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Abstract. We develop a domain decomposition Chebyshev spectral collocation method
for the second-kind linear and nonlinear Volterra integral equations with smooth ker-
nel functions. The method is easy to implement and possesses high accuracy. In the
convergence analysis, we derive the spectral convergence order under the L∞-norm
without the Chebyshev weight function, and we also show numerical examples which
coincide with the theoretical analysis.
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1 Introduction

Many problems arising from science, engineering and other fields lead to differential
equations or integral equations. Sometimes a problem can be modeled by either differen-
tial equations or integral equations. Usually a differential equation (set) with boundary
conditions can be correspondingly turned into integral equations, by which both dimen-
sions of the problem considered and the numbers of nodes are reduced. As an advantage
integral equations saves the cost of computing. However, in most of nonlinear cases it is
difficult to get analytic solutions for integral equations. It is always important to develop
numerical approximation techniques with easy-performance, high-accuracy and rapid-
convergence. This is especially useful to integral equations. In recent decades, there are
quite a few works on the numerical approaches of integral equations (see [1,2] and the
references therein).

In recent years, spectral methods are being applied to integral equations. In [3], El-
nagar and Kazemi investigated the Chebyshev spectral method for approximate solu-
tions of the nonlinear Volterra-Hammerstein integral equations. In their treatment the
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integral term of the equation is dealt with by utilizing the Gaussian quadrature with the
Chebyshev-Gauss-Lobatto points, and the integrand function has to be rewritten through
being divided by the Chebyshev weight function in order to get the form with Cheby-
shev weight function. Their numerical experiments coincide with convergence, which
demonstrates the applicability and the accuracy of the Chebyshev spectral method for
integral equations, but no theoretical justification about the spectral rate of convergence
was given in [3]. Tang and his collaborators have contributed a series of works to develop
spectral methods for integral equations (see [4–10]). In [5], a Jacobi-collocation spectral
method was applied to the Volterra integral equations of the second kind with a weakly
singular kernel. The convergence was analyzed by means of the Lebesgue constants cor-
responding to the Lagrange interpolation polynomials, and polynomial approximation
theory for orthogonal polynomials and operator theory. Their method provided the spec-
tral rate of convergence, which was also demonstrated by their numerical results. In [6]
the Legendre spectral collocation method was used to solve the Volterral integral equa-
tions with a smooth kernel function and a rigorous error analysis was given, in which
exponentially decayed numerical errors can be obtained if the kernel function and the
source function are sufficiently smooth.

The Chebyshev spectral collocation method is usually applied into integral equations
with singular kernel [4, 5]. This is due to the fact that the Chebyshev spectral method is
always accompanied with the weak singular weight function. For the spectral method
of integral equations with smooth kernel function the Legendre method can be consid-
ered [6, 7]. Compared with the Legendre collocation method which has high stability
but implicit expressions for collocation points and weights, the Chebyshev collocation
method has explicit collection points and weights. In addition, the Chebyshev method
can save computing time by means of the Fast Fourier Transfer method. Therefore it
might be more convenient in practice and more popular in engineering calculation.

In recent years, along with the development of the technique of domain decomposi-
tion and parallel computing, more and more researchers and engineers begin to study
domain decomposition spectral methods. The methods have been used in many fields.
In the past the methods were mostly used in finding numerical solutions for partial dif-
ferential equations (see [11] and the references therein). As for the domain decomposition
method for the integral equation, one can refer to [10] and [12] for the recent decelopment.
In [10], a parallel in time method to solve Volterra integral equations of second kind with
smooth kernel function was proposed, which follows the spirit of the domain decom-
position Legendre-Gauss spectral collocation method. A rigorous convergence analysis
of the method was also provided in [10]. In [12], a multi-step Legendre-Gauss spectral
collocation method for the nonlinear Volterra integral equations of the second kind was
introduced. The authors also derived the optimal convergence of the hp-version of the
method under the L2-norm, which is confirmed by their numerical experiments.

In this paper, we extend the domain decomposition Chebyshev collocation spectral
method to the second-kind Volterra integral equation. We consider the following Volterra



H. Wu, Y.Z. Zhu, H.L. Wang and L.F. Xu / J. Math. Study, 51 (2018), pp. 57-75 59

integral equation of the second kind:

u(x)+
∫ x

−1
K(x,s)F(u(s))ds= g(x), x∈Λ :=[−1,X], (1.1)

where the given source function g(x) and the unknown function u(x) are supposed to be
sufficiently smooth, and K∈C(D) with D :={(x,s) :−1≤ s≤ x<X}.

In [4] the Chebyshev collocation method has been proposed to solve the Volterra in-
tegral equations of the second kind with singular kernel.

