On Finite Groups Whose Nilpotentisers Are Nilpotent Subgroups

Seyyed Majid Jafarian Amiri¹ and Hojjat Rostami^{2,*}

 ¹ Department of Mathematics, Faculty of Sciences, University of Zanjan, P. O. Box 45371-38791, Zanjan, Iran
² Department of Education, Zanjan, Iran.

Received 5 June 2017; Accepted (in second revised version) 31 October 2017

Abstract. Let *G* be a finite group and $x \in G$. The nilpotentiser of *x* in *G* is defined to be the subset $Nil_G(x) = \{y \in G : \langle x, y \rangle \text{ is nil potent}\}$. *G* is called an \mathcal{N} -group (n-group) if $Nil_G(x)$ is a subgroup (nilpotent subgroup) of *G* for all $x \in G \setminus Z^*(G)$ where $Z^*(G)$ is the hypercenter of *G*. In the present paper, we determine finite \mathcal{N} -groups in which the centraliser of each noncentral element is abelian. Also we classify all finite n-groups.

AMS subject classifications: 20D60 **Key words**: Finite group, nilpotentiser, N-group.

1 Introduction

Consider $x \in G$. The centraliser, nilpotentiser and engeliser of x in G are

$$C_G(x) = \{y \in G : \langle x, y \rangle \text{ is abelian }\}, Nil_G(x) = \{y \in G : \langle x, y \rangle \text{ is nil potent }\}$$

and

$$E_G(x) = \{ y \in G : [y_n x] = 1 \text{ for some } n \}$$

respectively. Obviously

 $C_G(x) \subseteq Nil_G(x) \subseteq E_G(x)$ for each $x \in G$.

Note that $Nil_G(x)$ and $E_G(x)$ are not necessarily subgroups of G. So determining the structure of groups by nilpotentisers (or engelisers) is more complicated than the centralisers. Let G be a finite group. Let $1 \le Z_1(G) < Z_2(G) < \cdots$ be a series of subgroups of G, where $Z_1(G) = Z(G)$ is the center of G and $Z_{i+1}(G)$, for i > 1, is defined by

$$\frac{Z_{i+1}(G)}{Z_i(G)} = Z(\frac{G}{Z_i(G)}).$$

http://www.global-sci.org/jms

©2017 Global-Science Press

^{*}Corresponding author. *Email addresses:* sm_jafarian@znu.ac.ir (S. M. J. Amiri), h.rostami5991@gmail .com (H. Rostami)

Let $Z^*(G) = \bigcup_i Z_i(G)$. The subgroup $Z^*(G)$ is called the hypercenter of G. We say a group is n-group in which $Nil_G(x)$ is a nilpotent subgroup for each $x \in G \setminus Z^*(G)$.

Now a group is N-group in which the nilpotentiser of each element is subgroup and a *CA*-group is a group in which the centraliser of each noncentral element is abelian (see [16] or [5]). The class of N-groups were defined and investigated by Abdollahi and Zarrin in [1]. In particular they showed that every centerless *CA*-group is an N-group. In this paper, we shall prove the following generalisation of this result.

Theorem 1.1. Let G be a nonabelian CA-group. Then G is an N-group if and only if we have one of the following types:

- 1. G has an abelian normal subgroup K of prime index.
- 2. $\frac{G}{Z(G)}$ is a Frobenius group with Frobenius kernel $\frac{K}{Z}$ and Frobenius complement $\frac{L}{Z(G)}$, where *K* and *L* are abelian.
- 3. $\frac{G}{Z(G)}$ is a Frobenius group with Frobenius kernel $\frac{K}{Z}$ and Frobenius complement $\frac{L}{Z(G)}$, such that K = PZ, where P is a normal Sylow p-subgroup of G for some prime divisor p of |G|, P is a CA-group, $Z(P) = P \cap Z$ and L = HZ, where H is an abelian p'-subgroup of G.
- 4. $\frac{G}{Z(G)} \cong PSL(2,q)$ and $G' \cong SL(2,q)$ where q > 3 is a prime-power number and $16 \nmid q^2 1$.
- 5. $\frac{G}{Z(G)} \cong PGL(2,q)$ and $G' \cong SL(2,q)$ where q > 3 is a prime and $8 \nmid q \pm 3$.
- 6. $G = P \times A$ where A is abelian and P is a nonabelian CA-group of prime-power order.

