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Abstract. Based on the field velocity method, a novel approach for simulating un-
steady pitching and plunging motion of an airfoil is presented in this paper. Re-
sponses to pitching and plunging motions of the airfoil are simulated under dif-
ferent conditions. The obtained results are compared with those of moving grid
method and good agreement is achieved. In the conventional field velocity method,
the Euler solver is usually used to simulate the movement of the airfoil. However,
when viscous effect is considered, unsteady Navier-Stokes equations have to be
solved and the viscous flux correction must be taken into account. In this work, the
viscous flux correction is introduced into the conventional field velocity method
when non-uniform grid speed distribution is occurred. Numerical experiments for
the flow around NACA0012 airfoil showed that the proposed approach can well
simulate viscous moving boundary flow problems.

AMS subject classifications: 65Z05,65M04
Key words: Gust response, unsteady Navier-Stokes equations, field velocity method, viscous
flux correction.

1 Introduction

In the field of Computational Fluid Dynamics (CFD), there are two categories of nu-
merical methods for simulating moving boundary flow problems. One is the moving
grid method [1–3], which constantly updates the grid according to the position of ob-
ject. In this type of methods, the unsteady Navier-Stokes (N-S) equations are solved
with the help of Arbitrary Lagrangian-Eulerian (ALE) technique. The major limitation
of moving grid method is the regeneration of mesh at every time step, which may con-
sume much time and reduce computational efficiency. To overcome this drawback, a
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pseudo grid-deformation approach was developed [4]. This approach calculates the
grid speed through analytical expression of grid movement. The method is feasible
to simulate rotational motion of the object. However, to simulate axial motion of the
object, the volume change of grid cells should be considered. Another type of ap-
proaches for handling moving boundary problems is the field velocity method [5–8],
which adopts the grid speed technique to simulate the velocity change of flow field.
This method is especially suitable for calculation of step change of airfoil, and has
been successfully applied to calculate the gust response of the airfoil/wing [9–12].

The conventional field velocity approach described above is usually used to cal-
culate the indicial response [7, 8, 13]. It is a method for incorporating unsteady flow
conditions via grid movement in CFD simulations. This approach provides a unique
feature for directly calculating aerodynamic responses to step changes in flow condi-
tions. Physically, the grid velocity can be interpreted as the velocity of a grid point in
the mesh during the unsteady motion of the boundary surface. An impulsive change
in the angle-of-attack can be perceived as an impulsive superposition of a uniform ve-
locity field to the free stream. The magnitude of the normal velocity is determined by
the magnitude of the indicial change for the angle-of-attack. This method effectively
decouples the influence of pure angle-of-attack from that of a pitch rate because the
airfoil is not made to pitch, and also because the step change is enforced over the entire
flow domain uniformly. A similar methodology can be used for simulating responses
of an airfoil to step changes in pitch rate and interaction with traveling vertical gusts
or convecting vortices [13, 14]. In addition, the field velocity approach is also used
to prescribe the effects of the trailed vortex wake from the other rotor blades [15–17],
which reduces a lot of computational time as compared to the full wake capturing
method. However, the observations from the time dependence study [15] strongly
suggests that the consistent evaluation of time metrics for satisfying the geometric
conservation law is critical for obtaining smooth and accurate solutions in time.

Based on the field velocity method, a novel technique is developed in this paper to
simulate unsteady pitching and plunging motions of an airfoil by using a fixed grid.
In the present work, the unsteady N-S equations are solved to describe the flow field.
In the meanwhile, it is necessary to add a viscous flux correction to consider the gust
responses when the grid speed is not uniform in space. In addition, to model the
pitching motion, a rotational velocity is added to the grid to simulate the rotational
speed of airfoil, and a vertical velocity to the grid to represent the angle change of
airfoil. To model the plunging motion, only a vertical velocity is required. The present
method is validated by its application to simulate the airfoil movement with differ-
ent motion modes. The obtained results show good agreement with those of moving
grid method. This demonstrates the capability of present field velocity method for
simulation of moving boundary flow problems, and the ability to consider the gust
response.

