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Abstract. In this paper, we investigate global stability of complex-valued periodic so-
lution of a delayed discontinuous neural networks. By employing discontinuous, non-
decreasing and bounded properties of activation, we analyzed exponential stability
of state trajectory and L1−exponential convergence of output solution for complex-
valued delayed networks. Meanwhile, we applied to complex-valued discontinuous
neural networks with periodic coefficients. The new results depend on M−matrices of
real and imaginary parts and hence can include ones of real-valued neural networks.
An illustrative example is given to show the effectiveness of our theoretical results.
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1 Introduction

The global exponential stability of neural networks have been extensively studied be-
cause of their wide range of applications, such as image and signal processing, pattern
recognition, optimization and automatic control, and so on (see [1-3]). An equilibrium
point can be viewed as a special periodic solution of neural networks with arbitrary pe-
riods. In this sense, the analysis of periodic solutions of neural networks can be consid-
ered to be more general than that of equilibrium point. Therefore, the global exponential
stability of the periodic solution received extensive concerns. In [4-7], the authors in-
vestigated the stability of periodic solutions of neural networks, where the assumptions
on neuron activation functions include Lipschitz conditions, bounded and monotonic in-
creasing properties. In [8], Du and Xu discussed the global robust exponential stability
and periodic solutions for interval Cohen-Grossberg neural networks with mixed delays.
The stability analysis for periodicity of BAM neural networks with discontinuous neuron
activations and impulses have been studied in [9]. As shown by [10], the authors studied
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finite time stability of periodic solution for Hopfield neural networks with discontinuous
activations. We usually consider the properties of real-valued neural networks (RVNNs)
in most of the papers. However, complex-valued neural networks can solve the problem
that real neural networks can not solve, we can refer to [11] and the references therein.
In [12], Rao and Murthy have studied global activation dynamics of a discrete CVNNs
and have obtained easily verifiable sufficient conditions for global exponential stability
of the unique equilibrium pattern. Due to importance of time delay in the finite speeds
of the switching and transmissions of signal of neural network [14], stability criteria of
real-valued or complex-valued neural networks with time delay have been reported in
[13,15-18].

However, most of the results concerning the neural networks are based on the as-
sumption that the activations are continuous or even Lipschitzian. Forti and Nistri [19]
is the first one to discuss global stability of the equilibrium points for the neural net-
works with discontinuous neuron activations. They pointed out that a brief review of
some common neural networks with discontinuous activation is important. In [20], Forti
et al. introduced some new sufficient conditions for the global exponential stability of
recurrently connected neural networks with (possibily) discontinuous and unbounded
activation functions. Recently, there have been extensive results on the dynamical behav-
iors of neural networks with discontinuous activations [21-23].

Based on the previous scholar’s research, we will study the stability of the periodic
solution of a delayed neural network with discontinuous activations. In particular, we
drop the assumption of Lipschitz continuity on the activation functions, which is usually
required in most of the papers. Meanwhile, since the complex-valued neural network
is more general than the real-valued neural network, it can solve the problem that the
real neural network can not solve. Therefore, the stability of the periodic solution of a
delayed complex-valued neural network with discontinuous activations has theoretical
valued and practical application valued.

The organization of this paper is as follow. In Section 2, we introduce some defi-
nitions and preliminary lemmas. In Section 3, under suitable assumptions, we prove a
result on the continuability and the uniqueness of the solution of any associated initial
output problems (IOP) and give an estimation on the difference between the states and
the outputs of the solutions of two different IOP. Our main results are contained in sec-
tion 4, some sufficient conditions are given to guarantee the existence and exponential
stability of a unique complex-valued periodic solution. Finally, our results are illustrated
by an example.

2 Preliminaries

In this paper, we extend the work in [24] to the following model of a delayed complex-
valued neural network with periodic coefficients

Ż(t)=−C(t)Z(t)+D(t) f (Z(t))+E(t) f (Z(t−τ))+H(t), t≥0, (2.1)
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where Z(t)= (z1(t),z2(t),...,zn(t))T ∈Cn is the state vector of the neural network with n
neurons. f (·) is the activation function defined by

f (z)= fR(Re(z))+i f I(Im(z)),

and f (Z(t))=( f (z1(t)), f (z2(t)),..., f (zn(t)))T∈Cn is a diagonal function representing the
neuron input-output activations; C(t) = diag(c1(t),c2(t),...,cn(t))∈ Rn×n is the periodic
complex diagonal matrix function of the neuron self-inhibitions; D(t)=(dij(t))n×n∈Cn×n

is the periodic complex matrix function representing the neuron interconnection matrix;
E(t)=(eij(t))n×n∈Cn×n is the periodic complex matrix function representing the delayed

connection weight matrix; H(t)=(h1(t),h2(t),..,hn(t))T ∈Cn is a complex vector function
representing the neuron inputs; τ>0 is the delay in the neuron response. This is a quite
general equation of delayed complex-valued neural networks models with periodic co-
efficients. However, we point out that differential systems modelling periodic delayed
complex-valued neural networks with discontinuous activations functions were almost
not studied.

