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Abstract. In this paper, we propose a Static Condensation Reduced Basis Element
(SCRBE) approach for the Reynolds Lubrication Equation (RLE). The SCRBE method is
a computational tool that allows to efficiently analyze parametrized structures which
can be decomposed into a large number of similar components. Here, we extend the
methodology to allow for a more general domain decomposition, a typical example
being a checkerboard-pattern assembled from similar components. To this end, we
extend the formulation and associated a posteriori error bound procedure. Our moti-
vation comes from the analysis of the pressure distribution in plain journal bearings
governed by the RLE. However, the SCRBE approach presented is not limited to bear-
ings and the RLE, but directly extends to other component-based systems. We show
numerical results for plain bearings to demonstrate the validity of the proposed ap-
proach.
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1 Introduction

The Static Condensation Reduced Basis Element (SCRBE) method was recently intro-
duced in [12] as a computational tool to efficiently analyze parametrized large-scale
component-based structures. Such structures — which are composed of a large number
of similar or identical parametrized components — naturally appear in many engineer-
ing applications. A building, for example, is composed of components like rooms, walls,
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hallways, and staircases; and each component may be described through parameters like
geometry, material constants, and boundary conditions.

The SCRBE method combines two essential ingredients: non-overlapping domain de-
composition (resp. substructuring) methods and reduced basis methods. The idea is to
employ static condensation to eliminate the internal (to each subdomain resp. compo-
nent) degrees of freedom in terms of the corresponding boundary or interface degrees of
freedom. Evaluating the entries of the associated Schur Complement System, however,
requires numerous evaluations on the subdomain, i.e., bubble solves. If standard dis-
cretization techniques like finite elements are used to solve for the bubble functions, this
step can be quite expensive — especially if one is interested in analyzing many different
parameter combinations. This is were the reduced basis method comes into play.

The reduced basis method [9, 21, 22] is a model order reduction technique which al-
lows efficient and reliable reduced order approximations for a large class of parametrized
PDEs and is thus used to approximate the bubble functions. The offline-online compu-
tational decomposition allows to move expensive precomputations to the offline stage,
the bubble solves are then performed efficiently online. Furthermore, rigorous and effi-
ciently evaluable a posteriori bounds have been developed for the system-level error of the
SCRBE approximation with respect to the underlying finite element approximation [12].
Within the last two years, the SCRBE method has been extended to also incorporate port
reduction [6, 7] and has been successfully extended to treat various engineering prob-
lems [11, 13, 23].

We note that the SCRBE method comprises ideas from the Reduced Basis Element
(RBE) method [17, 18] and the classical Component Mode Synthesis (CMS) [5, 10]. The
RBE method employs the reduced basis method to approximate the bubble functions,
but couples the components through a mortar-type procedure. The CMS employs a static
condensation to “couple” the components, but uses an eigenmodal expansion to approx-
imate the bubble functions. Indeed, the SCRBE method advantageously combines both
approaches: the reduced basis treatment of bubble functions enables parametric varia-
tions of the components, whereas component coupling through static condensation en-
ables the derivation of rigorous system-level a posteriori error bounds.

In this paper, we employ the SCRBE method to study the pressure distribution within
a plain bearing governed by the Reynolds Lubrication equation (RLE). Our main contri-
bution is to extend the SCRBE methodology introduced in [12] to consider a more gen-
eral domain decomposition. More precisely, in [12] each component is allowed to have at
most one neighbor on each port. This assumption excludes the typical wireframe approx-
imation [4], where more than two components “meet” at a junction. Here, we consider
a two-dimensional rectangular computational domain, i.e., an unfolded plain bearing,
which is decomposed into small rectangular components forming a checkerboard pat-
tern; the interface thus contains junctions where four components meet. The wireframe
approximation has implications on the definition of the port degrees of freedom as well
as on the a posteriori error bound. We show how to extend the work from [12] to this
case in the sequel. Furthermore, our second contribution is to present an improved, i.e.,
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sharper, a posteriori error bound for the system-level formulation compared to the one
proposed in [12]. Although we consider only a two-dimensional domain with a checker-
board pattern in this paper, the derivations presented directly extend also to more general
two-dimensional and also three-dimensional wireframe approximations.

This paper is organized as follows. In Section 2 we introduce our specific problem
of interest. We briefly explain the physical background, summarize the derivation of the
Reynolds Lubrication Equation, derive the parametrized weak formulation, and show
results for a model plain bearing. The SCRBE method is discussed in Section 3, where
we review the results from [12] and show the extension to account for the wireframe
approximation. In Section 4, we present the a posteriori error bound formulation for the
more general domain decomposition considered in this paper. Finally, in Section 5 we
present numerical results for the model plain bearing introduced in Section 2.

2 The Reynolds lubrication equation

2.1 Motivation and strong formulation

The motivation for our work is to study the pressure distribution within a plain bear-
ing. Plain bearings are the least expensive and simplest type of bearing and appear in
almost all industrial areas. Since they do not contain rolling elements, plain bearings are
compact and lightweight and at the same time have a high load-carrying capacity. The
load-carrying capacity, however, strongly depends on the pressure distribution within
the lubricant. Fig. 1(a) shows a sketch of a plain bearing under a hydrodynamic lubri-
cation state, i.e., the journal is rotating. The centerline of the rotating journal is shifted
from the bearing centerline resulting in a gap height sketched in Fig. 1(b). A lubrication
wedge forms, resulting in a pressure build-up carrying the load; we refer to e.g. [3] for a
more detailed explanation. Throughout this paper, we assume a hydrodynamic lubrica-
tion state with full-film condition, i.e., the load is carried exclusively by the lubricant and
there is no contact between the journal and outer bearing surface.

Plain bearings sometimes contain grooves in the bearing surface to help achieve the
full-film condition. It has recently also been shown in experiments and simulations [2,
8, 15, 16] that grooves or small dents can not only improve the lubrication properties
but also the pressure distribution, thus increasing the lifespan and allowing for a higher
load-capacity. The pattern as well as shape and size of the grooves resulting in an optimal
pressure distribution, however, are generally not known.

In this paper we consider a specific geometric configuration sketched in Fig. 2 to de-
rive the methodology and to subsequently serve as a model problem for the numerical
tests. The sketch shows the unfolded bearing, i.e., cut open on the left and right bound-
ary, the top and bottom boundaries thus correspond to the sides of the bearing. We
assume that the bearing surface contains a regular pattern of grooves. To this end, we
split the surface into 18×4 equal components, each containing a groove in the middle.
The size and depth of the grooves serve as parameters to describe the components. Our
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goal is to develop a numerical method that allows to efficiently analyze the influence of
the grooves on the pressure distribution in the lubricant.