The paper is organized as follows. In Section 2, the viscous flux correction-based
field velocity method is described in details. In Section 3, the proposed method is
applied to simulate various moving airfoil problems to demonstrate its feasibility for
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solving unsteady N-S equations. Some concluding remarks are given in Section 4.

2 Methodology

2.1 Governing equations and numerical discretization

To describe the flow field with moving airfoil, the unsteady N-S equations formulated
in Cartesian coordinates are employed, which read [18]

∂
−→
W
∂t

+
∂
−→
f

∂x
+

∂−→q
∂z

=
(∂

−→
R

∂x
+

∂
−→
T

∂z

)
, (2.1)

where
−→
W is the vector of conservative variables;

−→
f and −→q are the convective flux

vectors in the x- and z-direction, respectively;
−→
R and

−→
T are the viscous flux vectors

in x- and z-directions. The conservative variables are defined as follows

−→
W =


ρ

ρu
ρw
ρE

 , (2.2)

where ρ and E denote density and total energy per unit mass respectively, and u, w
are the velocity components in Cartesian coordinates. The convective flux vectors and
the viscous flux vectors are defined as follows

−→
f =


ρU

ρUu + p
ρUw

(ρE + p)U + xt p

 , −→q =


ρW

ρWu
ρWw + p

(ρE + p)W + zt p

 , (2.3a)

−→
R =


0

τxx
τzx

uτxx + wτxz + k
∂T
∂x

 ,
−→
T =


0

τxz
τzz

uτzx + wτzz + k
∂T
∂z

,

 , (2.3b)

where p is the static pressure of the fluid and T is the static temperature, U = u − xt,
W = w − zt. Here, xt and zt denote the velocity components of grid speed v⃗t in
Cartesian coordinates. The notation τij means the stress component in a plane perpen-
dicular to the i-axis in the direction of the j-axis.

The spatial discretization of N-S equations is performed using the Jameson central
scheme with artificial dissipation. The dual time-stepping approach [19] is adopted
for time integration. The Spalart-Allmaras (S-A) one equation model [20] is employed
to simulate the turbulent flow. A uniform flow field is taken as the initial condition,
and the non-slip and non-reflecting boundary conditions are applied on the wall and
far-field boundary, respectively [21]. In this work, the C-type structured grid is used
for numerical computation. For the rest of this subsection, the descriptions of Jameson
scheme and S-A turbulence model are presented.
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First, the Jameson scheme is depicted simply. Consider a control volume Ω with
boundary ∂Ω which moves with flow velocity. The governing equations can be writ-
ten in the integral form as [18]

∂

∂t

∫
Ω

−→
W dΩ +

∮
∂Ω

(
−→
F c −

−→
F v)dS = 0, (2.4)

where
−→
F c is the vector of convective fluxes,

−→
F v is the vector of viscous fluxes, and dS

is the surface element of Ω.
The convective flux through a face of the control volume is approximated using

the average of variables. Artificial dissipation is then added to the central fluxes for
stability. The total convective flux at face (I + 1/2, J) reads

(
−→
F c∆S)I+ 1

2 ,J ≈
−→
F c(

−→
W I+ 1

2 ,J)∆SI+ 1
2 ,J −

−→
D I+ 1

2 ,J , (2.5)

where I, J denote the index of a control volume, ∆S is the area of one face of the control
volume. The flow variables are averaged as

−→
W I+ 1

2 ,J =
1
2
(
−→
W I,J +

−→
W I+1,J). (2.6)

For simplicity, (I + 1/2, J) will be abbreviated as (I + 1/2) hereafter. The artificial
dissipation flux consists of a blend of adaptive second- and fourth-order differences
which result from the sum of first- and third-order difference operators

−→
D I+ 1

2
= Λ̂S

I+ 1
2

[
ε
(2)
I+ 1

2
(
−→
W I+1 +

−→
W I)− ε

(4)
I+ 1

2
(
−→
W I+2 − 3

−→
W I+1 +

−→
W I −

−→
W I−1)

]
, (2.7)

where ε(2) and ε(4) are parameters of the pressure-based sensor. The dissipation is
scaled by the sum of the spectral radii of the convective flux Jacobian in all coordinate
directions