Let x(t)=(x1(t),x2(t),...,xn(t))T, xi(t)=Re(zi(t)), y(t)=(y1(t),y2(t),...,yn(t))T, yi(t)=
Im(zi(t)); D(t)=DR(t)+iDI(t), DR(t)=(dR

ij (t))n×n, dR
ij (t)=Re(dij(t)), DI(t)=(dI

ij(t))n×n,

dI
ij(t) = Im(dij(t)); E(t) = ER(t)+iEI(t), ER(t) = (eR

ij (t))n×n, eR
ij (t) = Re(eij(t)), EI(t) =

(eI
ij(t))n×n, eI

ij(t)=Im(eij(t)); H(t)=HR(t)+iH I(t), HR(t)=(hR
1 (t),h

R
2 (t),...,h

R
n (t))

T , hR
i (t)=

Re(hi(t)), H I(t) = (hI
1(t),h

I
2(t),...,h

I
n(t))

T, hI
i (t) = Im(hi(t)). Then system (2.1) can be

rewritten as

ẋ(t)=−C(t)x(t)+DR(t) fR(x(t))−DI(t) f I(y(t))

+ER(t) fR(x(t−τ))−EI(t) f I(y(t−τ))+HR(t), (2.2a)

ẏ(t)=−C(t)y(t)+DI(t) fR(x(t))+DR(t) f I(y(t))

+EI(t) fR(x(t−τ))+ER(t) f I(y(t−τ))+H I(t), (2.2b)

or

ẋi(t)=−ci(t)xi(t)+
n

∑
j=1

dR
ij (t) fR(xj(t))−

n

∑
j=1

dI
ij(t) f I(yj(t))

+
n

∑
j=1

eR
ij (t) fR(xj(t−τ))−

n

∑
j=1

eI
ij(t) f I(yj(t−τ))+hR

i (t),

ẏi(t)=−ci(t)yi(t)+
n

∑
j=1

dI
ij(t) fR(xj(t))+

n

∑
j=1

dR
ij (t) f I(yj(t))

+
n

∑
j=1

eI
ij(t) fR(xj(t−τ))+

n

∑
j=1

eR
ij (t) f I(yj(t−τ))+hI

i (t),

for all i∈N :={1,2,...,n}. For later discussion, we introduce the following notations.
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We say a vector x = (x1,x2,...,xn)T ∈ Rn is positive if xi > 0 for all i ∈ N . Let β =
(β1,β2,...,βn)T ∈Rn be positive. We define the norm

||x||β =
n

∑
i=1

βi|xi|, ∀x∈R
n.

µ represents the Lebesgue measure in Rn. Given a set Q ⊂ Rn, K[Q] denotes the
closure of the convex hull of Q. Notice that, since a monotone function can only have
jump discontinuities, for any f monotone non-decreasing and x∈R, it holds

K[ f (x)]= [ f (x−), f (x+)],

where f (x−) and f (x+) denote, respectively, the left and right limit of f at x. Given a
function f :J⊂R→R, esssupt∈J f (t)=min{M∈R: f (t)≤M for a.a. t∈J} and essinft∈J f (t)=

max{M∈R : f (t)≥M for a.a. t∈ J}. Given τ>0 and u : [−τ,+∞)→Rn, for every t≥0 we
will denote by ut : [−τ,0]→Rn the function s 7→u(t+s). For all i, j∈N , we define

d̄R
ii =esssup

t≥0

dR
ii (t), d̄R

ij =esssup
t≥0

|dR
ij (t)|, d̄I

ii =esssup
t≥0

dI
ii(t), d̄I

ij =esssup
t≥0

|dI
ij(t)|,

ēR
ij =esssup

t≥0

|eR
ij (t)|, ēI

ij =esssup
t≥0

|eI
ij(t)|, ci =essinf

t≥0
ci(t).

An n×n matrix A is said to be an M−matrix, if: (1) aii >0,i∈N ; (2) aij ≤0,i 6= j and
i, j∈N ; (3) all successive principal minors of A are positive. As A is an M−matrix, there
exists a positive vector β∈Rn such that βT A>0.

For each i∈N , we make the following basic assumptions.
Nci(t)>0 for t≥0;
N fi is monotone non-decreasing and bounded. ∀x, x̃,y,ỹ ∈ R, ∀γi(t) ∈ K[ fR(xi(t))],

∀γ̃i(t)∈K[ fR(x̃i(t))], ∀ηi(t)∈K[ f I(yi(t))], ∀η̃i(t)∈K[ f I(ỹi(t))], ∃lR
i ,l I

i ∈ (0,1] such that

|γi(t)−γ̃i(t)|< lR
i |xi(t)− x̃i(t)|, |ηi(t)− η̃i(t)|< l I

i |yi(t)− ỹi(t)|.

N C, D, E and H are measurable and locally bounded.

Definition 2.1. System (2.1) is said to be exponential stable if the real and imaginary parts
of its each trajectory are global exponentially stable.