The pressure within the lubricant is governed by the incompressible Navier-Stokes
equations

ρ
Du

Dt
=−∇p+µV ∆u, div u=0, (2.1)

where ρ is the density, µV the dynamic viscosity, p the pressure, u∈R
3 the velocity, and

the material derivative is given by Du
Dt ≡∂tu+u1∂xu+u2∂yu+u3∂zu. Given the conditions

in a plain bearing, however, the Navier-Stokes equations can be simplified considerably
to arrive at the Reynolds Lubrication equation [3,20]. To this end, we consider the sketch
in Fig. 3 showing a detail of a plain bearing. We denote the distances of the journal and
outer bearing to the center by h1 and h2 and the corresponding velocities in x-, y-, and
z-direction by u1,u2, v1,v2, and w1,w2, respectively. Under certain assumptions — i.e., (i)
incompressibility of the lubricant, (ii) constant dynamic viscosity µV , (iii) the variation of
the height between the bearing parts is small, (iv) the velocities of the lubricant normal to
the bearing is much smaller than the one tangential to the bearing, and (v) the pressure
is constant in the y-direction — we obtain the RLE [3, 20]

∇·
( ρh3

12µV
∇p
)

=u∂x(ρh)+w∂z(ρh)+∂t(ρh), (2.2)
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Furthermore, u1,u2 are the velo
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where p(x,z) is the pressure distribution within the lubricant, ρ(x,z)= const the density
of the lubricant, µV the dynamic viscosity, h(x,z) = h2(x,z)−h1(x,z) the distance in y-
direction between the journal and outer bearing, and u(x,z) = 1

2(u2(x,z)+u1(x,z)) and

w(x,z)= 1
2 (w2(x,z)+w1(x,z)) the average velocities of the lubricant in the x- and z- di-

rection, respectively. Note that the RLE is defined on a two-dimensional domain Ω⊂R
2,

i.e., the unfolded bearing, and we thus impose zero Dirichlet boundary conditions on the
sides of the bearing (corresponding to the top and bottom in Fig. 2) and periodic bound-
ary conditions where the bearing is cut open (corresponding to the left and right sides in
Fig. 2).

In a system level simulation of an engine, for example, the RLE is coupled with a
Multibody simulation (MBS). The motion of the engine parts, e.g. the crankshaft, are
computed from the MBS, whereas the bearing reactions are computed from the pressure
distribution within the bearing governed by the RLE (2.2). In a discrete time simulation
setting, the RLE thus needs to be solved at each timestep: The height h(x,z) and velocities
u(x,z) and w(x,z) entering (2.2) are considered known inputs from the MBS, the pressure
distribution p(x,z) is computed, and the bearing reactions are obtained by integrating
the pressure over Ω. The bearing reactions are then applied to the MBS to step forward
in time. A single MBS thus requires numerous solutions of the RLE. Furthermore, the
optimization of the location and size of the grooves in Fig. 2 requires many (optimiza-
tion) iterations and in turn Mulitbody simulations. Our goal is therefore to develop a
methodology which allows to efficiently solve the RLE.

2.2 Weak formulation

We first introduce the Hilbert space Xe with H1
0(Ω)⊂Xe⊂H1(Ω) where H1(Ω)≡{v | v∈

L2(Ω),∇v ∈ (L2(Ω))2}, H1
0(Ω) ≡ {v | v ∈ H1(Ω),v|∂Ω = 0}, and L2(Ω) is the space of
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square integrable functions over Ω, where Ω is our bounded domain in R
2 with Lipschitz

continuous boundary ∂Ω.† The inner product and induced norm associated with Xe

are given by (·,·)X and ‖·‖X =
√

(·,·)X , respectively. We assume that the norm ‖·‖X is
equivalent to the H1(Ω)-norm and denote the dual space of Xe by X′

e. Furthermore,
let D⊂ R

P be a prescribed compact parameter set, in which our input parameter µ =
(µ1,··· ,µP) resides.

We directly consider a finite element approximation for the infinite-dimensional prob-
lem. To this end, we introduce the piecewise linear conforming finite element space
X⊂Xe. We shall assume that the space X is sufficiently rich, resulting in typically large
N =dim(X), such that the finite element solutions guarantee a desired accuracy over the
whole parameter domain D. In the reduced basis literature this is usually referred to as
the “truth” approximation. We further recall that the reduced basis approximation shall
be built upon – and the reduced basis error thus evaluated with respect to – the truth
solution.

We derive the weak formulation of (2.2) by multiplication with a test function v∈X,
integration by parts, and invoking the boundary conditions to obtain: p∈X satisfies

ã(p,v;h)= f̃ (v;h1,h2,u1,u2,w1,w2,v1,v2), ∀v∈X, (2.3)

where the bilinear and linear forms are given by

ã(w,v;h)=
∫

Ω

h3

12µV
∇p·∇v dx, ∀w,v∈X (2.4)

and

f̃ (v;h1,h2,u1,u2,w1,w2,v1,v2)=
∫

Ω
h

1

2
(u1+u2)∂xv+h

1

2
(w1+w2)∂zv dx

−
∫

Ω

(

(

u1∂xh1+w1∂zh1−v1

)

−
(

u2∂xh2+w2∂zh2−v2

)

v dx
)

, ∀v∈X, (2.5)

respectively. Note that the density cancels since we consider the full-film condition with
ρ constant and that the material derivative of h1,h2 is given by

∂th2−∂th1 =
(

u1∂xh1+w1∂zh1−v1

)

−
(

u2∂xh2+w2∂zh2−v2

)

. (2.6)

We may further simplify (2.3) for our specific problem setting. First, we consider the
outer bearing as the reference coordinate system and thus set the velocities u2=v2=w2=0.
Second, we assume that the journal rotates but has zero axial or radial velocity; we thus
have v1 =w1=0. Third, we note that in the SCRBE approach we never solve (2.3) on the
whole domain shown in Fig. 2 at once, but only on the components. We thus approximate
the gap height as piecewise linear on each component, i.e., we use a piecewise linear
interpolation of the gap height shown in Fig. 1(b). On each component, we may thus

†The subscripts “e” denote “exact”.
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express the gap height as h=h0+hxx, where h0 and hx are parameters which are different
for each component along the circumference. Finally, we need to incorporate the depth
of the grooves. The computational domain for one component, Ωcomp, including the
domain of the groove in the middle, Ωgr, is sketched in Fig. 4. We thus introduce hgr such
that hgr =0 on Ωcomp\Ωgr and hgr is equal to the depth of the groove on Ωgr.

