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Abstract. Let G be a finite group and x∈G. The nilpotentiser of x in G is defined to
be the subset NilG(x)={y∈G : 〈x,y〉 is nilpotent}. G is called an N -group (n-group) if
NilG(x) is a subgroup (nilpotent subgroup) of G for all x∈G\Z∗(G) where Z∗(G) is
the hypercenter of G. In the present paper, we determine finite N -groups in which the
centraliser of each noncentral element is abelian. Also we classify all finite n-groups.
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1 Introduction

Consider x∈G. The centraliser, nilpotentiser and engeliser of x in G are

CG(x)={y∈G : 〈x,y〉 is abelian}, NilG(x)={y∈G : 〈x,y〉 is nilpotent}

and
EG(x)={y∈G : [y,n x]=1 f or some n}

respectively. Obviously

CG(x)⊆NilG(x)⊆EG(x) for each x∈G.

Note that NilG(x) and EG(x) are not necessarily subgroups of G. So determining the
structure of groups by nilpotentisers ( or engelisers) is more complicated than the cen-
tralisers. Let G be a finite group. Let 1≤Z1(G)<Z2(G)< ··· be a series of subgroups of
G, where Z1(G)=Z(G) is the center of G and Zi+1(G), for i>1, is defined by

Zi+1(G)

Zi(G)
=Z(

G

Zi(G)
).
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Let Z∗(G)=
⋃

i Zi(G). The subgroup Z∗(G) is called the hypercenter of G. We say a group
is n-group in which NilG(x) is a nilpotent subgroup for each x∈G\Z∗(G).

Now a group is N -group in which the nilpotentiser of each element is subgroup and
a CA-group is a group in which the centraliser of each noncentral element is abelian
(see [16] or [5]). The class of N -groups were defined and investigated by Abdollahi and
Zarrin in [1]. In particular they showed that every centerless CA-group is an N -group.
In this paper, we shall prove the following generalisation of this result.

Theorem 1.1. Let G be a nonabelian CA-group. Then G is an N -group if and only if we have
one of the following types:

1. G has an abelian normal subgroup K of prime index.

2. G
Z(G) is a Frobenius group with Frobenius kernel K

Z and Frobenius complement L
Z(G) , where

K and L are abelian.

3. G
Z(G)

is a Frobenius group with Frobenius kernel K
Z and Frobenius complement L

Z(G)
, such

that K=PZ, where P is a normal Sylow p-subgroup of G for some prime divisor p of |G|,
P is a CA-group, Z(P)=P

⋂

Z and L=HZ, where H is an abelian p′-subgroup of G.

4. G
Z(G)

∼=PSL(2,q) and G′∼=SL(2,q) where q>3 is a prime-power number and 16 ∤q2−1.

5. G
Z(G)

∼=PGL(2,q) and G′∼=SL(2,q) where q>3 is a prime and 8 ∤q±3.

6. G=P×A where A is abelian and P is a nonabelian CA-group of prime-power order.

A group is said to be an E-group whenever engeliser of each element of such group is
subgroup. The class of E-groups was defined and investigated by Peng in [13,14]. Also
Heineken and Casolo gave many more results about them (see [3,4,6]). Now recall that
an engel group is a group in which the engeliser of every elements is the whole group. If
G is an E-group such that the engeliser of every element is engel, G is an n-group since
every finite engel group is nilpotent. This result motivates us to classify all finite n-groups
in following theorem.

But before giving it, recall that the Hughes subgroup of a group G is defined to be
the subgroup generated by all the elements of G whose orders are not p and denoted by
Hp(G) where p is a prime. Also a group G is said to be of Hughes-Thompson type, if for
some prime p it is not a p-group and Hp(G) 6=G.

Theorem 1.2. Let G be a nonnilpotent group. Then G is an n-group if and only if G
Z∗(G)

satisfies

one of the following conditions:

(1) G
Z∗(G) is a group of Hughes-Thompson type and

∣

∣

∣

∣

Nil G
Z∗(G)

(xZ∗(G))

∣

∣

∣

∣

= p

for all xZ∗(G)∈ G
Z∗(G)

\Hp(
G

Z∗(G)
);
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(2) G
Z∗(G) is Frobenius group with Frobenius complement H

Z∗(G) and H is an n-group of G;

(3) G
Z∗(G)

∼=Sz(q);

(4) G
Z∗(G)

∼=PSL(2,2m), m>1.

Our notations are standard and can be found mainly in [15]. In particular PSL(2,q),
PGL(2,q) and Sz(q) are the projective special linear group, projective general linear group
of degree 2 over the finite field of size q and the Suzuki simple group over the finite field
of size q respectively. Also in this paper G is a finite group and p is a prime.

2 Proofs of the Main Results

To prove our main results, we quote some lemmas that are required in the rest of the
paper. Following theorem by schmidt determine all CA-groups. We use improved form
of it due to Dolfi et al. ([5]).

