we obtain

max
0≤t≤T

‖ρ(t)‖2≤ cecT
(

‖ρ(0)‖2+
N

∑
n=1

1

κn
‖Û(tn)−Û(tn−)‖2+

∫ T

0
‖E(s)‖2 ds

)

. (4.39)

The conclusion now follows from the triangle inequality and the observation that Û(tn)=
Run.
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5 Numerical experiments

In this section, we provide some numerical results to demonstrate the performance of
our LDG methods. We will validate the theoretical results including a study of the a
priori convergence rates, and compare the performance of the conservative methods to
the dissipative LDG methods. We will also study the a posteriori error estimate and
experimental confirmation of the a posteriori upper bound.

In these numerical experiments, we consider the following KdV-equation

ut+uux+ǫuxxx =0 (5.1)

with ǫ= 1/242. The computational domain is set to [0,1], and divided into M cells. To
check accuracy and convergence rates, we use the well-known cnoidal-wave solution,

u(x,t)= acn2(4K(x−vt−x0)), (5.2)

where cn(z) = cn(z : m) is the Jacobi elliptic function with modulus m = 0.9. The other
parameters have the values a=192mǫK(m)2, v=64ǫ(2m−1)K(m)2 and x0=0.5, where the
function K=K(m) is the complete elliptic integral of the first kind and the parameters are
so organized that the solution u has spatial period 1. As an alternative, we also consider
the classical solitary-wave solutions

u(x,t)=Asech2(K(x−vt−x0)) (5.3)

with the parameters A=1, v= A/3, K= 1
2

√

A
3ǫ and x0=0.5. This traveling wave is also a

stable solution of the KdV-equation (see [7] and [8] for the original proof of this fact). Of
course, the solitary-wave solution is not periodic in space, but it can be treated as periodic
by simply restricting it to the computational domain [0,1] and imposing periodic bound-
ary conditions across x= 0 and x= 1, thanks to the exponential decay of the hyperbolic
secant function.

5.1 A priori convergence rates

In the numerical experiments to test a priori convergence rate, we use the second order
midpoint rule time discretization (4.17), which can be shown to be conservative in time.
Since our interest is in the effect of the various spatial discretizations, we use κ=h when
q=0, 1, and κ=10h2 when q=2, 3. The numerical results of conservative LDG methods
at time T = 1 with q = 0,1,2 are given in Table 1. The L2- and L∞-norms of this error
are calculated numerically and reported in the tables. We can easily observe the optimal
convergence rates for even q, and sub-optimal convergence rates for odd q. In Tables 2
and 3, we show the numerical errors at a longer time, T = 25, and compare the results
with those of dissipative LDG methods of Xu and Shu [27] for even q. From these, we
can observe an improved long time behavior of the conservative methods.
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Table 1: The accuracy test for the Cnoidal-wave problem, uniform mesh at T=1.

M κ L2 error order L∞ error order

10 1.0E-01 9.8240E-01 1.8778E-00

20 5.0E-02 4.7798E-01 1.0624 1.2235E-00 0.6181

q=0 40 2.5E-02 1.2554E-01 1.9288 4.2038E-01 1.5412

80 1.25E-02 4.5836E-02 1.4536 1.5092E-01 1.4779

160 6.25E-03 1.8745E-02 1.2900 5.9854E-02 1.3343

320 3.125E-03 8.8674E-02 1.0799 2.6272E-02 1.1879

10 1.0E-01 7.3395E-01 1.8675E-00

20 5.0E-02 5.9167E-01 0.3109 1.5015E-00 0.3147

q=1 40 2.5E-02 3.6048E-01 0.7149 8.4908E-01 0.8224

80 1.25E-02 1.9077E-02 0.9181 4.4073E-01 0.9460

160 6.25E-03 9.7571E-02 0.9673 1.9895E-01 1.1475

320 3.125E-03 4.9131E-02 0.9898 9.4892E-02 1.0681

10 1.0E-01 8.5400E-01 1.5215E-00

20 5.0E-02 3.8071E-02 4.4875 7.8369E-02 4.2791

q=2 40 2.5E-02 2.2880E-03 4.0565 4.5594E-03 4.1034

80 1.25E-02 1.4724E-04 3.9578 3.2118E-04 3.8274

160 6.25E-03 9.5960E-06 3.9396 2.6205E-05 3.6154

Table 2: Cnoidal-wave problem, q=0, uniform mesh at T=25.