The weak formulation (2.3) thus simplifies to: p∈X satisfies

a(p,v;µ)= f (v;µ), ∀v∈X, (2.7)

where

a(w,v;µ)=
∫

Ω

h3

12µV
∇w ·∇v dx, ∀w,v∈X and f (v,µ)=−

∫

Ω

h

2
u1∂xv dx, ∀v∈X, (2.8)

the gap height is linearly interpolated on each component and given by

h(x,z)=h0+hxx+hgr, (2.9)

and the input parameter is defined as µ={u1,h0,hx,hgr}∈D⊂R
4. After expanding h(x,z)3

we observe that the bilinear and linear forms satisfy and affine parameter dependence
(see [1] for details) and can be written as

a(w,v;µ)=
Qa

∑
q=1

θ
q
a(µ)a

q(w,v), ∀w,v∈X (2.10)

and

f (v;µ)=
Q f

∑
q=1

θ
q
f (µ) f q(v), ∀v∈X, (2.11)

where the θ
q
a, f : D→ R are parameter dependent functions and the aq : X×X → R and

f q : X→R are parameter-independent bilinear and linear forms, respectively.
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2.3 Numerical example

We present a sample solution of the RLE without grooves to explain the general behavior
of the solution; the case with grooves is discussed in Section 5. We introduce the domain
Ω = [0,0.1885m]×[0,0.02m], i.e. the bearing has unfolded length 0.1885m and width
0.02m, which is subdivided in 18×4 subdomains; see Fig. 2. We consider the viscosity
of the lubricant µV =0.01Pa·s and velocity u1 =4πm/s≈12.57m/s. As discussed in the
last section, we also introduce a piecewise linear interpolation (on each subdomain) of
the gap height h(x)=(30+20cos( x

0.1885))·10−6. We thus obtain the pressure distribution
sketched in Fig. 5.

Figure 5: Pressure distribution over the unfolded bearing.

We observe that the pressure distribution is point-symmetric and — due to the ho-
mogeneous Dirichlet boundary condition — thus also implies a negative pressure and an
average pressure over the domain (i.e, integral) of zero. The negative pressure is obvi-
ously not physically plausible, since the lubricant cannot carry tensile forces. One option
to avoid negative pressures is to consider a bearing under an external pressure, i.e., we
apply nonhomogeneous Dirichlet boundary conditions and simply shift the solution up-
ward. In practice, however, the pressure distribution is often “corrected” numerically
after the computation in that negative pressures are set to zero and continuity of the
pressure gradient is enforced, see e.g. [19]. The details of this correction are beyond the
scope of this paper and we therefore consider the original solution in the sequel to derive
the SCRBE for the Reynolds Lubrication equation.

3 Static condensation reduced basis element method

We turn to the SCRBE method originally introduced in [12]. Throughout the paper we
use the component mode synthesis terminology: “component” refers to a subdomain of
the computational domain, “system” to a configuration of components, and “ports” to
the areas where components connect. With our application and Fig. 2 in mind, we extend
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the approach presented in [12] to two-dimensional systems where the components are
arranged in a checkerboard pattern. Whereas a component is allowed to have at most one
neighbor on each port in [12], the checkerboard pattern requires that up to 4 components
are connected at ports, i.e., at a crossing-point (see Section 3.1). The extension requires to
redefine the port eigenmodes and static condensation (see Section 3.2) and subsequently
adapt the a posteriori error estimation (see Section 4).

We henceforth consider the following problem defined on a bounded domain Ω with
boundary ∂Ω: For a given parameter µ∈D, find u(µ)∈X such that

a(u(µ),v;µ)= f (v;µ), ∀v∈X. (3.1)

We assume that a is symmetric, continuous, and coercive with respect to the X-norm
and that f is linear and bounded. These conditions are obviously satisfied for our model
problem defined in (2.7) and (2.8). We next introduce the domain decomposition before
discussing the static condensation method and the incorporation of the reduced basis
method.

3.1 Domain decomposition

We assume that the domain Ω can be decomposed into a set CSYS of interconnected
parametrized components and that each component is associated with a subdomain Ωi

with boundary ∂Ωi, such that Ω=
⋃

i∈CSYS
Ωi with Ωi∩Ωi′ =∅, for i 6= i′. We denote the

restriction of a and f to the subdomains Ωi by ai = a|Ωi
and fi = f|Ωi

, and note that the
parameter vector µ might also be restricted, i.e, µ=(µ1,··· ,µI)∈D=∏i∈CSYS

Di.
To simplify the discussion, we consider the specific example sketched in Fig. 6: the

sample domain shown in Fig. 6(a) is decomposed into four equal components shown
in Fig. 6(b). The sample component in Fig. 6(b) contains eight local ports LPi, i= 1,··· ,8
which are either a line or a (corner) point. We denote the set of LPs on a component by
PCOM and the number of LPs on component i by nLP

i . In the sequel, the distinction be-
tween line LPs (LP1,··· ,LP4) and point LPs (LP5,··· ,LP8) will be important. We thus also
introduce the set of line LPs and corner LPs denoted by P l

COM and P c
COM, respectively;

note that PCOM=P l
COM∪P c

COM. We denote the portion ∂Ωi associated to a specific LP by
ΓLP, for a line LP we denote the (closed) domain including the two neighboring point LPs
by ΓLP, e.g., ΓLP1

contains the two corner points LP5 and LP6. Each local port is associated
to a unique global port GP∈PSYS of the same kind, i.e., line to line and point to point.
We therefore introduce the mapping π which maps a specific LP of component i to a GP,
π :PCOM×CSYS→PSYS, π(LP,i)=GP, as well as the pseudo inverse map π−1

i which maps
a GP to a LP on component i. We denote by PSYS the set and by nGP the number of global
ports which have no intersection with the homogeneous Dirichlet boundary conditions
of the system. In Fig. 6(a) we may distinguish four different GPs: (i) a line GP lying in
the interior of the domain Ω, denoted by GPLI; (ii) a line GP lying on the boundary ∂Ω,
denoted by GPLB; (iii) a point GP lying in the interior of Ω, denoted by GPCI; and (iv)
a point GP lying on the boundary ∂Ω, denoted by GPCB; in total, the system sketched in
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Figure 7: All global ports in a simple 
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a periodi
 
onditions left/right.