Lemma 2.1. Let G be a nonabelian group and write Z = Z(G). Then G is a CA-group if and
only if it is of one of the following types:

(I) G is nonabelian and has an abelian normal subgroup of prime index.

(II) G
Z is a Frobenius group with Frobenius kernel K

Z and Frobenius complement L
Z , where K and

L are abelian.

(III) G
Z is a Frobenius group with Frobenius kernel K

Z and Frobenius complement L
Z , such that

K=PZ, where P is a normal Sylow p-subgroup of G for some p ∈π(G), P is a CA-group
(F-group), Z(P)=P

⋂

Z and L=HZ, where H is an abelian p′-subgroup of G.

(IV) G
Z
∼=S4 and if V

Z is the Klein four group in G
Z , then V is nonabelian.

(V) G = P×A, where P is a nonabelian CA-group (F-group) of prime-power order and A is
abelian.

(VI) G
Z
∼=PSL(2,pn) or PGL(2,pn) and G′≃SL(2,pn) where p is a prime and pn

>3.

(VII) G
Z
∼=PSL(2,9) or PGL(2,9) and G′ is isomorphic to the Schur cover of PSL(2, 9).

Lemma 2.2. Let G be a finite N -group. Then all subgroups of G are N -groups.

Proof. The proof is clear.

Lemma 2.3. Let G be a Frobenius group with Frobenius complement H. Then G is an N -group
(n-group) if and only if H is an N -group (n-group).

Proof. The proof is similar to Proposition 3.1 of [12].
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Lemma 2.4. PGL(2,q) is an N -group if and only if q>3 is a prime number and 8 ∤(q±3).

Proof. See Proposition 3.4 of [12].

Lemma 2.5. PSL(2,q) is an N -group if and only if 16 ∤q2−1.

Proof. See Lemmas 3.9 and 3.10 of [1].

Lemma 2.6. Let G be a group. Then G is an N -group (n-group) if and only if G
K is an N -group

(n-group) for some normal subgroup K of G with K≤Z∗(G).

Proof. See Lemma 2.2 (1)-(4) of [1].

Proof of Theorem 1.1. First, note that every centerless CA-group K is an N -group and in
particular NilK(x) = CK(x) for each x ∈ K (see Lemma 3.6 of [1]). Suppose that G is a
CA-group. We apply Lemma 2.1 in order to establish our claim.

S4, the symmetric group of degree 4, is not an N -group since Nils4
((12)(34)) is not a

subgroup of S4. It follows that G does not satisfy (IV) of Lemma 2.1 by Lemmas 2.3 and
2.6. Similarly since PSL(2,9) and PGL(2,9) have some subgroups isomorphic to S4, G
does not satisfy (VII).

Now, assume that G satisfies (I) of Lemma 2.1. Then G has an abelian normal sub-
group A of prime index p. If G= AZ∗(G), then G is nilpotent and so G is an N -group.
Suppose that G 6=AZ∗(G). Then G

Z∗(G)
has a normal abelian subgroup

A=
AZ∗(G)

Z∗(G)

of index p. Therefore G
Z∗(G)

is a centerless CA-group and so we have the result by Lemma

2.6.
Next, suppose that G satisfies (II) or (III) of Lemma 2.1. Then G is an N -group by

Lemmas 2.3 and 2.6.
Now, suppose that G satisfies (V). Then G is nilpotent and so G is an N -group.
Finally, if G satisfies (VI), then we get to parts (4) and (5) of our theorem by Lemmas

2.5, 2.4 and 2.6.
The converse is clear by the previous lemmas and Lemma 2.1.

Proof of Theorem 1.2. Suppose that G is an n-group and Nil(G) =∩g∈G NilG(g). Let also
NilG(x) and NilG(y) be two distinct nilpotent subgroups of G for x,y∈ G\Nil(G). We
claim that

NilG(x)
⋂

NilG(y)=Nil(G).

Suppose, for a contradiction, that there exists t ∈ (NilG(x)
⋂

NilG(y))\Nil(G). Hence
NilG(x)=NilG(t)=NilG(y) which gives a contradiction. Since Z∗(G)=Nil(G) by Propo-
sition 2.2 of [1], we have

Γ=

{

NilG(x)

Z∗(G)
: x∈G

}
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is a partition of G
Z∗(G) . Since G is not nilpotent, G

Z∗(G) is one of the followings by page 575

of [17].

a. G
Z∗(G)

is a Frobenius group;

b. G
Z∗(G)

is a group of Hughes-Thompson type;

c. G
Z∗(G)

∼=PGL(2,pm), p being an odd prime;

d. G
Z∗(G)

∼=PSL(2,pm), p being a prime;

e. G
Z∗(G)

∼=Sz(q), q=2h, h>1.