In this paper, we will provide a domain decomposition method in the Chebyshev col-
location method for the equation (1.1) and make a rigorous error analysis. The method
can avoid errors caused by mapping a large integral interval into very short ones, and
computation can be simplified because in each subinterval it can be implemented in a
same way. We will split the interval [−1,1] into subintervals, and the more the subinter-
vals are, the faster the computing efficiency is. We use the Chebyshev collocation method
which can avoid the appearance of weakly singular weight function ω(x)= 1√

1−x2
. The

obtained numerical results satisfy exponential rate of convergence, which coincides with
convergence analysis.

This paper is organized as follows. In Section 2, we introduce spectral collocation
methods and domain decompositions method for the linear and nonlinear second-kind
Volterra integral equations. Some basic lemmas are given in Section 3. In Section 4, we
present the convergence analysis. And in Section 5, we provide numerical experiments
which are used to demonstrate the results obtained in Section 4.

2 The schemes

In this section, we introduce multidomain Chebyshev collocation method for the linear
and nonlinear Volterra integral equations.

We split the interval Λ into several subintervals Ii=[xi−1,xi] (i=1,2,··· ,M), where

−1= x0< x1< ···< xM =X.

Let hi = xi−xi−1,ui ≡u|Ii
,1≤ i≤ M. Denote PN(I) be the set of all algebraic polynomials

of degree at most N over the interval I=[−1,1], and N is a positive integer.
In the following, we introduce notations

u(x)=u(x), x=
1

2
(hix+xi+xi−1), x∈ Ii, x∈ I. (2.1)

By I
C(x)
N :C(I)→PN(I) we denote the Chebyshev interpolation operator at the Chebyshev-

Gauss-Lobatto (CGL) points xj =cos(π j
N ) (0≤ j≤N) and it satisfies

I
C(x)
N u(xj)=u(xj).
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Define I
C(x)
N :C(I)→PN as an operator produced by the Chebyshev interpolation operator

I
C(x)
Ni

, which obeys

(I
C(x)
N u)i = I

C(x)
Ni

ui(x), 1≤ i≤M,

Finally, introduce ξ= x, by which Equation(2.1) can be written as

x=ωi(ξ)=
xi+xi−1

2
+

xi−xi−1

2
ξ, ξ∈ [−1,1]. (2.2)

2.1 For linear Volterra integral equation

Consider the following linear Volterra integral equation:

u(x)+
∫ x

−1
K(x,s)u(s)ds= g(x), x∈Λ. (2.3)

On each subinterval we have

ui(x)+
i−1

∑
k=1

∫ xk

xk−1

K(x,ζ)uk(ζ)dζ+
∫ x

xi−1

K(x,s)ui(s)ds= g(x), x∈ (xi−1,xi]. (2.4)

It is transferred to an equivalent form defined on the reference interval I, which reads

ūi(ωi(ξ))+
i−1

∑
k=1

hk

2

∫

I
K̄k(ωi(ξ),ωk(η))ū

k(ωk(η))dη

+
hi

2

∫ ωi(ξ)

−1
K̄i(ωi(ξ),ωi(θ))ū

i(ωi(θ))dθ= ḡi(ωi(ξ)), ξ∈ I. (2.5)

Then we get the following equation at CGL points ωi(ξn), (n = 0,1,··· ,Ni) of each
subinterval Ii,

ūi(ωi(ξn))+
i−1

∑
k=1

hk

2

∫

I
K̄k(ωi(ξn),ωk(η))ū

k(ωk(η))dη

+
hi

2

∫ ωi(ξn)

−1
K̄i(ωi(ξn),ωi(θ))ū

i(ωi(θ))dθ= ḡi(ωi(ξn)), ξ∈ I. (2.6)

Assume that Equation (2.5) holds at the collocation points ωi(ξn). We make interpola-
tion for function K(η)u(η) in each subinterval where we let ui

n be the approximation of
u(ξ i

n). Then we obtain the domain decomposition Chebyshev-Gauss-Lobatto collocation
scheme of (2.5)

ūi
n+

i−1

∑
k=1

hk

2

∫

I
I

C(η)
Nk

K̄k(ωi(ξn),ωk(η))ū
k
N (ωk(η))dη

+
hi

2

∫ ωi(ξn)

−1
I

C(θ)
Nk

K̄i(ωi(ξn),ωi(θ))ū
i
N (ωi(θ))dθ= ḡi(ωi(ξn)), ξ∈ I, (2.7)
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where uN =∑
M
i=1∑

Ni
n=0 ūi

nFi
n(ωi(ξ)) is the numerical solution of u(x) in which {Fi

n(ωi(ξ))}
are the Lagrange basis function associated with the collocation points ωi(ξn) (n=0,1,··· ,Ni,
i=1,··· ,M).