Fig. 6(a) has 21 GPs. As opposed to the framework introduced in [12], we observe that a
component may have up to three neighbors on a point GP. We denote the domain asso-
ciated to a specific GP by ΓGP and — following the notation for the LPs — we use ΓGP for
a line GP including the two neighboring points.

We present a simple example with only 4 components to illustrate the above concepts.
In Fig. 7 we sketch an unfolded bearing consisting of only 4 components with homoge-
neous Dirichlet conditions on the top and bottom boundaries and periodic boundary
conditions on the left and right boundary. The global ports on the Dirichlet boundary are
marked with a dashed line, the components and global ports are numbered in consecu-
tive order. Note that the global ports on the left and right boundary coincide because of
the periodic boundary condition. Overall we thus have: 6 GPLI, 0 GPLB, 2 GPCI, 0 GPCB.
In Table 1 we show the corresponding map π :PCOM×CSYS→PSYS, π(LP,i)=GP from the
sample component shown in Fig. 6(b) to the system level configuration in Fig. 7.
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Table 1: Mapping π(LP,i)=GP for 
on�guration in Fig. 7 with 4 
omponents and 8 GPs. Note that some LPs

are mapped to a GP with homogeneous Diri
hlet boundary 
onditions, whi
h is denoted by −.

(LP,i) GP (LP,i) GP (LP,i) GP (LP,i) GP

1,1 1 1,2 6 1,3 − 1,4 −

2,1 2 2,2 3 2,3 7 2,4 8

3,1 − 3,2 − 3,3 1 3,4 6

4,1 3 4,2 2 4,3 8 4,4 7

5,1 4 5,2 5 5,3 − 5,4 −

6,1 5 6,2 4 6,3 − 6,4 −

7,1 − 7,2 − 7,3 5 7,4 4

8,1 − 8,2 − 8,3 4 8,4 5

We next recall the finite element approximation space X of dimension dim(X)=N .
We assume that the triangulation over X honors the decomposition into components de-
fined above. To this end, we define (i) the restriction of functions in X to the ith compo-
nent as Xi; (ii) the restriction to the ith component with homogeneous Dirichlet bound-
ary conditions on each ΓLP, LP∈PCOM, by Xi,0; and (iii) the restriction to a global port
as X(ΓGP), which — in the case of a line GP — contains also the neighboring point GPs,
whereas X(ΓGP) denotes the restriction to GP without the neighboring points. In the case
of a point GP, X(ΓGP) simply represents the single node of the triangulation lying on GP.
Finally, we denote the degrees of freedom on a GP by NGP =dim(X(ΓGP))

‡; for a point
GP we thus simply have NGP = 1. Finally, considering a specific component i with nLP

i
local ports, we denote the overall number of degrees of freedom by N LP

i .

Although we restrict our attention to two-dimensional domains and the specific
decomposition sketched in Fig. 6(a), the approach also extends for example to three-
dimensional domains composed out of cuboids.

3.2 Static condensation

3.2.1 Eigenmodes

Following [12], we express the degrees of freedom on ΓGP in terms of an eigenfunction
expansion. However, given the more general domain decomposition introduced above,
we need to adjust the definitions of the eigenfunctions and their harmonic extension to
our setting. Furthermore, we need to strictly distinguish between point and line ports.
We start with the latter: introduce a basis for the line ports, where the basis functions
consist of the complete set of eigenvectors, {χk∈X0(ΓGP) :1≤k≤NGP}, where X0(ΓGP)=

‡Note that for a line GP with two neighboring points we have NGP =dim(X(ΓGP))=dim(X(ΓGP))−2, i.e.
we do not include the two boundary points into the count for the degrees of freedom
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{v∈X(ΓGP);v|∂ΓGP
=0}, associated with the generalized eigenvalue problem

∫

ΓGP

∇χk ·∇v=λk

∫

ΓGP

χGP,k v, ∀v∈X0(ΓGP), (3.2)

with ‖χk‖L2(ΓGP)
= 1, and the λk ∈R denote the real positive eigenvalues. We elliptically

lift these line port eigenmodes to the interior of neighboring components to obtain a set
of interface functions ΨGP,k, k=1,··· ,NGP. Note that ΨGP,k has support only over the (at
most) two components, which connect at the line GP and is zero on all other components.
We denote the restriction of ΨGP,k to a neighboring component i by ψLP,i,k ∈Xi, which is
computed from

∫

Ωi

∇ψLP,i,k ·∇v=0, ∀v∈Xi;0, (3.3)

ψLP,i,k =χk, on ΓLP (3.4)

ψLP,i,k =0, on ΓLP′ , LP′∈PCOM\LP. (3.5)

Note that — thanks to the definition of the port basis functions χk with homogeneous
Dirichlet boundary conditions on the line GP — we obtain consistent boundary condi-
tions for ψLP,i,k on Ωi. I.e, ψLP,i,k is equal to χk on ΓLP and zero on all other LPs.

For the point GPs, we simply define “global” piecewise-linear hat functions, which
are defined on the wireframe, i.e., we set ΨGP = 1 at the corresponding GP and to zero
at the neighboring point GPs. In Fig. 6(a) this would correspond to setting (say) ΨGP =1
on GPCI and to zero on the eight point GPs on the boundary. The interface function for a
point GP thus has support on up to four components.

3.2.2 Bubble functions and Schur complement system

Given the definition of the interface functions, we can follow the approach presented
in [12] to define the bubble functions and subsequently set up the Schur Complement
System (SCS). We express the truth solution of (3.1) in terms of bubble and interface
functions as

u(µ)= ∑
i∈CSYS

bi(µ)+ ∑
GP∈PSYS

NGP

∑
k=1

UGP,k(µ)ΨGP,k, (3.6)

where bi(µ)∈Xi;0 for each i∈CSYS, and the UGP,k(µ) with 1≤ k≤NGP and GP∈PSYS are
the coefficients of the interface functions. We like to stress that the bubble functions live
in the truth finite element space and that the number of coefficients on one global port
is equal to the number of degrees of freedom on this particular port. We next insert (3.6)
into (3.1) and test on the bubble space of component i, Xi;0, to obtain

ai

(

bi(µ)+ ∑
LP∈PCOM

nπ(LP,i)

∑
k=1

Uπ(LP,i),k(µ)ψLP,i,k,v;µ

)

= fi(v;µ), ∀v∈Xi;0. (3.7)