M κ L2 error order L∞ error order

10 1.0E-01 1.1819E-00 1.8867E-00

20 5.0E-02 1.0092E-00 0.2279 1.7589E-00 0.1012

Conservative 40 2.5E-02 1.3056E-00 -0.3715 2.0215E-00 -0.2008

method 80 1.25E-02 6.3522E-01 1.0394 1.1258E-00 0.8445

160 6.25E-03 1.6881E-01 1.9119 3.3245E-01 1.7597

320 3.125E-03 4.2999E-02 1.9730 9.5225E-02 1.8037

10 1.0E-01 6.9103E-01 1.2519E-00

20 5.0E-02 6.9103E-01 0.0000 1.2659E-00 -0.0160

Dissipative 40 2.5E-02 6.9103E-01 0.0000 1.2660E-00 -0.0002

method 80 1.25E-02 6.9103E-01 0.0000 1.2661E-00 -0.0001

160 6.25E-03 6.9103E-01 0.0000 1.2661E-00 -0.0001

320 3.125E-03 6.9199E-01 -0.0020 1.2675E-00 -0.0016

5.2 Comparison of the conservative and dissipative methods

In this subsection, we have included further numerical results to acquire a deeper un-
derstanding of the performance of the conservative and dissipative numerical methods.
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Table 3: Cnoidal-wave problem, q=2, uniform mesh at T=25.

M κ L2 error order L∞ error order

10 1.0E-01 9.1479E-01 1.5849E-00

20 2.5E-02 8.4871E-01 0.1082 1.3908E-00 0.1885

Conservative 40 6.25E-03 4.7032E-02 4.1736 7.9666E-02 4.1258

method 80 1.5625E-03 3.6080E-03 3.7044 6.1220E-03 3.7019

160 3.90625E-04 2.2688E-04 3.9912 3.8968E-04 3.9736

10 1.0E-01 8.9741E-01 1.5296E-00

20 2.5E-02 1.2202E-00 -0.4433 1.8738E-00 -0.2928

Dissipative 40 6.25E-03 1.4977E-01 3.0263 2.5260E-01 2.8910

method 80 1.5625E-03 6.9580E-03 4.4279 1.1767E-02 4.4241

160 3.90625E-04 3.3520E-04 4.3756 5.7521E-04 4.3545

A graphical approach is adopted to demonstrate behavior that may not be revealed by
simple tabulation of convergence rates.

We start with the cnoidal-wave test problem with q=0 and κ=0.01. Fig. 1 shows the
plots of the numerical solutions of the proposed conservative and dissipative methods at
time t=25 with different mesh size. The exact solution is also provided as a reference in
the plot. The numerical dissipative methods have a large error, and the wave is damped
to almost zero even with refined 640 meshes.

Next, quadratic polynomials with q= 2 are tested. We repeat the same test as above
with M = 20 and the same κ. The comparison of numerical solutions at time T = 25 is
shown in Fig. 2, left, where the large phase errors of dissipative methods can be easily
observed. The same test with M=40 is repeated, and shown in Fig. 2, middle, where the
dissipative methods have a much improved performance on the refined mesh. However,
when we ran this test for longer, until T=50, we observed the larger phase errors again
in the approximation made via the dissipative method, as shown in the right graph of
Fig. 2.