Λ̂S
I+ 1

2
= (Λ̂I

c)I+ 1
2
+ (Λ̂J

c)I+ 1
2
+ (Λ̂K

c )I+ 1
2
. (2.8)

The spectral radius at the cell face (I + 1/2) is evaluated from the average

(Λ̂I
c)I+ 1

2
=

1
2
(
(Λ̂I

c)I + (Λ̂I
c)I+1

)
, (2.9)

Λ̂c can be computed by

(Λ̂I
c) = (|V|+ c)∆S, (2.10)

where V stands for the contravariant velocity and c is the speed of sound.
After spatial discretization, a system of coupled ordinary differential equations in

time can be obtained as

d
dt
(ΩI

−→
W I) +

−→
R I(

−→
W ) = 0, (2.11)
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where
−→
R represents the residual. In order to obtain a fully-implicit algorithm, Eq. (2.11)

can be written as

d
dt
(Ωn+1

I
−→
W n+1

I ) +
−→
R I(

−→
W n+1) = 0, (2.12)

where the superscript n + 1 denotes the time level (n + 1)∆t. The time derivative in
Eq. (2.12) can be approximated by the following second order implicit scheme,

d(Ωn+1
I

−→
W n+1

I )

dt
=

3Ωn+1
I

−→
W n+1

I − 4Ωn
I
−→
W n

I + Ωn−1
I

−→
W n−1

I
2∆t

. (2.13)

As a result, Eq. (2.12) can be approximated as

3Ωn+1
I

−→
W n+1

I − 4Ωn
I
−→
W n

I + Ωn−1
I

−→
W n−1

I
2∆t

+
−→
R I(

−→
W n+1) = 0. (2.14)

Equation system (2.14) is a set of algebraic equations. By setting

−→
W ∗ =

−→
W n+1, (2.15a)

−→
R ∗

I (
−→
W ∗) =

−→
R I(

−→
W ∗) +

3
2∆t

Ωn+1
I

−→
W ∗

I −
2

∆t
Ωn

I
−→
W n

I +
1

2∆t
Ωn−1

I
−→
W n−1

I , (2.15b)

and with introduction of a pseudo-time derivative ∂
−→
W ∗

I /∂τ, Eq. (2.14) can be written
as

∂
−→
W ∗

I
∂τ

+
−→
R ∗

I (
−→
W ∗) = 0. (2.16)

Within each real time step, equation system (2.16) can be solved using a five-stage
Runge-Kutta scheme.

After the description of Jameson scheme, the Spalart-Allmaras one equation tur-
bulence model is presented as follows. The integral form of S-A turbulence model
over a control volume can be written as [20]

∂

∂t

∫
Ω

ṽdΩ +
∮

∂Ω
(Fc,T − Fv,T)dS =

∫
Ω

QTdΩ, (2.17)

where d denotes the distance to the closest wall, ṽ is the eddy-viscosity. The convective
flux is defined as

Fc,T = ṽV, (2.18)

with V being the contravariant velocity. The convective flux is in general discretized
using the first-order upwind scheme. The viscous flux is given by

Fv,T = nxτT
xx + nyτT

yy + nzτT
zz, (2.19)
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where nx, ny, nz are the components of the unit normal vector. The viscous stresses
can be expressed by

τT
xx =

1
σ
(vL + ṽ)

∂ṽ
∂x

, τT
yy =

1
σ
(vL + ṽ)

∂ṽ
∂y

, τT
zz =

1
σ
(vL + ṽ)

∂ṽ
∂z

. (2.20)

Here, vL denotes the laminar kinematic viscosity. The source term in Eq. (2.17) is given
by

QT = Cb1(1 − ft2)Ω̃ṽ +
Cb2

σ
(∇ṽ)2 −

(
Cw1 fw − Cb1

κ2 ft2

)( ṽ
d

)2
+ ft1∥∆v⃗∥2

2, (2.21a)