138 E. Bader, M. A. Grepl and S. Müller / Commun. Comput. Phys., 21 (2017), pp. 126-148

It follows from linearity and superposition that we can express bi(µ) as

bi(µ)=bi, f (µ)+ ∑
LP∈PCOM

nπ(LP,i)

∑
k=1

Uπ(LP,i),k(µ)bLP,i,k(µ), (3.8)

where bi, f (µ)∈Xi;0 satisfies

ai(bi, f (µ),v;µ)= fi(v;µ), ∀v∈Xi;0, (3.9)

and bLP,i,k(µ)∈Xi;0, defined by N LP
i subproblems, satisfies

ai(bLP,i,k(µ),v;µ)=−ai(ψLP,i,k,v;µ), ∀v∈Xi;0. (3.10)

We note that the previous three equations are well-posed, since the bilinear form a re-
stricted to component i is coercive and continuous on Xi;0 due to the homogeneous
Dirichlet boundary conditions. Plugging (3.8) into (3.6) we obtain

u(µ)= ∑
i∈CSYS

bi, f (µ)+ ∑
GP∈PSYS

NGP

∑
k=1

UGP,k(µ)ΦGP,k(µ), (3.11)

where

ΦGP,k(µ)=ΨGP,k+ ∑
i∈ωGP

bπ−1
i (GP),k(µ), (3.12)

and ωGP denotes the components over which ΨGP has support. Defining the “skeleton
space”, XS (µ)≡span{ΦGP,k(µ) : 1≤k≤NGP, ∀GP∈PSYS}, inserting (3.11) into (3.1), and
testing with functions in XS we finally obtain the SCS

∑
GP∈PSYS

NGP

∑
k=1

UGP,k(µ)a(ΦGP,k(µ),v;µ)= f (v;µ)− ∑
i∈CSYS

a(bi, f (µ),v;µ), v∈XS (µ). (3.13)

Since the computation of the truth quantities bi, f (µ)∈Xi;0 from (3.9) and bLP,i,k(µ)∈Xi;0

from (3.10) has to be performed for every new parameter µ, we follow [12] and introduce
associated reduced basis approximations. To this end, we introduce reduced basis spaces
X̃ f ,i;0 and X̃LP,i,k;0 for the bubble functions that are constructed using a Greedy proce-

dure [24]. We then define the reduced basis approximation b̃i, f ∈ X̃ f ,i;0 to bi, f (µ) such
that

ai(b̃i, f (µ),v;µ)= fi(v;µ), ∀v∈ X̃ f ,i;0, (3.14)

and the reduced basis approximation b̃LP,i,k(µ)∈XLP,i,k;0 to bLP,i,k(µ) such that

ai(b̃LP,i,k(µ),v;µ)=−ai(ψLP,i,k,v;µ), ∀v∈ X̃LP,i,k;0. (3.15)
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Following the same steps as above and appropriately replacing the truth quantities by
their reduced basis counterparts, we define a reduced basis “skeleton space”, X̃S (µ)≡
span{Φ̃GP,k(µ) : 1≤ k≤NGP, ∀GP∈PSYS}, to obtain the reduced basis SCS

∑
GP∈PSYS

NGP

∑
k=1

ŨGP,k(µ)a(Φ̃GP,k(µ),v;µ)= f (v;µ)− ∑
i∈CSYS

a(b̃i, f (µ),v;µ), v∈ X̃S (µ). (3.16)

We note that the number of coefficients ŨGP,k(µ) with 1≤k≤NGP and GP∈PSYS and thus
the degrees of freedom of the reduced basis SCS is equivalent to the number of coeffi-
cients of the (original) truth system (3.13). However, replacing the truth bubble functions
with their reduced basis approximations allows to invoke an offline-online decomposi-
tion and thus an online-efficient procedure to assemble (3.16). For the well-posedness of
(3.16) we refer the reader to [12].

3.2.3 Computational procedure

We choose Φ̃GP′,k′ , 1≤ k′ ≤NGP and GP′ ∈PSYS, as test functions in (3.16) to obtain the
linear algebraic system

Ã(µ)Ũ(µ)= F̃(µ) (3.17)

of size nsc≡∑GP∈PSYS
NGP, where Ũ(µ)∈R

nsc is the vector of coefficients Ũk,GP(µ), the ma-

trix Ã(µ)∈R
nsc×nsc has entries Ã(GP′,k′),(GP,k)(µ)≡a(Φ̃GP′,k′(µ),Φ̃GP,k(µ);µ), 1≤k,k′≤NGP,

GP,GP′∈PSYS, and the right-hand side F̃(µ)∈R
nsc has entries F̃GP′,k′(µ)≡ f (Φ̃GP′,k′ ;µ)−

∑i∈CSYS
a(bi, f (µ),Φ̃GP′,k′ ;µ),1≤ k′≤NGP, GP′∈PSYS.

The matrix Ã(µ) and vector F̃(µ) can be assembled using a local to global mapping.

To this end, we introduce a “local stiffness matrix” Ã
i ∈ R

N LP
i ×N LP

i and a “local load
vector” F̃

i ∈R
N LP

i for component i given by

Ã
i
(k′,LP′),(k,LP)(µ) ≡ ai(ψLP,i,k+ b̃LP,i,k,ψLP′,i,k′+ b̃LP′,i,k′ ;µ),

F̃
i
k′ ,LP′(µ) ≡ fi(ψLP′,i,k′+ b̃LP′,i,k′ ;µ)−ai(b̃i, f (µ),ψLP′,i,k′+ b̃LP′,i,k′ ;µ),

for 1≤k≤nπ(LP,i), ∀LP∈CSYS, and 1≤k′≤nπ(LP′,i), ∀LP′∈CSYS. The assembly then follows

directly from the local to global mapping GP=π(LP,i).