We then obtain

ūi
n+

i−1

∑
k=1

hk

2

Nk

∑
j=0

ūk
j K̄k(ωi(ξn),ωk(ξ j))

∫

I
Fk

j (ωk(η))dη

+
hi

2

Ni

∑
j=0

ūi
jK̄

i(ωi(ξn),ωi(ξ j))
∫ ωi(ξn)

−1
Fi

j (ωi(θ))dθ= ḡi(ωi(ξn)). (2.8)

Next we discuss some implementation issues of the spectral collocation algorithm.
Introducing notations UN =[ū1

0,··· ,ū1
N1

,ū2
0,··· ,ū2

N2
,··· ,ūM

0 ,··· ,ūM
NM

]T and

GN =[ḡ1(ω1(ξ0)),··· , ḡ1(ω1(ξN1
), ḡ2(ω2(ξ0)),··· , ḡ2(ω1(ξN2

),··· , ḡM(ωM(ξ0)),··· , ḡM(ωM(ξNM
)]T ,

we can write (2.8) as a matrix form:

UN+AUN =GN ,

where matrix A=(Ai,j) is defibed by

A(Nk+1)i+n,(Nk+1)k+l =
hk

2
K̄k(ωi(ξn),ωk(ξl))

∫ 1

−1
Fk

l (ωk(ξ))dξ,

A(Ni+1)i+n,(Ni+1)i+l =
hi

2
K̄i(ωi((ξn),ωi(ξl))

∫ ωi(ξn)

−1
Fi

l (ωi(ξ))dξ,

for i = 1,2,··· ,M, n = 0,1,··· ,Ni, k = 1,2,··· ,i−1, l = 0,1,··· ,Ni. We discuss an efficient

way to compute
∫ 1
−1 Fj(ξ)dξ and

∫ ξn

−1 Fj(ξ)dξ, where Fj(ξ) is the common j-th Lagrange
interpolation basis fuction and ξn is the Chebyshev-Gauss-Lobatto point. In fact, the
Lagrange basis function Fj(ξ) can be expressed in terms of the Chebyshev polynomials
as the following,

Fj(ξ)=
N

∑
l=0

ajl Tl(ξ), 0≤ j≤N.

From [13] we have

ajl =
2

Nc̃l

N

∑
m=0

c̃−1
m Fj(ξm)cos(lmπ/N)=

2

Nc̃j
c̃−1

l cos(jlπ/N),

where

c̃l =

{

2, l=0,N,

1, l=1,··· ,N−1.
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Submitting the above ajl into Fj(s) yields

Fj(ξ)=
2

Nc̃j

N

∑
l=0

c̃−1
l cos(jlπ/N)Tl(ξ), 0≤ j≤N. (2.9)

Thus we reach

∫ ξn

−1
Fj(ξ)dξ=

2

Nc̃j

N

∑
l=0

c̃−1
l cos(jlπ/N)

∫ ξn

−1
Tl(ξ)dξ, 0≤ j≤N,

where
∫ ξn

−1
Tl(ξ)dξ can be achieved by using the relation 2Tl(ξ)=

1
l+1 T′

l+1(ξ)− 1
l−1 T′

l−1(ξ),
namely,

∫ ξn

−1
Tl(ξ)dξ=























1
2(l+1)

Tl+1(ξn)− 1
2(l−1)

Tl−1(ξn)+
(−1)l

l2−1
, l≥2,

1
4(T2(ξn)−1), l=1,

T1(ξn)+1, l=0.

(2.10)

Here Tl±1(ξn)=cos(n(l±1)π/N), then
∫ 1
−1

Fj(ξ)dξ and
∫ ξn

−1
Fj(ξ)dξ can be evaluated eas-

ily. By using this method that we deal with the integral part of the integral equation we
can avoid appearance of the weakly singular weight function ω(x)= 1√

1−x2
. In [14], the

similar numerical integration method we used here can be found. And it was proved
both in theory and numerically that the numerical integration method used in [14] is as
good as the Gaussian quadrature. In fact, we also get good results both in theory and nu-
merically by using this numerical integration method to solve the second-kind Volterra
integral equations.