Definition 2.2. Functions x,y : [−τ,T)→Rn,T∈(0,+∞], are state solutions of system (2.2)
on [0,T) if

(i) x,y are continuous on [−τ,T), absolutely continuous on [0,T);
(ii) there exist measurable functions γ=(γ1,γ2,...,γn)T, η=(η1,η2,...,ηn)T :[−τ,T)→Rn

such that γ(t)∈K[ fR(x(t))] and η(t)∈K[ f I(y(t))] for a.a. t∈ [−τ,T) and

ẋ(t)=−C(t)x(t)+DR(t)γ(t)−DI(t)η(t)+ER(t)γ(t−τ)−EI(t)η(t−τ)+HR(t),

ẏ(t)=−C(t)y(t)+DI(t)γ(t)+DR(t)η(t)+EI(t)γ(t−τ)+ER(t)η(t−τ)+H I(t),

for a.a. t∈ [0,T).
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Any functions γ and η satisfying (ii) are called output solutions associated to the
states x and y, and the couple [x,y;γ,η] will be called simply a solution of system (2.2).

With this definition it turns out that states x and y are solutions of system (2.2) since
it satisfies

ẋ(t)∈−C(t)x(t)+DR(t)K[ fR(x(t))]−DI(t)K[ f I(y(t))]

+ER(t)K[ fR(x(t−τ))]−EI(t)K[ f I(y(t−τ))]+HR(t), (2.3a)

ẏ(t)∈−C(t)y(t)+DI(t)K[ fR(x(t))]+DR(t)K[ f I(y(t))]

+EI(t)K[ fR(x(t−τ))]+ER(t)K[ f I(y(t−τ))]+H I(t), (2.3b)

for a.a. t∈ [0,T).

Lemma 2.1. ([19]) If x,y : J →Rn are state solutions of system (2.2), then functions t 7→ ||x||β
and t 7→ ||y||β are locally Lipschitz continuous and

d

dt
||x(t)||β =v(t)T ẋ(t)=

n

∑
i=1

vi(t)ẋi(t),
d

dt
||y(t)||β =w(t)T ẏ(t)=

n

∑
i=1

wi(t)ẏi(t),

for a.a. t∈ J, where vi(t) = βisign(xi(t)), if xi(t) 6= 0, while vi(t) can be arbitrarily chosen in
[−βi,βi], if xi(t)=0, and wi(t)=βisign(yi(t)), if yi(t) 6=0, while wi(t) can be arbitrarily chosen
in [−βi,βi], if yi(t)=0.

Definition 2.3. A solution [x,y;γ,η] of system (2.2) on [0,+∞) is a periodic solution of
period ω if

x(t+ω)= x(t), y(t+ω)=y(t), for all t≥−τ,

γ(t+ω)=γ(t), η(t+ω)=η(t), for a.a. t≥−τ.

The following concept of convergence in measure was employed [19].

Definition 2.4. If γ,η : [0,+∞)→Rn are measurable functions, then ξ,ζ∈Rn are limits in
measure of γ(t) and η(t), respectively, as t→+∞ if ∀ǫ>0,∃tǫ >0 such that

µ{t∈ [tǫ ,+∞) : ||γ(t)−ξ||>ǫ}<ǫ, µ{t∈ [tǫ ,+∞) : ||η(t)−ζ||>ǫ}<ǫ,

and in this case we write µ− lim
t→+∞

γ(t)= ξ and µ− lim
t→+∞

η(t)= ζ.

Definition 2.5. Let τ>0 be fixed and γ,η,ξ,ζ : [−τ,+∞)→Rn be locally integrable func-
tions. We say ξ and ζ L1−exponentially converge to γ and η, respectively, provided that
there are positive constants I1, I2,δ>0 such that

∫ 0

−τ
||ξt(s)−γt(s)||ds≤ I1e−δt,

∫ 0

−τ
||ζt(s)−ηt(s)||ds≤ I2e−δt,

where ∀t≥0 and ||·||∈Rn stands for any norm.

Proposition 2.1. ([24]) If ξ and ζ L1−exponentially converge to γ and η, respectively.
Then ξ−γ,ζ−η∈L1([−τ,+∞),Rn) and µ− lim

t→+∞
[ξ(t)−γ(t)]=0, µ− lim

t→+∞
[ζ(t)−η(t)]=0.
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3 Exponential stability of CVNN

First of all, we introduce the definition of associated initial output problem.

Definition 3.1. For any given measurable functions γ̃,η̃ : [−τ,0)→ Rn and any vectors
x0,y0 ∈Rn, the initial output problem (IOP) associated to system (2.2) with initial data
[x0,y0;γ̃,η̃] consists in finding a couple of functions [x,y;γ,η] such that x,y : [0,T)→Rn are
absolutely continuous, and γ,η : [−τ,T)→Rn are measurable functions and, moreover,
we have















































ẋ(t) = −C(t)x(t)+DR(t)γ(t)−DI(t)η(t)+ER(t)γ(t−τ)
−EI(t)η(t−τ)+HR(t), for a.a. t∈ [0,T),

ẏ(t) = −C(t)y(t)+DI(t)γ(t)+DR(t)η(t)+EI(t)γ(t−τ)
+ER(t)η(t−τ)+H I(t), for a.a. t∈ [0,T),

γ(t) ∈ K[ fR(x(t))], for a.a. t∈ [0,T),
η(t) ∈ K[ f I(y(t))], for a.a. t∈ [0,T),
x(0)= x0, y(0)=y0,
γ(s)= γ̃(s), η(s)= η̃(s), for a.a. t∈ [−τ,0].