4 A posteriori error estimation

We next turn to the a posteriori error estimation. The goal of this section is to derive a
bound for the error U(µ)−Ũ(µ), i.e., between the solution of the reduced basis SCS (3.16)
and the truth SCS (3.13). The derivation is based on the results in [12]. Our contribution is
to extend the methodology to the more general domain decomposition introduced above.
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4.1 Preliminaries

The error in the reduced SCS is due to the reduced basis approximation of the bubble
functions. We therefore introduce the residuals r f ,i(·;µ) : Xi;0→R given by

r f ,i(v;µ)≡ fi(v;µ)−ai(b̃i, f (µ),v;µ), ∀v∈Xi;0, (4.1)

and rLP,i,k(·;µ) : Xi;0→R, 1≤ k≤nπ(LP,i), LP∈PCOM, given by

rLP,i,k(v;µ)≡−ai(ψLP,i,k+ b̃LP,i,k(µ),v;µ), ∀v∈Xi;0. (4.2)

It then follows from the standard reduced basis a posteriori error bounds (see e.g. [21]) that
the error between bi, f (µ) from (3.9) and its reduced basis approximation b̃i, f (µ) given by
(3.14) satisfies

‖bi, f (µ)− b̃i, f (µ)‖Xi
≤

‖r f ,i(·;µ)‖X′

αLB
i (µ)

, (4.3)

where ‖r f ,i(·;µ)‖X′ is the dual norm of the residual (4.1) and αLB
i (µ) is a lower bound of

the coercivity constant, αi(µ)≡ infv∈Xi;0

ai(v,v;µ)

‖v‖2
Xi

, such that 0<αLB
i (µ)≤αi(µ), ∀µ∈D. The

coercivity lower bound can be computed using the Successive Constraint Method [14].
Furthermore, the error between bLP,i,k(µ) from (3.10) and its reduced basis approximation
b̃LP,i,k(µ) given by (3.15) satisfies

‖bki
(µ)− b̃ki

(µ)‖Xi
≤

‖rLP,i,k(·;µ)‖X′
i

αLB
i (µ)

, (4.4)

where ‖rLP,i,k(·;µ)‖X′
i

is the dual norm of the residual (4.2). For notational convenience,
we define the associated energy norm bounds by

∆ f ,i(µ)≡
‖r f ,i(·;µ)‖X′

√

αLB
i (µ)

and ∆LP,i,k(µ)≡
‖rLP,i,k(·;µ)‖X′

i
√

αLB
i (µ)

. (4.5)

It then follows that the error in a single entry of the local stiffness matrix for a specific
component i is bounded by

|Ai
(LP′,k′),(LP,k)(µ)−Ã

i
(LP′,k′),(LP,k)(µ)|≤∆LP,i,k(µ)·∆LP′,i,k′(µ), (4.6)

and the error of the local stiffness matrix measured in the Frobenius norm, ‖·‖F , thus
satisfies

‖A
i(µ)−Ã

i(µ)‖2
F ≤ ∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∑
LP′∈PCOM

nπ(LP′ ,i)

∑
k′=1

(

∆LP,i,k(µ)∆LP′,i,k′(µ)
)2

=

(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2

)2

. (4.7)

We refer the reader to [12] for the proof.
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4.2 SCS error bound

We first consider the error in the statically condensed system matrix. The nsc system
level degrees of freedom each correspond to a specific interface degree of freedom k,
1≤k≤NGP, i.e., interface function, on a global port GP, GP∈PSYS. Given the inverse map
(LP,i) =π−1

i (GP) defined previously, which maps a global port to a LP on component
i, we can thus associate each system level degree of freedom to a local port degree of
freedom of a component, i.e., (GP,k)→ (π−1

i (GP),k)=(LP,i,k), where we assume a con-
sistent numbering of the interface functions on the GPs and LPs. We note, however, that
a global port can map onto up to four LPs on four components. To obtain a bound for the
(global) SCS matrix, we thus need to keep track of how many LPs and thus components
are “connected” at each GP in order to correctly sum up their contributions.

To this end, we define the error in the SCS matrix, E(µ)=A(µ)−Ã(µ), with entries
Eℓ,ℓ′(µ), 1≤ ℓ,ℓ′≤nsc. The goal in this section is to relate ‖A(µ)−Ã(µ)‖2

F to local errors
‖A

i(µ)−Ã
i(µ)‖2

F and to subsequently invoke (4.7) to derive efficiently computable error
bounds for ‖A(µ)−Ã(µ)‖2

F.

We start to analyze the contributions of Eℓ,ℓ′(µ) and first note that an entry Eℓ,ℓ′(µ) is
nonzero only if the two GP degrees of freedom associated to ℓ and ℓ′ have joint support.
Moreover, we can group the SCS degrees of freedom in three sets based on the number
of components on which the associated GPs have joint support: 1,2 or 4 components. We
distinguish the following three cases (cf. Fig. 6(a)):

1. Set S1: joint support on one component. This is the case for entries (ℓ,ℓ′), which
are both associated to different line GPs, i.e., GP 6=GP′. In the previous example
depicted in Fig. 7 there are no such global ports.

2. Set S2: joint support on two components. This is the case for entries (ℓ,ℓ′), which
are both associated to the same line GP, i.e., GP=GP′, and for entries (ℓ,ℓ′), where
one entry is associated to a line GP and the other entry is associated to a point GP.
Referring to Fig. 7 such global ports are GP,GP′∈{1,2,3,6,7,8}.

3. Set S4: joint support on four components. This is the case for entries (ℓ,ℓ′), which
are both associated to point GPs and so ℓ= ℓ′ . Referring to Fig. 7 such global ports
are GP=GP′∈{4,5}.

We note that a finer distinction would be possible by explicitly accounting for line and
point GPs on the boundary. However, the classification introduced above suffices for our
purpose.

Since the union of the sets S1, S2, and S4 contains all possible interactions and thus
nonzero entries of E(µ), we can write

‖E(µ)‖2
F =

nsc

∑
ℓ,ℓ′=1

Eℓ,ℓ′(µ)
2= ∑

ℓ,ℓ′∈S1

Eℓ,ℓ′(µ)
2+ ∑

ℓ,ℓ′∈S2

Eℓ,ℓ′(µ)
2+ ∑

ℓ,ℓ′∈S4

Eℓ,ℓ′(µ)
2. (4.8)
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We first focus on the set S2. We know that for ℓ,ℓ′ ∈S2 each entry of A(µ) and Ã(µ) is
assembled from a sum of two local stiffness matrices. Let ℓ= (GP,k), we introduce —
for notational convenience — the mapping Ji that maps ℓ=(GP,k) to the corresponding
(LP,k) on component i (note that Ji is in fact already defined through the previously
introduced mapping π resp. π−1

i ). We can thus write, for all ℓ,ℓ′∈S2,

Eℓ,ℓ′(µ)
2=
(

Aℓ,ℓ′(µ)−Ãℓ,ℓ′(µ)
)2

=
(

A
i1
Ji1

(ℓ),Ji1
(ℓ′)

(µ)−Ã
i1
Ji1

(ℓ),Ji1
(ℓ′)

(µ)+A
i2
Ji2

(ℓ),Ji2
(ℓ′)

(µ)−Ã
i2
Ji2

(ℓ),Ji2
(ℓ′)