2.2 For nonlinear Volterra integral equation

Consider the following nonlinear Volterra integral equation

u(x)+
∫ x

−1
K(x,s)φ(u(s))ds= g(x), x∈ I, (2.11)

where the source function g(x) and K(x,s) are sufficiently smooth. Its domain decompo-
sition Chebyshev-Gauss-Lobatto collocation scheme is

ūi
n+

i−1

∑
k=1

hk

2

∫

I
I

C(η)
Nk

K̄k(ωi(ξn),ωk(η))φ(ū
k
N (ωk(η)))dη

+
hi

2

∫ ωi(ξn)

−1
I

C(θ)
Nk

K̄i(ωi(ξn),ωi(θ))φ(ū
i
N (ωi(θ)))dθ= ḡi(ωi(ξn)), ξ∈ I, (2.12)
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where uN =∑
M
i=1∑

Ni
n=0 ūi

nFi
n(ωi(ξ)) is supposed to be the numerical solution of u(x), in

which Fi
n(ωi(ξ)) is the Lagrange basis function associated with the collocation points

ωi(ξn) (n=0,1,··· ,Ni, i=1,2,··· ,M).
We then obtain

ūi
n+

i−1

∑
k=1

hk

2

Nk

∑
j=0

φ(ūk
j )K̄

k(ωi(ξn),ωk(ξ j))
∫

I
Fk

j (ωk(η))dη

+
hi

2

Ni

∑
j=0

φ(ūi
j)K̄

i(ωi(ξn),ωi(ξ j))
∫ ωi(ξn)

−1
Fi

j (ωi(θ))dθ= ḡi(ωi(ξn)). (2.13)

The above numerical scheme leads to a nonlinear system for ūi
n. Similar to linear case,

we can get its matrix form as follows

UN+B(UN)=GN,

where B(UN) is a function of UN. We can solve the nonlinear system by a simple iterative
method. Let UN =GN−B(UN). Choose a proper initial value UN,0 as the approximation
of UN. Substitute it into the right hand side and get the UN,1 as the new approximation
of UN. Repeat this procedure until |UN,k+1−UN,k|< ε.

3 Some basic lemmas

In the following, by ‖·‖ we denote the norm of the space L2(I),

L2(I)=
{

υ : υ is Lebesgue measurable,‖v‖L2(I)<∞
}

,

where

‖υ‖L2(I)=

(

∫

I
υ2(x)dx

)

1
2

.

For m>0, let Hm(I) be the classical Sobolev space equipped with the norm ‖·‖m and
the semi norm |·|m.

Introduce a piecewise Sobolev space

H̃σ(I)=
{

u : ui≡u|Ii
∈Hσ(Ii),1≤ i≤M

}

, (3.1)

with the semi-norm

|u|Hσ(I)= |u|H̃σ(I)=

(

∑
1≤i≤M

|ui|2σ,Ii

)
1
2

. (3.2)

Let C be a generic positive constant independent of hi,Ni and any function. Set hmax=
max1≤i≤M hi,Nmin =min1≤i≤M(Ni). Next, we give some useful lemmas.
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Lemma 3.1. (Sobolev inequality, [15],p.490) For any u∈H1(a,b), the following inequality holds

‖u‖L∞(a,b)≤
(

1

b−a
+2

)
1
2

‖u‖
1
2

L2(a,b)
‖u‖

1
2

H1(a,b)
. (3.3)

Lemma 3.2. ([17], p.874.) If u∈Hσ(I),σ≥1, then

‖IC
Nu−u‖l ≤CNl−σ‖u‖σ, 0≤ l≤1. (3.4)

Lemma 3.3. ([16], p.118.) If v∈Hσ(Ii),(σ≥0), then

|v̄|σ,I ≤Ch
σ− 1

2
i |v|σ,Ii

, |v|σ,Ii
≤Ch

1
2−σ

i |v̄|σ,I . (3.5)

Lemma 3.4. If u∈ H̃σ(I)(σ≥1), then

|IC
N u−u|H̃l(I)≤Ch

(σ−l)
max (Nmin)

(l−σ)|u|H̃σ(I), 0≤ l≤1. (3.6)

Proof. We have from (3.4) and (3.5) that

|IC
N u−u|2

H̃l(I)
= ∑

1≤i≤M

|(IC
Nu)

i−ui|2l,Ii
≤C ∑

1≤i≤M

h1−2l
i | ĪC

Ni
ūi−ūi|2l

≤C ∑
1≤i≤M

h1−2l
i N

2(l−σ)
i |ūi|2σ ≤C ∑

1≤i≤M

h1−2l
i N

2(l−σ)
i h2σ−1

i |ui|2σ,Ii

≤C ∑
1≤i≤M

h
2(σ−l)
i N

2(l−σ)
i |ui|2σ,Ii

,

(3.7)

which gives the desired result.