(3.1)

Now, similarly as [24], we can prove the existence of solution of IOP for system (2.2).

Lemma 3.1. Under our assumptions, any IOP has at least a maximal solution [x,y;γ,η] on [0,T)
for some T∈ (0,+∞].

Remark 3.1. A ω−periodic solution of system (2.2) clearly satisfies

x(0)= x(ω), γ(ω+s)=γ(s)= γ̃(s), (3.2a)

y(0)=y(ω), η(ω+s)=η(s)= η̃(s), (3.2b)

for a.a. s∈ [−τ,0]. On the other hand, when C,D,E and H are ω−periodic functions, it
is easy to see that a solution [x,y;γ,η] of an IOP gives rise to a ω−periodic solution of
system (2.2) provided that it is defined at least up to ω and satisfies (3.2).

Assumption 3.1. For all i ∈ N we have that ci > 0 and the matrice A = (aij) ∈ Rn×n,
B=(bij)∈Rn×n given by

aij =

{

−d̄R
ii − ēR

ii , for i= j,
−d̄R

ij − ēR
ij , for i 6= j,

bij =

{

−d̄I
ii− ēI

ii, for i= j,
−d̄I

ij− ēI
ij, for i 6= j,

are M-matrices and
n

∑
i=1

ēR
ij 6=0,

n

∑
i=1

ēI
ij 6=0.

Assumption 3.1 implies that there is a positive vector β∈Rn such that βT A>0, βT B>0.
Moreover, for every δ≥0 let us consider the n×n matrice Aδ =(aδ

ij) and Bδ =(bδ
ij) given

by
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aδ
ij =

{

−d̄R
ii − ēR

ii e
δτ , for i= j,

−d̄R
ij − ēR

ij e
δτ , for i 6= j,

bδ
ij=

{

−d̄I
ii− ēI

iie
δτ , for i= j,

−d̄I
ij− ēI

ije
δτ , for i 6= j,

Since A0 = A and B0 = B by a continuity argument we can fix δ ∈ (0,min{c1,...,cn})
such that βT Aδ>0 and βT Bδ>0. Actually it is easy to see that

βT Aδ>0, ∀δ∈ [0, δ̄), βT Bδ>0, ∀δ∈ [0, ¯̄δ),

where

δ̄=−
1

τ
min
i∈N

log
βid̄

R
ii −∑j 6=i β j d̄

R
ji

∑
n
j=1 β j ē

R
ji

, ¯̄δ=−
1

τ
min
i∈N

log
βid̄

I
ii−∑j 6=i β jd̄

I
ji

∑
n
j=1 β j ē

I
ji

, (3.3)

in such a way that the argument we developed will be valid for all δ∈(0,min{δ̄, ¯̄δ,c1,...,cn}).

Theorem 3.1. If Assumption 3.1 is satisfied, then
S1: every solution of any IOP is defined on [0,+∞);
S2: any IOP has a unique solution [x,y;γ,η] in the sense that, if [x,y;γ,η] and [x̃,ỹ;γ̃,η̃] are

two solutions with the same initial data, then x(t)= x̃(t) and y(t)= ỹ(t) for all t≥0, γ(t)= γ̃(t)
and η(t)= η̃(t) for almost all t≥0;

S3: if [x,y;γ,η] and [x̃,ỹ;γ̃,η̃] are solutions of any IOP with different initial data, for any
δ∈ (0,min{δ̄, ¯̄δ,c1,...,cn})

||x(t)− x̃(t)||β ≤ve−δt,
∫ t

t−τ
||γ(s)−γ̃(s)||1ds≤ve−δt (3.4a)

||y(t)− ỹ(t)||β ≤ve−δt,
∫ t

t−τ
||η(s)− η̃(s)||1ds≤ve−δt (3.4b)

∀t≥0, for some v>0.

Proof. Without loss of generality, for ∀s∈R we can assume that

∀σ∈K[ fR(s)],
∀σ∈K[ f I(s)],

}

⇒ σ·s≥0. (3.5)

Indeed, if (3.5) does not hold, it is sufficient to rewrite system (2.2) in the following way

ẋ(t)=−C(t)x(t)+DR f̃R(x(t))−DI(t) f̃ I(y(t))

+ER(t) f̃R(x(t−τ))−EI(t) f̃ I(y(t−τ))+H̃R(t), (3.6a)

ẏ(t)=−C(t)y(t)+DI f̃R(x(t))+DR(t) f̃ I(y(t))

+EI(t) f̃R(x(t−τ))+ER(t) f̃ I(y(t−τ))+H̃ I(t), (3.6b)

where f̃R(s)= fR(s)−ρ1, f̃ I(s)= f I(s)−ρ2, H̃R(t)= HR(t)+(DR(t)+ER(t))ρ1−(DI(t)+
EI(t))ρ2 and H̃ I(t)=H I(t)+(DI(t)+EI(t))ρ1+(DR(t)+ER(t))ρ2 for some ρ1 ∈K[ fR(0)]
and ρ2∈K[ f I(0)].
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Given δ∈ (0,min{δ̄, ¯̄δ,c1,...,cn}) , we define the mapping V[x,y;γ,η](·) : [0,T)→R as
follows