A group is said to be an *E*-group whenever engeliser of each element of such group is subgroup. The class of *E*-groups was defined and investigated by Peng in [13,14]. Also Heineken and Casolo gave many more results about them (see [3,4,6]). Now recall that an engel group is a group in which the engeliser of every elements is the whole group. If *G* is an *E*-group such that the engeliser of every element is engel, *G* is an n-group since every finite engel group is nilpotent. This result motivates us to classify all finite n-groups in following theorem.

But before giving it, recall that the Hughes subgroup of a group *G* is defined to be the subgroup generated by all the elements of *G* whose orders are not *p* and denoted by $H_p(G)$ where *p* is a prime. Also a group *G* is said to be of Hughes-Thompson type, if for some prime *p* it is not a *p*-group and $H_p(G) \neq G$.

Theorem 1.2. Let G be a nonnilpotent group. Then G is an n-group if and only if $\frac{G}{Z^*(G)}$ satisfies one of the following conditions:

(1) $\frac{G}{Z^*(G)}$ is a group of Hughes-Thompson type and

$$Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))\Big|=p$$

for all $xZ^*(G) \in \frac{G}{Z^*(G)} \setminus H_p(\frac{G}{Z^*(G)});$

(2) $\frac{G}{Z^*(G)}$ is Frobenius group with Frobenius complement $\frac{H}{Z^*(G)}$ and H is an n-group of G;

(3)
$$\frac{G}{Z^*(G)} \cong Sz(q);$$

(4)
$$\frac{G}{Z^*(G)} \cong PSL(2,2^m), m > 1.$$

Our notations are standard and can be found mainly in [15]. In particular PSL(2,q), PGL(2,q) and Sz(q) are the projective special linear group, projective general linear group of degree 2 over the finite field of size q and the Suzuki simple group over the finite field of size q respectively. Also in this paper G is a finite group and p is a prime.

2 Proofs of the Main Results

To prove our main results, we quote some lemmas that are required in the rest of the paper. Following theorem by schmidt determine all *CA*-groups. We use improved form of it due to Dolfi et al. ([5]).

Lemma 2.1. Let G be a nonabelian group and write Z = Z(G). Then G is a CA-group if and only if it is of one of the following types:

- (I) G is nonabelian and has an abelian normal subgroup of prime index.
- (II) $\frac{G}{Z}$ is a Frobenius group with Frobenius kernel $\frac{K}{Z}$ and Frobenius complement $\frac{L}{Z}$, where K and L are abelian.
- (III) $\frac{G}{Z}$ is a Frobenius group with Frobenius kernel $\frac{K}{Z}$ and Frobenius complement $\frac{L}{Z}$, such that K = PZ, where P is a normal Sylow p-subgroup of G for some $p \in \pi(G)$, P is a CA-group (F-group), $Z(P) = P \cap Z$ and L = HZ, where H is an abelian p'-subgroup of G.
- (IV) $\frac{G}{Z} \cong S_4$ and if $\frac{V}{Z}$ is the Klein four group in $\frac{G}{Z}$, then V is nonabelian.
- (V) $G = P \times A$, where P is a nonabelian CA-group (F-group) of prime-power order and A is abelian.
- (VI) $\frac{G}{Z} \cong PSL(2, p^n)$ or $PGL(2, p^n)$ and $G' \simeq SL(2, p^n)$ where p is a prime and $p^n > 3$.
- (VII) $\frac{G}{Z} \cong PSL(2,9)$ or PGL(2,9) and G' is isomorphic to the Schur cover of PSL(2,9).

Lemma 2.2. Let G be a finite N-group. Then all subgroups of G are N-groups.

Proof. The proof is clear.

Lemma 2.3. Let G be a Frobenius group with Frobenius complement H. Then G is an N-group (\mathfrak{n} -group) if and only if H is an N-group (n-group).