Lemma 3.5. (Gronwall inequality, Lemma 3.4 of [6]) If a non-negative integrable function E(t)
satisfies

E(t)≤C1

∫ t

−1
E(s)ds+G(t), −1< t≤1, (3.8)

where G(t) is an integrable function, then

‖E‖Lp(I)≤C‖G‖Lp(I) , p≥1. (3.9)

4 Convergence analysis for nonlinear Volterra integral equation

In this part we analyze the discrete scheme (2.12) of the nonlinear Volterra integral equa-
tion and derive the error estimate in L∞ norm of the method.
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Theorem 4.1. Let u(x) be the exact solution of nonlinear Volterra integral equation (2.11) and
assume that

uN (x)=
M

∑
i=1

Ni

∑
j=0

ui
nFi

n(x)=
M

∑
i=1

Ni

∑
j=0

ūi
nFi

n(ωi(ξ)) (4.1)

is the numerical solution of u(x) where Fi
j (x) is the Lagrange basis function associated with the

collocation points xi
j (j = 0,1,··· ,Ni i = 1,··· ,M). Set N = (N1,··· ,NM). If u ∈ Hm(I) and

φ(x,u) satisfies a Lipschitz condition with respect to u on I, i.e.,

|φ(x,u)−φ(x,v)|≤ L|u−v|, (4.2)

where L>0 is the Lipschitz constant, then for any integer m≥1,

‖u−uN ‖L∞(I)

≤ C(hmaxN−1
min)

m− 1
2 max
−1≤x≤1

‖K(x,s)‖Hm(I)

(

‖u‖Hm(I)+‖φ(s,u(s))‖Hm(I)

)

, (4.3)

where C is a constant independent of hmax,N−1
min and

‖φ(s,u(s))‖2
Hm(I)=

m

∑
l=0

∥

∥

∥
∂l

sφ(s,u(s))
∥

∥

∥

2

L2(I)
.

Proof. Multiplying both sides of (2.12) by Fi
n(x), and summing up n from 0 to Ni and i

from 1 to M yields

uN (x)+ IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,uN (s))
)

ds

)

= IC
N g(x), (4.4)

where

IC
N
(

K(x,s)φ(s,uN (s))
)

=
M

∑
i=1

Ni

∑
j=0

K(x,si
j)φ(s

i
j,uN (si

j))Fi
j (s), (4.5)

si
j is the collocation point and uN is defined by(4.1). Define

e(x)=uN (x)−u(x), x∈ [−1,1]. (4.6)

Assume that the kernel function K(x,s) is smooth sufficiently which leads to the m-th
partial derivative of K(x,s) to be bounded.

From (4.4) and (2.11), we can obtain

e(x)+ IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,uN (s))
)

ds

)

−
∫ x

−1
K(x,s)φ(s,u(s))ds= IC

N g(x)−g(x).
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Therefore

e(x)=
∫ x

−1
K(x,s)φ(s,u(s))ds− IC

N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,uN (s))
)

ds

)

+ IC
N g(x)−g(x),

where

IC
N g(x)−g(x)= IC

N
(

u(x)+
∫ x

−1
K(x,s)φ(s,u(s))ds

)

−
(

u(x)+
∫ x

−1
K(x,s)φ(s,u(s))ds

)

.

Then it follows that

e(x)= IC
N u(x)+ IC

N

(

∫ x

−1
K(x,s)φ(s,u(s))ds

)

−u(x)− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,uN (s))
)

ds

)

=

(

IC
N u(x)−u(x)

)

+ IC
N

(

∫ x

−1
K(x,s)φ(s,u(s))ds

)

− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,uN (s))
)

ds

)

. (4.7)

Now, let J1= IC
N u(x)−u(x), and from Lemma 3.4 and Lemma 3.1 we have

‖J1‖L∞(I)≤C‖J1‖
1
2

L2(I)
‖J1‖

1
2

H1(I)

≤
[

C(hmaxN−1
min)

m‖u‖Hm(I)C(hmaxN−1
min)

m−1‖u‖Hm(I)

]
1
2

≤C(hmaxN−1
min)

m− 1
2 ‖u‖Hm(I) . (4.8)

Meanwhile, in (4.7), we have

IC
N

(

∫ x

−1
K(x,s)φ(s,u(s))ds

)

− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(x,uN (s))
)

ds

)

=

[

IC
N
(

∫ x

−1
K(x,s)φ(s,u(s))ds

)

−
∫ x

−1
K(x,s)φ(s,u(s))ds

]

+

[

∫ x

−1
K(x,s)φ(s,u(s))ds−

∫ x

−1
IC
N (K(x,s)φ(s,u(s)))ds

]

+

[

∫ x

−1
IC
N (K(x,·)φ(·,u(·)))ds−

∫ x

−1
IC
N (K(x,·)φ(·,uN (·)))ds

]

+

[

∫ x

−1
IC
N (K(x,s)φ(s,uN (s)))ds− IC

N
(

∫ x

−1
IC
N (K(x,·)φ(·,uN (s)))ds

)