V[x,y;γ,η](t)=V1[x;γ,η](t)+V2[y;γ,η](t),

{

V1[x;γ,η](t)= eδt||x(t)||β+∑
n
i,j=1 βi ē

R
ij

∫ t
t−τ

|γj(s)|e
δ(s+τ)ds+∑

n
i,j=1 βi ē

I
ij

∫ t
t−τ

|ηj(s)|e
δ(s+τ)ds,

V2[y;γ,η](t)= eδt||y(t)||β+∑
n
i,j=1 βi ē

I
ij

∫ t
t−τ

|γj(s)|e
δ(s+τ)ds+∑

n
i,j=1 βi ē

R
ij

∫ t
t−τ

|ηj(s)|e
δ(s+τ)ds,

defined on the couples [x,y;γ,η], where x,y : [0,T)→Rn are locally Lipschitz continuous
and γ,η : [−τ,T)→Rn are locally integrable (we do not exclude the case T=+∞).

V1[x;γ,η](·) and V2[y;γ,η](·) are absolutely continuous functions and their deriva-
tives can be evaluated by means of Lemma 2.1. In particular, we have

d

dt
||x(t)||β =

n

∑
i=1

vi(t)ẋi(t), for a.a. t∈ J, (3.7a)

d

dt
||y(t)||β =

n

∑
i=1

wi(t)ẏi(t), for a.a. t∈ J, (3.7b)

with

vi(t)=







βisign(xi(t)), if xi(t) 6=0,
βisign(γi(t)), if xi(t)=0,γi(t) 6=0,
0, if xi(t)=γi(t)=0,

(3.8a)

wi(t)=







βisign(yi(t)), if yi(t) 6=0,
βisign(ηi(t)), if yi(t)=0,ηi(t) 6=0,
0, if yi(t)=ηi(t)=0.

(3.8b)

We remark that with this choice we have
{

vi(t)xi(t)=βi|xi(t)|, vi(t)γi(t)=βi|γi(t)|,
wi(t)yi(t)=βi|yi(t)|, wi(t)ηi(t)=βi|ηi(t)|,

if [x,y;γ,η] is a solution of system (2.2).
S1: Let us consider a solution [x,y;γ,η] of any IOP in its maximal interval of exis-

tence [0,T), for some T ∈ (0,+∞] and let us evaluate the derivative of V1[x;γ,η](·) and
V2[y;γ,η](·). For V1, we have

V̇1[x;γ,η](t)= δeδt||x(t)||β+eδt
n

∑
i=1

vi(t)ẋi(t)

+eδt
n

∑
i,j=1

βi ē
R
ij

[

eδτ |γj(t)|−|γj(t−τ)|
]

+eδt
n

∑
i,j=1

βi ē
I
ij

[

eδτ |ηj(t)|−|ηj(t−τ)|
]

= eδt

{

−
n

∑
i=1

βi(ci(t)−δ)|xi(t)|+
n

∑
i=1

vi(t)h
R
i (t)+

n

∑
i,j=1

vi(t)d
R
ij (t)γj(t)−

n

∑
i,j=1

vi(t)d
I
ij(t)ηj(t)
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+
n

∑
i,j=1

vi(t)e
R
ij (t)γj(t−τ)−

n

∑
i,j=1

vi(t)e
I
ij(t)ηj(t−τ)+

n

∑
i,j=1

βi ē
R
ij (e

δτ |γj(t)|−|γj(t−τ)|)

+
n

∑
i,j=1

βi ē
I
ij(e

δτ |ηj(t)|−ηj(t−τ)|)

}

= eδt

{

−
n

∑
i=1

βi(ci(t)−δ)|xi(t)|+||HR(t)||β+
n

∑
i,j=1

vi(t)e
R
ij (t)γj(t−τ)−

n

∑
i,j=1

βi ē
R
ij |γj(t−τ)|

−
n

∑
i,j=1

vi(t)e
I
ij(t)ηj(t−τ)−

n

∑
i,j=1

βi ē
I
ij|ηj(t−τ)|+

n

∑
i,j=1

vi(t)d
R
ij (t)γj(t)+

n

∑
i,j=1

βi ē
R
ij e

δτ |γj(t)|

−
n

∑
i,j=1

vi(t)d
I
ij(t)ηj(t)+

n

∑
i,j=1

βi ē
I
ije

δτ |ηj(t)|

}

≤ eδt

{

−
n

∑
i=1

βi(ci−δ)|xi(t)|+||HR(t)||β−
n

∑
i=1

[

βi(−d̄R
ii − ēR

ii e
δτ)|γi(t)|

+∑
j 6=i

βi(−d̄R
ij − ēR

ij e
δτ)|γj(t)|

]

+
n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|ηj(t)|

}

= eδt

{

−
n

∑
i=1

βi(ci−δ)|xi(t)|+||HR(t)||β−βT Aδ(|γ1(t)|,...,|γn(t)|)
T

+
n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|ηj(t)|

}

≤ eδt

{

−
n

∑
i=1

βi(ci−δ)|xi(t)|+R1(t)

}

≤ eδtR1(t), for a.a. t<T, (3.9)

and for

V̇2[y;γ,η](t)= δeδt||y(t)||β+eδt
n

∑
i=1

wi(t)ẏi(t)