Proof. The proof is similar to Proposition 3.1 of [12].

Lemma 2.4. PGL(2,q) is an \mathcal{N} -group if and only if q > 3 is a prime number and $8 \nmid (q \pm 3)$.

Proof. See Proposition 3.4 of [12].

Lemma 2.5. PSL(2,q) is an \mathcal{N} -group if and only if $16 \nmid q^2 - 1$.

Proof. See Lemmas 3.9 and 3.10 of [1].

Lemma 2.6. Let G be a group. Then G is an N-group (\mathfrak{n} -group) if and only if $\frac{G}{K}$ is an N-group (\mathfrak{n} -group) for some normal subgroup K of G with $K \leq Z^*(G)$.

Proof. See Lemma 2.2 (1)-(4) of [1].

Proof of Theorem 1.1. First, note that every centerless *CA*-group *K* is an \mathcal{N} -group and in particular $Nil_K(x) = C_K(x)$ for each $x \in K$ (see Lemma 3.6 of [1]). Suppose that *G* is a *CA*-group. We apply Lemma 2.1 in order to establish our claim.

 S_4 , the symmetric group of degree 4, is not an \mathcal{N} -group since $Nil_{s_4}((12)(34))$ is not a subgroup of S_4 . It follows that G does not satisfy (IV) of Lemma 2.1 by Lemmas 2.3 and 2.6. Similarly since PSL(2,9) and PGL(2,9) have some subgroups isomorphic to S_4 , G does not satisfy (VII).

Now, assume that *G* satisfies (I) of Lemma 2.1. Then *G* has an abelian normal subgroup *A* of prime index *p*. If $G = AZ^*(G)$, then *G* is nilpotent and so *G* is an \mathcal{N} -group. Suppose that $G \neq AZ^*(G)$. Then $\frac{G}{Z^*(G)}$ has a normal abelian subgroup

$$\overline{A} = \frac{AZ^*(G)}{Z^*(G)}$$

of index *p*. Therefore $\frac{G}{Z^*(G)}$ is a centerless *CA*-group and so we have the result by Lemma 2.6.

Next, suppose that *G* satisfies (II) or (III) of Lemma 2.1. Then *G* is an N-group by Lemmas 2.3 and 2.6.

Now, suppose that *G* satisfies (V). Then *G* is nilpotent and so *G* is an N-group.

Finally, if *G* satisfies (VI), then we get to parts (4) and (5) of our theorem by Lemmas 2.5, 2.4 and 2.6.

The converse is clear by the previous lemmas and Lemma 2.1.

Proof of Theorem 1.2. Suppose that *G* is an n-group and $Nil(G) = \bigcap_{g \in G} Nil_G(g)$. Let also $Nil_G(x)$ and $Nil_G(y)$ be two distinct nilpotent subgroups of *G* for $x, y \in G \setminus Nil(G)$. We claim that

$$Nil_G(x) \bigcap Nil_G(y) = Nil(G).$$

Suppose, for a contradiction, that there exists $t \in (Nil_G(x) \cap Nil_G(y)) \setminus Nil(G)$. Hence $Nil_G(x) = Nil_G(t) = Nil_G(y)$ which gives a contradiction. Since $Z^*(G) = Nil(G)$ by Proposition 2.2 of [1], we have

$$\Gamma = \left\{ \frac{Nil_G(x)}{Z^*(G)} : x \in G \right\}$$

is a partition of $\frac{G}{Z^*(G)}$. Since *G* is not nilpotent, $\frac{G}{Z^*(G)}$ is one of the followings by page 575 of [17].