]

=:J2+ J3+ J4+ J5, (4.9)
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where

J2= IC
N
(

∫ x

−1
K(x,s)φ(s,u(s))ds

)

−
∫ x

−1
K(x,s)φ(s,u(s))ds,

J3=
∫ x

−1
K(x,s)φ(s,u(s))ds−

∫ x

−1
IC
N (K(x,s)φ(s,u(s)))ds,

J4=
∫ x

−1
IC
N (K(x,s)φ(s,u(s)))ds−

∫ x

−1
IC
N (K(x,s)φ(s,uN (s)))ds,

J5=
∫ x

−1
IC
N (K(x,·)φ(·,uN (·)))ds− IC

N
(

∫ x

−1
IC
N (K(x,s)φ(s,uN (s)))ds

)

.

It can also be derived from Lemma 3.4 and Lemma 3.1 that

‖J2‖L∞(I)≤C‖J2‖
1
2

L2(I)
‖J2‖

1
2

H1(I)

≤
[

C(hmaxN−1
min)

m

∥

∥

∥

∥

∫ x

−1
K(x,s)φ(s,u(s))ds

∥

∥

∥

∥

Hm(I)
C(hmaxN−1

min)
m−1

∥

∥

∥

∥

∫ x

−1
K(x,s)φ(s,u(s))ds

∥

∥

∥

∥

Hm(I)

]
1
2

≤C(hmaxN−1
min)

m− 1
2

∥

∥

∥

∥

∫ x

−1
K(x,s)φ(s,u(s)))ds

∥

∥

∥

∥

Hm(I)

≤C(hmaxN−1
min)

m− 1
2 ‖φ(s,u(s))‖Hm−1(I) , (4.10)

and

|J3|≤
∫ x

−1
|IC
N

(

K(x,s)φ(s,u(s))

)

−K(x,s)φ(s,u(s))|ds

≤C
∥

∥

∥
IC
N (Ku)−Ku

∥

∥

∥

L∞(I)

≤C
∥

∥

∥
IC
N (Ku)−Ku

∥

∥

∥

1/2

L2(I)

∥

∥

∥
IC
N (Ku)−Ku

∥

∥

∥

1/2

H1(I)

≤C(hmaxN−1
min)

m− 1
2 ‖K(x,s)φ(s,u(s))‖Hm(I)

≤C(hmaxN−1
min)

m− 1
2 max
−1≤x≤1

‖K(x,s)‖Hm(I)‖φ(s,u(s))‖Hm(I) , (4.11)

Therefore, we get

‖J3‖L∞(I)≤C(hmaxN−1
min)

m− 1
2 max
−1≤x≤1

‖K(x,s)‖Hm(I)‖φ(s,u(s))‖Hm(I) . (4.12)
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Next,

J4=
∫ x

−1
IC
N

(

K(x,s)φ(s,u(s))

)

ds−
∫ x

−1
IC
N

(

K(x,s)φ(s,uN (s))

)

ds

=
∫ x

−1
IC
N
[

K(x,s)
(

φ(s,u(s))−φ(s,uN (s))
)]

ds

≤
∫ x

−1
IC
N [K(x,s)|φ(s,u(s))−φ(s,uN (s))|]ds

≤
∫ x

−1
IC
N [K(x,s)L|u(s)−uN (s)|]ds

=
∫ x

−1
IC
N [K(x,s)L|e(s)|]ds

= L
∫ x

−1
IC
N

(

K(x,s)|e(s)|
)

ds−L
∫ x

−1
K(x,s)|e(s)|ds+L

∫ x

−1
K(x,s)|e(s)|ds

= J6+L
∫ x

−1
K(x,s)|e(s)|ds,

where

J6= L
∫ x

−1
IC
N

(

K(x,s)|e(s)|
)

ds−L
∫ x

−1
K(x,s)|e(s)|ds.

Then we can have that

|J6|≤C
∫ x

−1
|K(x,s)|e(s)|− IC

N

(

K(x,s)|e(s)|
)

|ds

≤C

∥

∥

∥

∥

∥

K(x,s)|e(s)|− IC
N

(

K(x,s)|e(s)|
)
∥

∥

∥

∥

∥

L2(I)

≤C(hmaxN−1
min)

∥

∥

∥

∥

∥

(

K(x,s)|e(s)|
)
∥

∥

∥

∥

∥

H1(I)

≤C(hmaxN−1
min)

(

‖K‖H1(I)‖e‖L2(I)+‖K‖L∞(I)‖e‖L∞(I)

)

, (4.13)

Therefore

‖J6‖L∞(I)≤C(hmaxN−1
min)‖e‖L∞(I) . (4.14)
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J5 can be written and estimated as