+eδt
n

∑
i,j=1

βi ē
I
ij

[

eδτ |γj(t)|−|γj(t−τ)|
]

+eδt
n

∑
i,j=1

βi ē
R
ij

[

eδτ |ηj(t)|−|ηj(t−τ)|
]

= eδt

{

−
n

∑
i=1

βi(ci(t)−δ)|yi(t)|+
n

∑
i=1

wi(t)h
I
i (t)+

n

∑
i,j=1

wi(t)d
I
ij(t)γj(t)

+
n

∑
i,j=1

wi(t)d
R
ij (t)ηj(t−τ)+

n

∑
i,j=1

wi(t)e
I
ij(t)γj(t−τ)+

n

∑
i,j=1

wi(t)e
R
ij (t)ηj(t−τ)
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+
n

∑
i,j=1

βi ē
I
ij(e

δτ |γj(t)|−|γj(t−τ)|)+
n

∑
i,j=1

βi ē
R
ij (e

δτ |ηj(t)|−ηj(t−τ)|)

}

= eδt

{

−
n

∑
i=1

βi(ci(t)−δ)|yi(t)|+||H I(t)||β+
n

∑
i,j=1

wi(t)e
I
ij(t)γj(t−τ)−

n

∑
i,j=1

βi ē
I
ij|γj(t−τ)|

+
n

∑
i,j=1

wi(t)e
R
ij (t)ηj(t−τ)−

n

∑
i,j=1

βi ē
R
ij |ηj(t−τ)|+

n

∑
i,j=1

wi(t)d
I
ij(t)γj(t)+

n

∑
i,j=1

βi ē
I
ije

δτ |γj(t)|

+
n

∑
i,j=1

wi(t)d
R
ij (t)ηj(t)+

n

∑
i,j=1

βi ē
R
ij e

δτ |ηj(t)|

}

≤ eδt

{

−
n

∑
i=1

βi(ci−δ)|yi(t)|+||H I (t)||β−
n

∑
i=1

[

βi(−d̄R
ii − ēR

ii e
δτ)|ηi(t)|

+∑
j 6=i

βi(−d̄R
ij − ēR

ij e
δτ)|ηj(t)|

]

+
n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|γj(t)|

}

= eδt

{

−
n

∑
i=1

βi(ci−δ)|yi(t)|+||H I (t)||β−βT Aδ(|η1(t)|,...,|ηn(t)|)
T

+
n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|γj(t)|

}

≤ eδt

{

−
n

∑
i=1

βi(ci−δ)|yi(t)|+R2(t)

}

≤ eδtR2(t), for a.a. t<T, (3.10)

where

R1(t)= ||HR(t)||β+
n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|ηj(t)|, (3.11a)

R2(t)= ||H I(t)||β+
n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|γj(t)|, (3.11b)

an integration between 0 and t leads to

||x(t)||β ≤V1[x,γ,η](t)e−δt ≤V1[x,γ,η](0)e−δt+e−δt
∫ T

0
R1(s)e

δsds, (3.12a)

||y(t)||β ≤V2[y,γ,η](t)e−δt ≤V2[y,γ,η](0)e−δt+e−δt
∫ T

0
R2(s)e

δsds, (3.12b)

∀t<T, that is, x and y remain bounded on bounded intervals. Therefore, we have T=+∞.
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S2 : Let [x,y;γ,η] and [x̃,ỹ;γ̃,η̃] be two solutions of any IOP with the same initial data
[x0,y0;γ0,η0]. In particular, we have that differences p(t)=x(t)−x̃(t) and q(t)=y(t)−ỹ(t)
satisfy

ṗ(t)=−C(t)p(t)+DR(γ(t)−γ̃(t))−DI(η(t)− η̃(t))

+ER(t)[γ(t−τ)−γ̃(t−τ)]−EI(t)[η(t−τ)− η̃(t−τ)], for a.a. t≥0, (3.13a)

q̇(t)=−C(t)q(t)+DI(γ(t)−γ̃(t))+DR(η(t)− η̃(t))

+EI(t)[γ(t−τ)−γ̃(t−τ)]+ER(t)[η(t−τ)− η̃(t−τ)], for a.a. t≥0, (3.13b)

p(0)=0, q(0)=0, (3.13c)

γ(s)−γ̃(s)=0, η(s)− η̃(s)=0, for a.a. s∈ [−τ,0], (3.13d)

we obtain that

V̇[x− x̃,y− ỹ,γ−γ̃,η− η̃](t)≤ eδt

{

−
n

∑
i=1

βi(ci−δ)|xi(t)− x̃i(t)|−
n

∑
i=1

βi(ci−δ)|yi(t)

− ỹi(t)|+
n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|γj(t)−γ̃j(t)|+

n

∑
i,j=1

βi(d̄
I
ij+ ēI

ije
δτ)|ηj(t)− η̃j(t)|

}

≤ eδt

{

−
n

∑
i=1

βi(ci−δ)|xi(t)− x̃i(t)|−
n

∑
i=1

βi(ci−δ)|yi(t)− ỹi(t)|

−
n

∑
i=1

[

βi(−d̄I
ii− ēI

iie
δτ)|xi(t)− x̃i(t)|+∑

j 6=i

βi(−d̄I
ij− ēI

ije
δτ)|xj(t)− x̃j(t)|

]