Ω̃ = Ω +
ṽ

κ2d2 fv2, fv2 = 1 − χ

1 + χ fv1
, fv1 =

χ3

χ3 + C3
v1

, χ =
ṽ
vL

, (2.21b)

where Ω stands for the magnitude of the mean rotational rate. The parameters used
in Eq. (2.21) are computed by

fw = g
( 1 + C6

w3
g6 + C6

w3

) 1
6
, g = r + Cw2(r6 − r), r =

ṽ
Ω̃κ2d2

, (2.22a)

ft1 = Ct1gt exp
[
− Ct2

Ω2
t

∥∆v⃗∥2
2
(d2 + g2

t d2
t )
]
, ft2 = Ct3 exp(Ct4χ2), gt = min

[
0.1,

∥∆v⃗∥2
(Ωt∆xt)

]
, (2.22b)

where Ω is the vorticity on the wall at the trip point, ∥∆v⃗∥2 denotes the L2-norm of
the difference between the velocity at the trip point and the current field point, dt is
the distance to the nearest trip point, and ∆xt stands for the spacing along the wall at
the trip point. The coefficients used in above equations are taken as

Cb1 = 0.1355, Cb2 = 0.622, Cv1 = 7.1, Cv2 = 5, (2.23a)

σ =
2
3

, κ = 0.41, Cw1 =
Cb1
κ2 +

1 + Cb2
σ

, Cw2 = 0.3, (2.23b)

Cw3 = 2.0, Ct1 = 1, Ct2 = 2, Ct3 = 1.3, Ct4 = 0.5. (2.23c)

After spatial discretization, Eq. (2.17) can also be solved using the five-stage Runge-
Kutta scheme.

2.2 Moving grid method

In this section, the moving grid method is simply described first as this method will
be used to verify our proposed field velocity method with viscous correction. Here, an
elastic moving grid method is adopted, in which the grid of wall boundary is firstly
generated, and then an elastic mesh deformation technique is utilized to generate the
grid of internal flow field [22].

The coordinates (represented by subscript u) of the dynamic grid are [23]

xu = xr − (xr − xs) · g, (2.24)

where subscript s represents the boundary-fitted static grid which is used as the initial
grid; r represents the instantaneous grid which is changed from the static grid; g is the
function about the serial number of the grid lines.
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To validate the moving grid method, a NACA0012 airfoil is forced to pitch around
the quarter chord with a reduced frequency of 0.0814. The form of pitching motion is
given as follows

α = 0.0160 + 2.510 sin ωt, (2.25)

where α is the angle of attack, ω is the reduced frequency, t is the time. The Reynolds
number Re, based on the chord of airfoil, is 5.5 × 106, and the Mach number Ma is
0.755. In this case, the unsteady Euler/N-S equations are solved. The results calcu-
lated by Euler equations are compared with the reference data calculated by Deng
et al. [1] and the experimental data as depicted in Fig. 1. As shown in this figure,
the results of moving grid method basically compare well with the data in the litera-
ture. The differences may be attributed to the mesh quality and the pseudo-time error.
Fig. 2 shows the results calculated by N-S equations and those of Jahangirian and Ha-
didoolab [2]. The slight differences in minus angle in Fig. 2 are due to the selection of
pseudo-time, steady-state error as mentionedin [2]. From two figures, it can be seen
that the current results are in good agreement with both the experimental data and
the reference result. This demonstrates the feasibility of moving grid technique used
in this paper.

Figure 1: Calculated normal force by solving Euler equations.

Figure 2: Calculated normal force by solving N-S equations.
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2.3 Field velocity method

Conventionally, the velocity vector
−→
V in the field velocity approach can be written

as [7, 8]
−→
V = (u − xt )⃗i + (w − zt )⃗k, (2.26)

where u and w are the velocity components along x- and z- direction; xt and zt are the
grid speed components along x- and z- directions, respectively. Since the indicial step
change in the angle can be represented by the velocity along z- direction, Eq. (2.26) can
be written as

−→
V = (u − xt )⃗i + (w − zt + wg )⃗k. (2.27)

Eq. (2.27) provides a way to determine the response resulting from a pure step change
in the angle of attack without any dependent pitch rate term. To validate this field
velocity method, the response of a NACA0012 airfoil under indicial gust is simulated.
The grid speed wg is set as

wg(τ̂) = w0Ustep(τ̂), (2.28)

where τ̂ is the non-dimensional time, Ustep(τ̂) is the unit step function and w0 is the
amplitude of the step function. The gust velocity amplitude is 0.08 times of the up-
stream flow velocity. The calculations are performed at Ma = 0.3, 0.5 and 0.8. Fig. 3
plots the lift responses of airfoil. Also shown in Fig. 3 is the reference result of [8]. Fig. 4
compares the lift responses calculated by Euler and N-S solvers. As shown in Fig. 3,
the current lift responses agree well with those in [8]. The results in Fig. 4 show that
the gust responses calculated by N-S equations are qualitatively close to those from
Euler equations. This shows that the field velocity method can be well incorporated
into the N-S and Euler solvers.