5.3 A posteriori error convergence rate

In this subsection, we show the numerical experiments which are devoted to studying the
behavior of the various quantities appearing in Theorem 4.3. Both the backward Euler
method (4.16) and the midpoint rule time discretization (4.17) are used to derive the a
posteriori error indicator. We use the notations

ηi =
(

∫ tn

0
‖Ei(t)‖2 ds

)1/2
, i=1,2,3; η4 =

( n

∑
j=0

‖E j
4‖2
)1/2

, ηtot =
( 4

∑
i=1

η2
i

)1/2
,

and study the decreasing rate of the (total) a posteriori error indicator ηtot . In particular
we would like to show that it decreases at the rate of O(κ). In order to render very small
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Figure 1: Numerical approximations of the cnoidal-wave problem using the conservative and dissipative methods;
comparisons with the exact solution at time t= 25 (except the last figure) with q= 0. Top left: 20 cells; Top
right: 80 cells; Middle left: 160 cells; Middle right: 320 cells; Bottom left: 640 cells; Bottom right: 640 cells at
T=1.
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Figure 2: Numerical approximations of the cnoidal-wave problem using the conservative and dissipative methods;
comparisons with the exact solution at time t= 25 with q = 2. Left: 20 cells at T = 25; Middle: 40 cells at
T=25; Right: 40 cells at T=50

Table 4: The a posteriori error convergence rate with solitary wave solution, T=1, p=1, ǫ= .0001, M=500,
q=5.

N η1 η2 η3 η4 ηtot rate ‖u(T)−uN‖ rate

100 3.06E-02 1.66E-06 2.63E-02 8.96E-02 9.82E-02 1.88E-01

200 9.61E-03 1.61E-06 8.07E-03 5.33E-02 5.48E-02 0.841 1.33E-01 0.491

400 2.88E-03 1.68E-06 2.36E-03 3.08E-02 3.10E-02 0.823 8.29E-02 0.687

800 8.17E-04 2.06E-06 6.66E-04 1.69E-02 1.69E-02 0.875 4.67E-02 0.828

1600 2.20E-04 1.99E-06 1.79E-04 8.88E-03 8.88E-03 0.928 2.48E-02 0.913

3200 5.72E-05 1.84E-06 4.67E-05 4.57E-03 4.57E-03 0.958 1.28E-02 0.954

spatial numerical errors, we chose M = 500 and q = 5. Table 4 shows the a posteriori
error indicator with different time steps N, as well as the decreasing rate of ηtot which
decrease at the rate of O(κ) as expected. Similar as the observation in [21], we observe
that as κ decreases η4 converges to ηtot . This may have practical value in that among all
the indicators η4 is the least expensive to evaluate.

5.4 A posteriori error indicator

In this subsection, we show the time history of the six quantities ηi, i = 1,··· ,4, ηtot and
the L2 error ‖u(tn)−un‖, until T=1. The numerical results with a larger κ and N=200,
hence low temporal accuracy, are shown in Fig. 3. Those with a smaller κ and N = 500,
hence higher temporal accuracy, are shown in Fig. 4. We would like to comment that the
difference between the sub-linear behavior of ηtot and the super-linear behavior of the L2

error comes from the exponential term on the right hand side of (4.31). From the point of
view of effectivity indices, ηtot and the actual errors are within a factor of 2 or 3 of each
other over the range of integrations considered. The estimator η3 is relatively large for
q=2, and stays level. It decays quickly as the polynomial degree q increases. Out of four
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Figure 3: A posteriori approximations of the Solitary wave with A=1, p=1, ǫ=10−4, M=200, N=200, T=1.
Top left: q=2, top right: q=3, bottom left: q=4, bottom right: q=5.

η estimator, the dominating one is again η4. Since η4 is the least expensive error indicator,
further investigation will be carried out to test a heuristic of using only η4 as the indica-
tor. Other future work includes the extensions to higher order temporal discretizations
and the treatment of other nonlinear dispersive equations possessing higher order spatial
derivatives.
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Figure 4: A posteriori approximations of the Solitary wave with A=1, p=1, ǫ=10−4, M=200, N=500, T=1.
Top left: q=2, top right: q=3, bottom left: q=4, bottom right: q=5.
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