J5=
∫ x

−1
IC
N

(

K(x,s)φ(s,uN (s))

)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,uN (s))
)

ds

)

=
∫ x

−1
IC
N

(

K
(

φ(s,uN )−φ(s,u)+φ(s,u)
)

)

ds

− IC
N

(

∫ x

−1
IC
N
(

K
(

φ(s,uN )−φ(s,u)+φ(s,u)
))

ds

)

≤
∫ x

−1
IC
N

(

K(x,s)|φ(s,uN )−φ(s,u)|
)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)|φ(s,uN )−φ(s,u)|
)

ds

)

+
∫ x

−1
IC
N

(

K(x,s)φ(s,u(s))

)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,u(s))
)

ds

≤
∫ x

−1
IC
N

(

K(x,s)L|uN−u|
)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)L|uN −u|
)

ds

)

+
∫ x

−1
IC
N

(

K(x,s)φ(s,u(s))

)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,u(s))
)

ds

=
∫ x

−1
IC
N

(

K(x,s)L|e(s)|
)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)L|e(s)|
)

ds

)

+
∫ x

−1
IC
N

(

K(x,s)φ(s,u(s))

)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,u(s))
)

ds

=:J7+ J8, (4.15)

where

J7=L
∫ x

−1
IC
N

(

K(x,s)|e(s)|
)

ds− IC
N

(

L
∫ x

−1
IC
N
(

K(x,s)|e(s)|
)

ds

)

,

J8=
∫ x

−1
IC
N

(

K(x,s)φ(s,u(s))

)

ds− IC
N

(

∫ x

−1
IC
N
(

K(x,s)φ(s,u(s))
)

ds

)

=(I− IC
N )
∫ x

−1
K(x,s)φ(s,u(s))ds+(I− IC

N )
∫ x

−1
(IC

N− I)(K(x,s)φ(s,u(s)))ds.
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According to Lemma 3.4 and Lemma 3.1, we have

‖J7‖L∞(I)≤C‖J7‖1/2
L2(I)‖J7‖1/2

H1(I)≤C(hmaxN−1
min)

1
2

∥

∥

∥

∥

∥

∫ x

−1
IC
N

(

K(x,s)|e(s)|
)

ds

∥

∥

∥

∥

∥

H1(I)

≤C(hmaxN−1
min)

1
2

∥

∥

∥

∥

∥

M

∑
i=1

Ni

∑
n=0

K(x,xi
n)e(xi

n)
∫ x

−1
Fi

n(s)ds

∥

∥

∥

∥

∥

H1(I)

≤C(hmaxN−1
min)

1
2 ‖e‖L∞(I) , (4.16)

‖J8‖L∞(I)≤C‖J8‖1/2
L2(I)‖J8‖1/2

H1(I)≤C(hmaxN−1
min)

m− 1
2

∥

∥

∥

∥

∥

∫ x

−1
IC
N

(

K(x,s)φ(s,u(s))

)

ds

∥

∥

∥

∥

∥

Hm(I)

≤C(hmaxN−1
min)

m− 1
2 max
−1≤x≤1

‖K(x,s)‖Hm(I)‖φ(s,u(s))‖Hm(I) . (4.17)

Substituting J1∼ J8 into (4.7), it obtains that

e(x)≤ L
∫ x

−1
K(x,s)|e(s)|ds+ J1+ J2+ J3+ J6+ J7+ J8. (4.18)

Then we have

|e(x)|≤ L
∫ x

−1
|K(x,s)|·|e(s)|ds+|J1+ J2+ J3+ J6+ J7+ J8|, (4.19)

According to the Gronwall inequality (Lemma 3.5), we can get

‖e(x)‖L∞(I)

≤C
(

‖J1‖L∞(I)+‖J2‖L∞(I)+‖J3‖L∞(I)+‖J6‖L∞(I)+‖J7‖L∞(I)+‖J8‖L∞(I)

)

. (4.20)

From all the above estimates together with (4.20), we obtain (4.3). This completes the
proof.

5 Numerical example

In this section, we provide some numerical examples, which show that the domain de-
composition Chebyshev Collocation Method is efficient and exponentially convergent for
both linear and nonlinear Volterra integral equations.

5.1 Linear examples

Example 5.1. This example is about a linear Volterra integral equation of second kind,
which is

u(x)+
∫ x

−1
exsu(s)ds=e4x+

1

x+4
(ex(x+4)−e−x−4).

The exact solution is u(x)=e4x.
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Example 5.2. The second example is the following linear integral equation:

u(x)+
∫ x

−1
(−xs)u(s)ds=e−x2− 1

2
(

1

e
−e−x2

)x.