Based on the conventional field velocity method, a new approach for handling
unsteady pitching and plunging motion of airfoil on a fixed grid is presented. In this
method, to simulate the pitching motion, the treatment of indicial change in angle and

Figure 3: Comparison of lift response with [8] by Euler solver.
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Figure 4: Comparison of calculated lift response by Euler and N-S solvers.

angular velocity is decoupled. The indicial change in angle is regarded as a velocity
in z- direction as shown in Eq. (2.27), while the indicial change in angular velocity is
considered by adding a rotating velocity. The resultant formulation is

−→
V = (u − xt + |y|wx )⃗i + (w − zt + |x|wy )⃗k, (2.29)

where x and y denote the location of the grid relative to the rotational axis; wx and
wy denote the components of angular velocity along coordinate directions. The grid
speed in Eq. (2.29) is added to account for the effect of angular speed of fluid, which is
the indicial change in angular velocity. By solving Eqs. (2.27) and (2.29), the unsteady
pitching motion of airfoil can be calculated without moving the grid. As compared to
pitching motion, it is very easy to deal with plunging motion in the present method.
Only the vertical grid speed is added to represent the plunging motion.

2.4 Viscous flux correction

According to the principle of relative motion, which is shown in Fig. 5, the downward
speed of grid V ′ is equivalent to the upward speed of cell center V ′. In the moving
grid system, the vector of viscous fluxes is only related to the speed of the viscous
fluxes is also related to the speed of the fluid, which should be changed because of
the relative motion of the fluid V ′ in Fig. 5, and its effect on the viscous force as well
as the work done by the viscous force and pressure should be considered. For a grid
cell, the velocity which is used to calculate the viscous flux must be the vector sum-
mation of initial velocity V and grid velocity V ′. When the field velocity method is
directly applied to solve the unsteady N-S equations (2.1), the grid velocity is not con-
sidered. Therefore, the conventional field velocity method can not accurately simulate
the practical flow phenomena. This is because the viscous flux due to non-zero grid
speed is not included in the simulation.

As for the convective flux, the grid speed V ′ has been taken into account when
the flux is calculated across the face of cells. Therefore, solving Euler equations with
the help of field velocity method could accurately deal with moving airfoil problems.
When solving N-S equations, however, the viscous flux must be corrected at every
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Figure 5: Comparison of moving grid method and field velocity method.

time-step. This means that the effect of the grid speed which contributes to the viscous
flux should be considered. Hence, the following correction is adopted at the beginning
of every time-step

ρ = ρ0, ρu = ρ0(u0 − ugc), ρw = ρ0(w0 − wgc), ρE = ρ0E0, (2.30)

where the subscript 0 denotes the physical values of cell center at previous time-step,
ugc and wgc denote the transformed grid speed of cell center along x- and z- direction,
respectively.

The stresses caused by the grid speed can be written as follows

τxx = 2µ
∂ugc

∂x
− 2

3
µ
(∂ugc

∂x
+

∂ugc

∂z

)
, (2.31a)

τxz = τzx = µ
(∂ugc

∂z
+

∂ugc

∂x

)
, (2.31b)

τzz = 2µ
∂ugc

∂z
− 2

3
µ
(∂ugc

∂x
+

∂ugc

∂z

)
, (2.31c)

where µ is the dynamic viscosity. If the grid speed is uniform in space, we have

∂wg

∂x
= 0,

∂wg

∂z
= 0,

∂ug

∂x
= 0,

∂ug

∂z
= 0, (2.32)

where ug and wg stand for the grid speed of the cell vertex in Cartesian coordinates.
The viscous stresses in Eq. (2.31) are zero in this situation, which means that the

grid speed does not contribute to the viscous flux. So the viscous flux correction is
not required. On the other hand, it should be stressed that the heat conduction terms
k∂T/∂x and k∂T/∂z do change due to different velocities of cell centre, but the re-
sultant effect is not obvious, which is studied in test case 3.2. If the grid speed is
not uniform in space, the viscous flux correction is required due to non-zero viscous
stresses on the right-hand side of Eq. (2.1).