- a. $\frac{G}{Z^*(G)}$ is a Frobenius group;
- b. $\frac{G}{Z^*(G)}$ is a group of Hughes-Thompson type;
- c. $\frac{G}{Z^*(G)} \cong PGL(2, p^m)$, *p* being an odd prime;
- d. $\frac{G}{Z^*(G)} \cong PSL(2, p^m)$, *p* being a prime;

e.
$$\frac{G}{Z^*(G)} \cong Sz(q), q = 2^h, h > 1.$$

To complete the proof in one direction it suffices to prove only two parts (1) and (4) of our theorem. First, we claim that $\frac{G}{Z^*(G)} \ncong PGL(2,p^m)$ for every odd prime *p*. Since $PGL(2,3) \cong S_4$, *G* is not an \mathcal{N} -group by Lemma 2.6. Suppose, for a contradiction, that

$$\frac{G}{Z^*(G)}\cong PGL(2,q) \text{ and } q=p^m>3.$$

By Lemmas 2.4 and 2.6, *G* is an \mathcal{N} -group if and only if $8 \nmid (q \pm 3)$ (q > 3 is prime). We choose an element $xZ^*(G) \in \frac{G}{Z^*(G)}$ of order two. By page 575 of [17], $C_{\frac{G}{Z^*(G)}}(xZ^*(G))$ is not nilpotent and therefore $Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))$ is not so. Since

$$\frac{Nil_G(x)}{Z^*(G)} = Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))$$

by Lemma 2.2 (3) of [1], we deduce that $Nil_G(x)$ is not nilpotent which establishes the claim.

Now, we claim that $\frac{G}{Z^*(G)} \cong PSL(2, p^m)$ for $p^m \in \{5, 2^m : m > 1\}$. Suppose, for a contradiction, that $\frac{G}{Z^*(G)} \cong PSL(2,q)$ where $q = p^m \neq 5$ is odd. By Lemmas 2.5 and 2.6, we have $16 \nmid q^2 - 1$. It follows from Lemma 2.5 that $C_{PSL(2,q)}(x) = Nil_{PSL(2,q)}(x)$. Consequently $Nil_{PSL(2,q)}(x)$ is either abelian or generalised dihedral group by Proposition 3.21 of [2]. Next by Satz 8.10 of [8], all Sylow *p*-subgroups of PSL(2,q) are abelian in this case. Now if $C_G(x)$ is a centraliser of PSL(2,q) isomorphic to generalised dihedral group *D*, then *D* must be nilpotent and so it must be 2-group. This implies that $C_G(x)$ is abelian. Therefore q = 3 or 5, a contradiction.

Now, let $\frac{G}{Z^*(G)}$ be a group of Hughes-Thompson type. By Theorem 1 in [7], $H_p(\frac{G}{Z^*(G)})$ has index p in $\frac{G}{Z^*(G)}$ for some prime p. Also it was proved by Kegel in [10] that $H_p(\frac{G}{Z^*(G)})$ is nilpotent and in Satz 3 of [11], $H_p(\frac{G}{Z^*(G)})$ is a component of partition of $\frac{G}{Z^*(G)}$ and so $H_p(\frac{G}{Z^*(G)})$ is a nilpotentiser of index p of $\frac{G}{Z^*(G)}$. It follows that $|Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))| = p$ for all $xZ^*(G) \in \frac{G}{Z^*(G)} \setminus H_p(\frac{G}{Z^*(G)})$. This completes the proof in one direction.

Conversely assume that $\frac{G}{Z(G)} \cong PSL(2,2^m)$ for an integer m > 1 or Sz(q). Then it is enough to show that $PSL(2,2^m)$ and Sz(q) are n-groups by Lemma 2.6.

First, note that SZ(q) is an n-group by the proof of Theorem 3.8 of [1]. Since $PSL(2,2^m)$ is a *CA*-group by Lemma 2.1, we have the result by the second part of Lemma 3.6 of [1] and Lemma 2.6.

Now, suppose that $\frac{G}{Z^*(G)}$ is a Frobenius group such that its Frobenius complement is an n-group. By Lemma 2.3, $\frac{G}{Z^*(G)}$ is an n-group and so *G* is an n-group by Lemma 2.6.