−
n

∑
i=1

[

βi(−d̄I
ii− ēI

iie
δτ)|yi(t)− ỹi(t)|+∑

j 6=i

βi(−d̄I
ij− ēI

ije
δτ)|yj(t)− ỹj(t)|

]

}

= eδt

{

−
n

∑
i=1

βi(ci−δ)|xi(t)− x̃i(t)|−
n

∑
i=1

βi(ci−δ)|yi(t)− ỹi(t)|

−βT Bδ(|x1(t)− x̃1(t)|,...,|xn(t)− x̃n(t)|)
T−βTBδ(|y1(t)− ỹ1(t)|,...,|yn(t)− ỹn(t)|)

T

}

≤ 0, (3.14)

while the initial condition implies that V[x− x̃,y− ỹ,γ−γ̃,η− η̃](0)= 0, since V[x− x̃,y−
ỹ,γ−γ̃,η− η̃](t)≥0 and for all t, we deduce that actually V[x− x̃,y− ỹ,γ−γ̃,η− η̃](t)≡0
and, hence, x(t)= x̃(t) and y(t)= ỹ(t) for all t≥0, γ(t)= γ̃(t) and η(t)= η̃(t) for a.a. t≥0.
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S3: Let [x,y;γ,η] and [x̃,ỹ;γ̃,η̃] be the solutions of IOP (3.1) with initial data [x0,y0;γ0,η0],
[x̃0,ỹ0;γ̃0,η̃0], respectively. The differences p(t)= x(t)− x̃(t) and q(t)=y(t)− ỹ(t) satisfy

ṗ(t)=−C(t)p(t)+DR(γ(t)−γ̃(t))−DI(η(t)− η̃(t))

+ER(t)[γ(t−τ)−γ̃(t−τ)]−EI(t)[η(t−τ)− η̃(t−τ)], for a.a. t≥0, (3.15a)

q̇(t)=−C(t)q(t)+DI(γ(t)−γ̃(t))+DR(η(t)− η̃(t))

+EI(t)[γ(t−τ)−γ̃(t−τ)]+ER(t)[η(t−τ)− η̃(t−τ)], for a.a. t≥0. (3.15b)

The same kind of estimates employed in the proof of (3.14) leads to

V̇[x− x̃,y− ỹ,γ−γ̃,η− η̃](t)≤0, for a.a. t≥0. (3.16)

Therefore, we have

||x(t)− x̃(t)||β ≤ e−δtV[x− x̃,y− ỹ,γ−γ̃,η− η̃](t)≤ e−δtV[x− x̃,y− ỹ,γ−γ̃,η− η̃](0),

||y(t)− ỹ(t)||β ≤ e−δtV[x− x̃,y− ỹ,γ−γ̃,η− η̃](t)≤ e−δtV[x− x̃,y− ỹ,γ−γ̃,η− η̃](0),

for all t≥0. On the other hand, we can estimate

n

∑
j=1

∫ t

t−τ
|γj(s)−γ̃j(s)|ds≤

V[x− x̃,y− ỹ,γ−γ̃,η− η̃](0)

minj∈N ∑
n
i=1 βi ē

R
ij

e−δt, (3.17a)

n

∑
j=1

∫ t

t−τ
|ηj(s)− η̃j(s)|ds≤

V[x− x̃,y− ỹ,γ−γ̃,η− η̃](0)

minj∈N ∑
n
i=1 βi ē

I
ij

e−δt. (3.17b)

The proof is complete.

4 Exponential stability and convergence of periodic solutions

Let us consider the vector space Ω=Rn×Rn×L1([−τ,0],Rn)×L1([−τ,0],Rn), where we
identify L1-functions which coincide up to a set of zero measure. Define

||[x0,y0;γ0,η0]||Ω =||x0||β+
n

∑
i,j=1

βi ē
R
ij

∫ 0

−τ
|γ0j(s)|ds+

n

∑
i,j=1

βi ē
I
ij

∫ 0

−τ
|η0j(s)|ds

+||y0||β+
n

∑
i,j=1

βi ē
I
ij

∫ 0

−τ
|γ0j(s)|ds+

n

∑
i,j=1

βi ē
R
ij

∫ 0

−τ
|η0j(s)|ds,

∀[x0,y0;γ0,η0]∈Ω, gives rise to a norm which makes Ω a Banach space.

Theorem 4.1. If Assumption 1 holds and C,D,E,H are ω− periodic functions then system (2.2)
has a unique ω−periodic solution [x,y;γ,η].
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Proof. S1 and S2 of Theorem 1 imply that system (2.2) defines a semi-flow F t :Ω→Ω,t≥0
in the following way

{

F t[x0,y0;γ0,η0]= [F t
1 [x0;γ0,η0], F t

2 [y0;γ0,η0]],
F t

1 [x0;γ0,η0]= [x(t);γt,ηt], F t
2 [y0;γ0,η0]= [y(t);γt ,ηt],

where ∀[x0,y0;γ0,η0]∈ Ω, [x,y;γ,η] is the solution of IOP with initial data [x0,y0;γ0,η0].
Moreover, the semigroup relations F s+t =F s◦F t =F t◦F s hold for all s,t≥ 0 and the
ω−periodic solutions of system (2.1) are in 1-to-1 correspondence with the fixed points
of the map F ω.