3 Three types of grid speed and numerical verification

In this work, the forms of grid speed considered can be classified into three types.
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3.1 Type 1: pitching motion

In this situation, the form of grid speed has the following feature

∂wg

∂x
̸= 0,

∂wg

∂z
̸= 0,

∂ug

∂x
= 0,

∂ug

∂z
̸= 0. (3.1)

Generally, the viscous flux caused by the grid speed is not zero. The grid speed is
given for the pitching motion as

∂wg

∂x
= ±wr,

∂wg

∂z
= 0,

∂ug

∂x
= 0,

∂ug

∂z
= ±wr, (3.2)

where wr is the angular velocity. As the first test case, the flow around the NACA0012
airfoil at Ma = 0.755 is considered. It is forced to pitch around the quarter chord at a
reduced frequency of 0.0814. The form of the motion is

α = 0.0160 + 2.510 sin ωt. (3.3)

The unsteady Euler equations are solved first, and the results calculated by the field
velocity method without viscous correction and the moving grid method are com-
pared in Fig. 6. It is clear from the figure that the result calculated by the field velocity
method without viscous correction is in good agreement with that from the moving
grid method. This implies that the field velocity method produces little numerical
errors by solving unsteady Euler equations.

Next, the same problem is simulated by solving unsteady N-S equations. The
calculated results via field velocity method with and without viscous correction and
moving grid method are compared in Fig. 7. For this case, the result of field veloc-
ity method without viscous correction cannot compare well with that of moving grid
method. The discrepancy is attributed to the fact that the viscous flux due to grid
speed is not considered. After introduction of viscous flux correction, the obtained
result can agree very well with the data from the moving grid method.

Figure 6: Comparison of normal force by Euler solver.
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Figure 7: Comparison of normal force by N-S solver.

Figure 8: Comparison of normal force by N-S solver in large angle.

As the second test case, the NACA0012 airfoil performs the pitching motion at a
reduced frequency of 0.074 with Ma = 0.383. The form of the motion is

α = 2.1◦ + 8.2◦ sin ωt. (3.4)

Here, the unsteady N-S equations are solved. The comparisons between the results
calculated by the field velocity method with viscous flux correction, the moving grid
method and the experimental data are shown in Fig. 8. Good agreement in the figure
shows that the field velocity method with viscous correction is a suitable tool for the
simulation of attached flow at relatively high angles of attack. From Figs. 7 and 8,
the conclusion can be made that the viscous correction is indispensable to accurately
calculate the viscous flux when the grid speed is not uniform in space.

3.2 Type 2: indicial and sharp-edged gusts, plunging

In this situation, the grid speed is uniform in the whole flow field. Thus, the form of
grid speed is

∂wg

∂x
= 0,

∂wg

∂z
= 0,

∂ug

∂x
= 0,

∂ug

∂z
= 0. (3.5)
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Figure 9: Calculated lift response of indicial gust by N-S solver.

Figure 10: Calculated lift response of sharp-edged gust by N-S solver.

Since the viscous flux caused by grid speed is zero, the viscous flux correction is un-
necessary. To verify the method, the NACA0012 airfoil is supposed to encounter the
indicial and sharp-edged gusts. For numerical simulation, Ma is taken as 0.3 and the
gust amplitude is 0.08 times of upstream velocity. The results calculated by unsteady
N-S equations with and without viscous flux correction are shown in Figs. 9 and 10. It
can be seen from the figures that the curves of lift evolution for two cases are nearly the
same, which means that the viscous flux correction has little influence on the results.