Now let $\frac{G}{Z^*(G)}$ be a group of Hughes-Thompson type. Then

$$\Gamma = \left\{ H_p(\frac{G}{Z^*(G)}), \frac{H_i}{Z^*(G)}: 1 \le \cdots \le r \right\}$$

is a partition of $\frac{G}{Z^*(G)}$ for some prime *p* such that $|\frac{H_i}{Z^*(G)}| = p$ for each *i*. Then we claim that

$$H_p(\frac{G}{Z^*(G)}) = Nil_{\frac{G}{Z^*(G)}}(yZ^*(G))$$

for each $yZ^*(G) \in H_p(\frac{G}{Z^*(G)})$.

If the equality does not occur, then there is some element $xZ^*(G)$ of order p such that $xZ^*(G) \in Nil_{\frac{G}{Z^*(G)}}(yZ^*(G)) \setminus H_p(\frac{G}{Z^*(G)})$. Now since $xZ^*(G)$ belongs to some component of partition of $\frac{G}{Z^*(G)}$, say $\frac{H_j}{Z^*(G)}$ and $|Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))| = p$ by assumption, we have

$$\frac{H_j}{Z^*(G)} = Nil_{\frac{G}{Z^*(G)}}(xZ^*(G)).$$

On the other hand $yZ^*(G) \in Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))$, which implies that

$$|Nil_{\frac{G}{Z^*(G)}}(xZ^*(G))| > p,$$

a contradiction. This proves the claim.

Now, if $tZ^*(G) \notin H_p(\frac{G}{Z^*(G)})$, then $Nil_{\frac{G}{Z^*(G)}}(tZ^*(G))$ is a component of partition $\frac{G}{Z^*(G)}$ by hypothesis. Thus $\frac{G}{Z^*(G)}$ is an n-group and so *G* is an n-group by Lemma 2.6. This completes the proof.

Acknowledgments

The authors are indebted to the referees for their careful reading and valuable comments.

References

- A. Abdollahi, M. Zarrin. Non-nilpoten graph of a group. Comm. Algebra, 2010, 38(12): 4390-4403.
- [2] A. Abdollahi, S. Akbari, H. R. Maimani. Non-commuting graph of a group. J. Algbera, 2006, 298(2): 468-492.
- [3] C. Casolo. Finite groups in which subnormalizers are subgroups. Rend. Semin. Mat. Univ. Padova, 1989, 82: 25-53.
- [4] C. Casolo. Subnormalizers in finite groups. Comm. Algebra, 1990, 18011: 3791-3818.
- [5] S. Dolfi, M. Herzog, E. Jabara. Finite groups whose noncentral commuting elements have centralizers of equal size. Bull. Aust. Math Soc., 2010, 82: 293-304.
- [6] H. Heineken. On E-groups in the sence of Peng. Glasg. Math. J, 1989, 31(2): 231-242.
- [7] D. Hughes, J. G. Thompson. The Hp-problem and the structure of the Hp-groups. Pacific J. Math, 1963, 9: 1097-1102.
- [8] B. Huppert. Endlich gruppen I. Springer-Verlag, Berlin, 1967.
- [9] B. Huppert, N.Blackburn. Finite groups, III, Springer-Verlag, Berlin, 1982.
- [10] O. H. Kegel. Die nilpotenz der Hp-gruppen, Math. Z, 1960/1961, 71: 373-376.
- [11] O. H. Kegel. Nicht-einfache partitionen endlicher Gruppen. Arch. Math., 1961, 12(1): 170-175.
- [12] S. M. Jafarian Amiri, H. Madadi, H. Rostami. On the probability of generating nilpotent subgroups in a finite group. Bull. Aust. Math Soc., 2015.
- [13] T. A. Peng. On groups with nilpotent derived groups. Arch. Math, 1969, 20(3): 251-253.
- [14] T. A. Peng. Finite soluble groups with an Engel condition. J. Algebra, 1969, 11(3): 319-330.
- [15] D. J. S. Robinson. A course in the theory of groups. Springer-Verlag New York, 1996.
- [16] R. Schmidt. Zentralisatorverbände endlicher gruppen. Rend. Sem. Mat. Univ. Padova, 1970, 44: 97-131.
- [17] G. Zappa. Partitions and other coverings of finite groups. Illinois J. Math, 2003, 47(1-2): 571-580.