To complete the proof in one direction it suffices to prove only two parts (1) and (4)
of our theorem. First, we claim that G

Z∗(G)
≇ PGL(2,pm) for every odd prime p. Since

PGL(2,3)∼=S4, G is not an N -group by Lemma 2.6. Suppose, for a contradiction, that

G

Z∗(G)
∼=PGL(2,q) and q= pm

>3.

By Lemmas 2.4 and 2.6, G is an N -group if and only if 8 ∤ (q±3) ( q > 3 is prime). We
choose an element xZ∗(G)∈ G

Z∗(G)
of order two. By page 575 of [17], C G

Z∗(G)
(xZ∗(G)) is

not nilpotent and therefore Nil G
Z∗(G)

(xZ∗(G)) is not so. Since

NilG(x)

Z∗(G)
=Nil G

Z∗(G)
(xZ∗(G))

by Lemma 2.2 (3) of [1], we deduce that NilG(x) is not nilpotent which establishes the
claim.

Now, we claim that G
Z∗(G)

∼= PSL(2,pm) for pm ∈ {5,2m : m > 1}. Suppose, for a con-

tradiction, that G
Z∗(G)

∼= PSL(2,q) where q = pm 6= 5 is odd. By Lemmas 2.5 and 2.6, we

have 16∤q2−1. It follows from Lemma 2.5 that CPSL(2,q)(x)=NilPSL(2,q)(x). Consequently
NilPSL(2,q)(x) is either abelian or generalised dihedral group by Proposition 3.21 of [2].
Next by Satz 8.10 of [8], all Sylow p-subgroups of PSL(2,q) are abelian in this case. Now
if CG(x) is a centraliser of PSL(2,q) isomorphic to generalised dihedral group D, then D
must be nilpotent and so it must be 2-group. This implies that CG(x) is abelian. Therefore
q=3 or 5 , a contradiction.

Now, let G
Z∗(G)

be a group of Hughes-Thompson type. By Theorem 1 in [7], Hp(
G

Z∗(G)
)

has index p in G
Z∗(G)

for some prime p. Also it was proved by Kegel in [10] that Hp(
G

Z∗(G)
)

is nilpotent and in Satz 3 of [11], Hp(
G

Z∗(G)
) is a component of partition of G

Z∗(G)
and so

Hp(
G

Z∗(G)
) is a nilpotentiser of index p of G

Z∗(G)
. It follows that |Nil G

Z∗(G)
(xZ∗(G))|= p for

all xZ∗(G)∈ G
Z∗(G)

\Hp(
G

Z∗(G)
). This completes the proof in one direction.
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Conversely assume that G
Z(G)

∼= PSL(2,2m) for an integer m > 1 or Sz(q). Then it is

enough to show that PSL(2,2m) and Sz(q) are n-groups by Lemma 2.6.

First, note that SZ(q) is an n-group by the proof of Theorem 3.8 of [1]. Since PSL(2,2m)
is a CA-group by Lemma 2.1, we have the result by the second part of Lemma 3.6 of [1]
and Lemma 2.6.

Now, suppose that G
Z∗(G) is a Frobenius group such that its Frobenius complement is

an n-group. By Lemma 2.3, G
Z∗(G) is an n-group and so G is an n-group by Lemma 2.6.

Now let G
Z∗(G) be a group of Hughes-Thompson type. Then

Γ=

{

Hp(
G

Z∗(G)
)),

Hi

Z∗(G)
: 1≤···≤ r

}

is a partition of G
Z∗(G)

for some prime p such that | Hi

Z∗(G)
|=p for each i. Then we claim that

Hp(
G

Z∗(G)
)=Nil G

Z∗(G)
(yZ∗(G))

for each yZ∗(G)∈Hp(
G

Z∗(G) ).

If the equality does not occur, then there is some element xZ∗(G) of order p such that
xZ∗(G)∈ Nil G

Z∗(G)
(yZ∗(G))\Hp(

G
Z∗(G)

). Now since xZ∗(G) belongs to some component

of partition of G
Z∗(G)

, say
Hj

Z∗(G)
and |Nil G

Z∗(G)
(xZ∗(G))|= p by assumption, we have

Hj

Z∗(G)
=Nil G

Z∗(G)
(xZ∗(G)).

On the other hand yZ∗(G)∈Nil G
Z∗(G)

(xZ∗(G)), which implies that

|Nil G
Z∗(G)

(xZ∗(G))|> p,

a contradiction. This proves the claim.

Now, if tZ∗(G) /∈Hp(
G

Z∗(G)
)), then Nil G

Z∗(G)
(tZ∗(G)) is a component of partition G

Z∗(G)

by hypothesis. Thus G
Z∗(G)

is an n-group and so G is an n-group by Lemma 2.6. This

completes the proof.
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