As the second test case for this type of grid speed, the NACA0012 airfoil is forced
to plunge at a reduced frequency of 0.8 with Ma = 0.3. The form of the motion is

h = 0.2 sin ωt, (3.6)

where h is the non-dimensional plunge distance of airfoil. Again, the unsteady N-
S equations are solved. The results calculated by the field velocity method with and
without viscous correction as well as the moving grid method are compared in Fig. 11.
It is obvious from the figure that the viscous flux correction has little effect on the result
of this type of grid speed.

On the other hand, it should be pointed out that the differences in Figs. 9-11 are
caused by the fact that the terms k∂T/∂x and k∂T/∂z do change due to the effect of
correction. Nevertheless, it can be found that the differences are obviously very small.
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Figure 11: Calculated normal force for plunging by N-S solver.

Therefore, it can be concluded that the viscous flux correction is unnecessary when
the grid speed is uniform in the whole flow field.

3.3 Type 3: vertical 1-cosine and sine gust

In this situation, the form of grid speed is given as

∂wg

∂x
̸= 0,

∂wg

∂z
= 0,

∂ug

∂x
= 0,

∂ug

∂z
= 0. (3.7)

There is a velocity gradient of vertical grid speed in the x- direction for this case. As
a result, the viscous flux caused by the grid speed is not zero. At the same time, the
airfoil enters the gust area gradually.

As the first test case for this type of grid speed, the NACA0012 airfoil executes
discrete 1-cosine gust with Ma = 0.3. The gust shape is defined as follows

wg =
1
2

w0

[
1 − cos

(2πx
h

)]
, (3.8)

where w0 = 0.05 and h = 5.0. The results calculated by unsteady N-S equations with
and without viscous flux correction are compared in Fig. 12. From the figure, we can
see that the influence of viscous flux correction is not very obvious for this case.

Next, the case of sine gust with Ma = 0.3 is considered. The gust shape is defined
as follows

wg = −1
2

w0 sin
(2πx

h

)
, (3.9)

where w0 = 0.05 and h = 5.0. The results calculated by unsteady N-S equations
with and without viscous flux corrections based on different meshes are compared in
Fig. 13. The calculations for the airfoil are performed on the coarse C-type mesh with
225 points in the wrap around direction, 49 points in the normal direction, and on the
fine mesh with 241 points in the wrap around direction, 111 points in the normal di-
rection. For the case with viscous flux correction, the lift evolutions remain the same
by using coarse and fine grids. In the situation without viscous flux correction, the
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Figure 12: Calculated lift response of 1-cosine gust by N-S solver.

Figure 13: Calculated lift response of sin gust by N-S solver.

amplitude of the lift variation with respect to time becomes larger on the coarse grid,
which is probably induced by accumulation of errors due to less accurate calculation
of viscous fluxes. To improve the solution, the fine grids have to be used. After some
time steps, however, the amplitude still fluctuates irregularly. From Figs. 12 and 13,
it can be seen that the viscous correction is still required to obtain the accurate com-
putation of viscous flux. However, since the airfoil enters the gust area gradually, the
effect of non-uniform grid speed on numerical results is not obvious, which is similar
to the case in Section 3.1. This may demonstrate that the viscous flux correction is
imperative for this case.

4 Conclusions

Based on the viscous flux correction, a new field velocity method for computing the
unsteady pitching and plunging motions of airfoil on a fixed grid is developed in this
paper. As for the pitching motion, a rotational velocity is added to the grid to simulate
the rotational speed of airfoil, and a vertical velocity to the grid to represent the an-
gle change of airfoil. As for the plunging motion, only a vertical velocity is required.
The method is able to simulate the movement of the airfoil, and the regeneration of
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mesh at every time step is not needed, which reduces computational time greatly. Nu-
merical experiments showed that when the unsteady N-S equations are solved with
non-uniform grid speed, an example being the simulation of 1-cosine, sine gust and
pitching motion, the viscous correction must be added when calculating the viscous
flux.

Through the obtained numerical results, the proposed approach is proven to be
accurate when solving unsteady N-S equations. As compared to the moving grid
method which usually consumes much time, it has a potential to be widely used to
simulate various moving boundary flow problems. In addition, the present method
can also provide a basic tool when applied to the simulation of the gust response.
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