It has an exact solution u(x)=e−x2
.

We apply the numerical scheme (2.8) to Example 5.1 and Example 5.2. Maximum
absolute errors of these two examples with different M are displayed in Figure 1 and
Figure 2, which indicate that the desired spectral accuracy can be obtained. We also
make a comparison for the numerical results of single domain method and multi-domain
method.
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Figure 1: Maximum errors of Example 5.1
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Figure 2: Maximum errors of Example 5.2

5.2 Nonlinear examples

Actually, a lot of Volterra integral equations are nonlinear. Below we give several nonlin-
ear numerical examples.

Example 5.3. This example is concerned with a nonlinear problem:

u(x)+
∫ x

−1
ex−3su2(s)ds=− 1

2(1+36π2)
(e−x+36π2e−x−e−xcos(6πx)

+6πe−xsin(6πx)−36eπ2)ex+exsin(3πx),

with an exact solution u(x)=ex sin(3πx).

Example 5.4. We next consider the following nonlinear Volterra integral equations.

u(x)+
∫ x

0
−2ses−x cos(u(s))

sin(x)+cos(x)
ds=

sin(x)

sin(x)+cos(x)
, x∈ [0,1].
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Exact solution of the equation is u(x)= x.
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Figure 3: Maximum errors for Ex-
ample 5.3
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Figure 4: Maximum errors for Ex-
ample 5.4:
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Figure 5: Maximum errors for Ex-
ample 5.5:

Example 5.5. The third nonlinear example is concerned with the nonlinear problem

u(x)+
∫ x

−1
3sin(x−s)u2(s)ds=cos(10x)− 1

28
cos(x+21)+

3

76
cos(x−19)

− 3

2
cos(x+1)− 1

266
cos(20x)+

3

2
,

with an exact solution u(x)=cos(10x).

Numerical results for Examples 5.3–5.5 can be seen from Figure 3, Figures 4 and 5.
Again, it is clearly observed that the errors decay exponentially. The above three exam-
ples show that when N is fixed, the greater the number M is, the higher convergence
order can be obtained. This means we can obtain the high spectral accuracy by splitting
the integral interval into more subintervals.

5.3 High oscillating examples

Example 5.6. We consider the following nonlinear Volterra integral equations

u(x)+
∫ x

0
−su2(s)ds= g(x), x∈ [0,X] (5.1)

where g(x)=− 1
4 x2+ 1

4λ2 sin2(λx)− x
4λ sin(2λx)+cos(λx). Exact solution is u(x)=cos(λx),

which is oscillated when λ is very big.

Figure 6 describes exact solution u(x)=cos(200x) of this example.
Numerical results for Example 5.6 with X=5,λ=200 can be seen from Figure 7. The

method is very effective for high oscillate case.
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Figure 6: Exact solution for Example 5.6
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Figure 7: Maximum errors for Example5.6

5.4 Longtime calculations

Example 5.7. We consider the nonlinear Volterra integral equation

u(x)+
∫ x

0
−es−x(u(s)+e−u(s))ds=e−x, x∈ [0,40] (5.2)

with exact solution u(t) = ln(t+e). Maximum errors of the numerical results with X =
40 with different M is shown in Figure 8, which shows that our method can keep high
accuracy when x is bigger.

5.5 Discontinuous problems

Example 5.8. Consider the nonlinear Volterra integral equation with a discontinuous so-
lution,

u(x)+
∫ x

−1
ex−3su2(s)ds= g(x), x∈ [−1,5], (5.3)

where

g(x)=



























− 1

2(1+36π2)

(

1+36π2−cos(6πx)+6πsin(6πx)−36ex+1π2
)

ex

+exsin(3πx) −1≤ x≤2,

−36π2(1−e3)

2(1+36π2)
+e

3
2 x+(1+x)ex−3e2 2< x≤5,

The exact solution is

u(x)=

{

ex sin(3πx) −1≤ x≤2,

e
3
2 x 2< x≤5.
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For the discontinuous case, we split integral interval into several subintervals. For
every splitting, the discontinuous point is the endpoint of one subinterval. The comput-
ing results are shown in Figure 9. It is indicated that our method is quite vigourous for
discontinuous equations.
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Figure 8: Maximum errors for Example 5.7
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Figure 9: Maximum errors for Example 5.8

6 Conclusions

In the paper we provided a domain decomposition Chebyshev collocation spectral method
for solving the second-kind Volterra integral equations. Theoretically, we also got the
spectral convergence rate for solving the nonlinear equations. The obtained numerical
results coincide with theoretical analysis. In particular, the method also works well for
some longtime computaions and discontinuous or high oscillating problems of nonlinear
Volterra integral equaitons.
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