(µ)
)2

,

≤2
(

|Ai1
Ji1

(ℓ),Ji1
(ℓ′)

(µ)−Ã
i1
Ji1

(ℓ),Ji1
(ℓ′)

(µ)|2+|Ai2
Ji2

(ℓ),Ji2
(ℓ′)

(µ)−Ã
i2
Ji2

(ℓ),Ji2
(ℓ′)

(µ)|2
)

=2
2

∑
m=1

|Aim

Jim (ℓ),Jim(ℓ
′)
(µ)−Ã

im

Jim(ℓ),Jim(ℓ
′)
(µ)|2, (4.9)

where we used the inequality (a+b)2≤2(a2+b2). We can proceed similarly for the set S4

by using the inequality (a+b+c+d)2 ≤4(a2+b2+c2+d2) to bound the left hand side of
(4.8) by

‖A(µ)−Ã(µ)‖2
F ≤ ∑

ℓ,ℓ′∈S1

|Ai
Ji(ℓ),Ji(ℓ′)

(µ)−Ã
i
Ji(ℓ),Ji(ℓ′)

(µ)|2

+2 ∑
ℓ,ℓ′∈S2

2

∑
m=1

|Aim

Jim (ℓ),Jim(ℓ
′)
(µ)−Ã

im

Jim(ℓ),Jim(ℓ
′)
(µ)|2

+4 ∑
ℓ,ℓ′∈S4

4

∑
m=1

|Aim

Jim (ℓ),Jim(ℓ
′)
(µ)−Ã

im

Jim(ℓ),Jim(ℓ
′)
(µ)|2. (4.10)

It remains to bound the right hand side of (4.10) in terms of the a posteriori error bound
introduced in the last section. We first note that we can bound the sum of the errors over
all entries of the component stiffness matrices and all components using (4.7) by

∑
ℓ,ℓ′∈S1

|Ai
Ji(ℓ),Ji(ℓ′)

(µ)−Ã
i
Ji(ℓ),Ji(ℓ′)

(µ)|2

+1 ∑
ℓ,ℓ′∈S2

2

∑
m=1

|Aim

Jim(ℓ),Jim(ℓ
′)
(µ)−Ã

im

Jim (ℓ),Jim(ℓ
′)
(µ)|2

+1 ∑
ℓ,ℓ′∈S4

4

∑
m=1

|Aim

Jim(ℓ),Jim(ℓ
′)
(µ)−Ã

im

Jim (ℓ),Jim(ℓ
′)
(µ)|2

= ∑
i∈CSYS

‖A
i(µ)−Ã

i(µ)‖2
F

(4.7)

≤ ∑
i∈CSYS

(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

. (4.11)

Second, recalling the definition of the set S2 we can bound the sum of the errors over S2
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using

∑
ℓ,ℓ′∈S2

2

∑
m=1

|Aim

Jim (ℓ),Jim(ℓ
′)
(µ)−Ã

im

Jim(ℓ),Jim(ℓ
′)
(µ)|2 ≤ ∑

i∈CSYS

∑
LP∈P l

COM

(

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+ ∑
i∈CSYS

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∑
LP′∈P c

COM

nπ(LP′ ,i)

∑
k′=1

(

∆LP,i,k(µ)∆LP′,i,k′(µ)
)2

. (4.12)

Finally, since S4 contains only contributions from two point GPs (resp. LPs) we have
similarly

∑
ℓ,ℓ′∈S4

4

∑
m=1

|Aim

Jim (ℓ),Jim(ℓ
′)
(µ)−Ã

im

Jim(ℓ),Jim(ℓ
′)
(µ)|2 ≤ ∑

i∈CSYS

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
4. (4.13)

It thus follows from (4.10) by invoking (4.11), (4.12), and (4.13) that the error in the SCS
stiffness matrix error is bounded by

‖A(µ)−Ã(µ)‖2
F ≤ ∑

i∈CSYS

(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+1 ∑
i∈CSYS

∑
LP∈P l

COM

(

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+1 ∑
i∈CSYS

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∑
LP′∈P c

COM

nπ(LP′ ,i)

∑
k′=1

(

∆LP,i,k(µ)∆LP′,i,k′(µ)
)2

+3 ∑
i∈CSYS

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
4. (4.14)

We summarize this result in

Lemma 4.1. For any µ∈D, the error in the right-hand side and the stiffness matrix of the Schur
Complement System satisfies ‖F(µ)−F̃(µ)‖2≤σ1(µ) and ‖A(µ)−Ã(µ)‖F ≤σ2(µ), where

σ1(µ)
2≡2 ∑

i∈CSYS

∆ f ,i(µ)
2







∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2+2 ∑

LP∈P c
COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2







, (4.15)

and

σ2(µ)
2≡ ∑

i∈CSYS

{

(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+ ∑
LP∈P l

COM

(

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+ ∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∑
LP′∈P c

COM

nπ(LP′ ,i)

∑
k′=1

(∆LP,i,k(µ)∆LP′,i,k′(µ))
2+3 ∑

LP∈P c
COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
4

}

.

(4.16)
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Proof. The result (4.16) directly follows from our derivation leading up to (4.14). The
proof for (4.15) follows similar arguments and is thus omitted.

We next introduce the smallest eigenvalue λ̃min(µ)>0 of the reduced basis SCS stiff-
ness matrix Ã(µ). Following the idea presented in [12], Corollary 5.5, we propose an a
posteriori error bound for ‖U(µ)−Ũ(µ)‖2 in

Lemma 4.2. We have ‖(A(µ)−Ã(µ))Ũ(µ)‖2≤σ3(µ), where

σ3(µ)
2≡ ∑

i∈CSYS

(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)|ŨJ −1
i (LP,k)(µ)|

)2

+ ∑
i∈CSYS

(

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)(

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)|ŨJ −1
i (LP,k)(µ)|

)2

+ ∑
i∈CSYS

(

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)(

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

(∆LP,i,k(µ)|ŨJ −1
i (LP,k)(µ)|)

2
)

+3 ∑
i∈CSYS

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2(∆LP,i,k(µ)|ŨJ −1

i (LP,k)(µ)|)
2, (4.17)

and the inverse operator J −1
i maps an LP degree of freedom (LP,k) of component i to a global

entry in the SCS solution ℓ=(GP,k).