Let us fix any [x0,y0;γ0,η0], [x̃0,ỹ0;γ̃0,η̃0] ∈Ω and consider the solutions [x,y;γ,η] and
[x̃,ỹ;γ̃,η̃] of IOP with initial data [x0,y0;γ0,η0] and [x̃0,ỹ0;γ̃0,η̃0], respectively. Recalling
the definition of V and the proof of S3 of Theorem 1, we obtain that

||F t
1 [x0;γ0,η0]−F

t
1 [x̃0;γ̃0,η̃0]||Ω = ||[x(t)− x̃(t);γt−γ̃t,ηt− η̃t]||Ω

≤ e−δtV1[x− x̃;γ−γ̃,η− η̃](t)≤ e−δtV1[x− x̃;γ−γ̃,η− η̃](0)

≤ eδ(τ−t)||[x0− x̃0;γ0−γ̃0,η0− η̃0]||Ω, (4.1)

||F t
2 [y0;γ0,η0]−F

t
2 [ỹ0;γ̃0,η̃0]||Ω = ||[y(t)− ỹ(t);γt−γ̃t,ηt− η̃t]||Ω

≤ e−δtV2[y− ỹ;γ−γ̃,η− η̃](t)≤ e−δtV2[y− ỹ;γ−γ̃,η− η̃](0)

≤ eδ(τ−t)||[y0− ỹ0;γ0−γ̃0,η0− η̃0]||Ω, (4.2)

∀t ≥ 0. In particular, setting t = mω where m ∈ N such that mω−τ > 0, we have that
(F ω)m=F mω is a contraction mapping and has a unique fixed point which is, therefore,
the unique fixed point of F ω .

An immediate consequence of Proposition 2.1, S3 of Theorem 3.1 and Theorem 4.1
is the following result which states in a precise way the globally exponential stability of
the state and convergence in measure of the output of the ω−periodic solution of system
(2.1). Therefore, we have the following main theorem.

Theorem 4.2. Under the assumptions of Theorem 4.1, let [x,y;γ,η] be the unique ω−periodic
solution of system (2.2) and [x̃,ỹ;γ̃,η̃] be any other solution of system (2.2). Then [x,y] converges
exponentially to [x̃,ỹ], [γ,η] L1-exponentially converges to [γ̃,η̃], respectively. The convergence
rate is δ∈ (0,min{δ̄, ¯̄δ,c1,...,cn}), where δ̄, ¯̄δ are defined in (3.3).

Remark 4.1. From Assumption 1, we can see that exponential stability of state trajec-
tory and L1-exponentially convergence of output solution of system (2.1) depend on M-
matrices of real and imaginary parts. As system (2.1) reduce to real-valued neural net-
works, i.e., all the imaginary parts are zeros, our result can include ones in [24].
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5 An example

Let us consider system (2.2) with τ=1

ẋ(t)+iẏ(t)=−C(t)x(t)+DR(t) fR(x(t))−DI(t) f I(y(t))+ER(t) fR(x(t−τ))

−EI(t) f I(y(t−τ))+HR(t)+i[−C(t)y(t)+DI(t) fR(x(t))

+DR(t) f I(y(t))+EI(t) fR(x(t−τ))+ER(t) f I(y(t−τ))+H I(t)].

Choose the function



























































fR(x)=

{

x2+1, x>0,
−x2−1, x<0,

f I(y)=

{

y2+2, y>0,
−y2, y<0,

DR(t)=

(

−3−sin2 t −1−cos2 t

−cos2 t −2−sin2 t

)

, DI(t)=

(

1
2 sint 1

3 cost
1
3 cos(2t) 1

4 sin(2t)

)

,

ER(t)=

(

− 1
2 cos(3t) 1

4 sin2(3t)
1
2 sin2 t f rac13cos2 t

)

, EI(t)=

(

sint 1
2 cost

1
2 cos2 t 1

3 sin2(2t)

)

,

HR(t)=

(

3sint
3cos(2t)

)

, H I(t)=

(

3cos(2t)
3sin(3t)

)

.

It is straightforward to check that Aδ,Bδ are M−matrice. Therefore, it is easy to ver-
ify that the assumptions of Theorems 1, 2 and 3 are fulfilled. Then it has the unique
2π−periodic solution [x,y;γ,η], which is globally exponentially stable. With 20 pairs of
random initial values, we obtained the rapidity of the convergence of the state is illus-
trated by the pictures in Fig. 1 and Fig. 2 and the phase plane portrait of the state zi,i=1,2
in Fig. 3.

0 10 20 30 40 50 60 70 80
−4

−3

−2

−1

0

1

2

3

time

x 1(t
),

 x
2(t

)

(a) The state of the x1(t),x2(t).
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(b) The state of the y1(t),y2(t).

Figure 1: The states of xj(t) and yj(t).
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(a) The state of the x1(t)−x2(t).
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(b) The state of the y1(t)−y2(t).

Figure 2: The states of x1(t)−x2(t) and y1(t)−y2(t).
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Figure 3: The phase plane behaviors.
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