Proof. The first part of the proof, i.e., obtaining a bound for ‖(Ai(µ)−Ã
i(µ))Ũi(µ)‖2

2,
follows directly from the proof of Corollary 5.5 in [12]. However, when summing up
the contributions over all components i∈CSYS, we again consider the set S1, S2, and S4

separately and bound the terms following the ideas in (4.10)-(4.14) to arrive at (4.17).

Finally, we obtain the bound for the system level error in

Proposition 4.1. If λ̃min(µ)−σ2(µ)>0, the error, ‖U(µ)−Ũ(µ)‖2, satisfies for all µ∈D

‖U(µ)−Ũ(µ)‖2≤∆U(µ)≡
σ1(µ)+σ3(µ)+‖F̃(µ)−Ã(µ)Ũ(µ)‖2

λ̃min(µ)−σ2(µ)
. (4.18)

Proof. The proof follows directly from the proof of Proposition 4.3 in [12] and invoking
Lemmas 4.1 and 4.2.

Remark 4.1. We can obtain a much simpler but slightly more conservative bound for
‖A(µ)−Ã(µ)‖F by assuming that a component always has the maximum possible num-
ber of neighbors per port. Since an interior point GP is connected to four components,
we directly obtain the bound

‖A(µ)−Ã(µ)‖F ≤

{

4 ∑
i∈CSYS

(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2

)2
}1/2

(4.19)

instead of (4.16).
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5 Numerical results

We return to our application introduced in Section 2. We consider the unfolded bearing
sketched in Fig. 2, which is composed of 18×4 similar components Ωi; we thus have
72 components. We recall the governing equation (2.7) and the input parameter µ =
{u1,h0,hx,hgr}∈D⊂R

4, where the parameter domain is given by D=[12m/s,13m/s]×
[10−5m,5×10−5m]×[−4×10−5,4×10−5]×[0.5×10−5 m,1.5×10−5m] with the additional
constraint that h0+hx

x
∆x ∈ [10−5m,5×10−5m], where x∈ [0,∆x] and ∆x is the component

size in the x-direction, see Fig. 2. For completeness we note that x is shifted by x−k·
∆x, k=0,··· ,17 according to the position of the component. The dynamic viscosity is set to
µV =0.01Pa·s for all results. We next consider a single component with the groove in the
middle sketched in Fig. 4 and introduce a piecewise linear finite element approximation
subspace of dimension dim(Xi)=480.

In the offline stage, we first compute the eigenmodes and their harmonic exten-
sions following the procedure outlined in Section 3.2.1. The reduced basis spaces X̃ f ,i;0

and X̃LP,i,k;0 for the bubble functions introduced in Section 3.2.2 are constructed using a
Greedy procedure [24]. To this end, we introduce a regular 7×5×9×4 train sample Ξtrain

of size ntrain = 1568 (we exclude parameters in the training set where the constraint on
h0+hx

x
∆x is not fulfilled) and stop the Greedy procedure when the desired relative error

tolerance εen
rel=1E−2 is reached.

We next turn to the online stage and consider the specific parameter value u1=4πm/s
and hgr = 10−5m. Note that the parameters h0 and hx change for each component along
the circumference of the bearing to model the gap height sketched in Fig. 1(b). In Fig. 8(a)
and (b) we plot the solution of the reduced basis SCS projected onto the (system level)
finite element space X and the error between the reduced basis SCS solution and a finite
element (system level) solution (i.e., on the space X), respectively. We observe that the
SCRBE solution is very close to the finite element solution: the relative L∞-norm of the
error is 1.6E−4 and the relative H1-norm 6.2E−5. We also observe from Fig. 8(a) that the
influence of the grooves on the pressure is clearly visible

To assess the overall quality of the SCRBE solution and SCRBE error bounds, we
introduce a regular test sample Ξtest of size ntest=99. For the test sample, we also consider
different gap heights by varying the amplitude and the eccentricity of the bearing. We
again first compare the SCRBE solution to a finite element solution: the maximum relative
L∞ error over Ξtest is 2.4E−4 and the maximum relative H1 error is 6.9E−5 showing that
the reduced basis SCS solution is very accurate over the parameter domain. We next
compute the maximum absolute and relative system level a posteriori error bound (4.18)
presented in Table 2. We also compute an a posteriori error bound following Remark 4.1,
i.e., bounding the Frobenius norm error of the component stiffness matrices by assuming
the maximum number of neighbors for all ports. This bound is denoted with a hat and
presented in the right two columns of Table 2. We observe that we obtain a very good
accuracy for both bounds and that the latter bound is approximately 50% larger than the
more elaborate bound.
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(a) (b)

Figure 8: (a) SCRBE solution and (b) error between �nite element and SCRBE solution.

Table 2: Maximum absolute and maximum relative error bound over Ξtest.

∆U
max ∆U

max/‖Ũ(µ)‖2 ∆̂U
max ∆̂U

max/‖Ũ(µ)‖2

1.1E+4 8.3E−4 1.7E+4 1.3E−3

We finally comment on the computational times. The offline stage for the SCRBE
method requires 3050s, the online solution including the computation of the a posteriori
error bound takes 5.5s (assembly ≈3s, SCS-solve ≈0.07s, and bound computation ≈2s)§.
In contrast, the assembly and solution of the finite element approximation requires ap-
proximately 14s resulting in an overall speed-up of ≈3. However, this is not surprising
given the fairly small dimension of our model problem. In fact, we expect that the effi-
ciency of the method improves considerably as the ratio of the “internal”, i.e., statically
condensed, degrees of freedom to the port degrees of freedom increases.

6 Conclusions

We presented a static condensation reduced basis element method for problems where
the domain decomposition results in several components being connected at a single
port, a typical example being a checkerboard pattern. Although our work was motivated
by the Reynolds Lubrication equation governing the pressure distribution in a plain bear-
ing, the methodology directly extends to other physical problem requiring a similar do-
main decomposition.

For this case, we proposed a new eigenfunction expansion to represent the port de-
grees of freedom. Here, we had to distinguish between ports represented by lines and

§All computations are performed on an Intel R© i5 with MATLAB R© 7.13.
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corners, and also guarantee consistent boundary conditions for the harmonic extension
of the eigenfunctions into the component domain. Furthermore, we derived a system
level a posteriori error bound, which takes the number of components connected at each
port explicitly into account.

It turns out that the efficiency of the method strongly depends on the ratio between
the internal and port degrees of freedom of the components. In this sense, the checker-
board pattern considered in this paper admittedly presents a “difficult” problem in terms
of computational gain. However, the extension of the static condensation reduced basis
element method to such problems also allows for a wider applicability in the engineering
context.
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