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Abstract. In this paper, a method for extracting stress intensity factors (SIFs) in or-
thotropic thermoelasticity fracture by the extended finite element method (XFEM) and
interaction integral method is present. The proposed method is utilized in linear elas-
tic crack problems. The numerical results of the SIFs are presented and compared with
those obtained using boundary element method (BEM). The good accordance among
these two methods proves the applicability of the proposed approach and conforms its
capability of efficiently extracting thermoelasticity fracture parameters in orthotropic
material.
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1 Introduction

Recently, growing focus on orthotropic materials used in aerospace and automobile in-
dustries, temperature field problem may be involved in the engineer component, hence,
studying thermal fracture in these elastic materials has been among the most interest-
ing topics of research in recent decades. For simple and special geometry [1] problem,
the analytic or semi-analytic method is frequently used. However, for general or com-
plex geometries problem, numerical method is an advisable choice. The existing nu-
merical methods such as finite element method whose meshes assignment require been
conformed to the discontinuities or singular singularity. To overcome the difficulties,
XFEM [2,3] has been proven to be an efficient method for discontinuities problems which
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does not need remeshing in the process of crack growth. For thermoelastic fracture prob-
lems using XFEM, thermal problems in [4–6] were involved to solve shear band problems
with thermal effects in [7], the first paper about thermoelastic problems was discussed
in [8]. In this paper, either adiabatic or isothermal condition is considered on the crack
surface, the SIFs are extracted from the XFEM solution by an interaction integral, but it
is only in isotropic materials. In [5], thermo-mechanical XFEM crack propagation analy-
sis in functionally graded isotropic or orthotropic materials is dealt with. In [9], thermal
and thermo-mechanical influence on crack propagation by extended meshless method
is done. In [10], the thermal SIFs are obtained by crack closure integral or element-free
Galerkin method. In [6, 9, 10], the material addressed is also limited to isotropic case,
therefore, to my knowledge, for steady-state thermoelastic fracture problem in orthotrop-
ic medium using XFEM, few papers were reported in [5, 11].

In this paper, fracture analysis using XFEM in orthotropic thermoelastic problems is
performed. The SIFs are extracted by interaction integral method. Several numerical
examples are presented to validate the accuracy of results.

The outline of this paper is as follows. Section 2 recalls the fracture mechanics of or-
thotropic materials. Section 3 formulates the problem and introduces the discretization
of the temperature field. In Section 4, the extraction of the SIFs from the XFEM solution
is presented. It relies on interaction integrals in domain form with thermal effect. In Sec-
tion 5, the method is illustrated by numerical examples and is compared with reference
solutions. The conclusions are drawn in Section 6.

2 Fracture mechanics of orthotropic materials

The stress-strain relation [12] in linear elastic material can be written as

εα = aαβσβ, (α,β=1,2,3), (2.1)

with

ε1= ε11, ε2= ε22, ε3= ε33, ε4=2ε23, ε5=2ε31, ε6=2ε12, (2.2a)
σ1=σ11, σ2=σ22, σ3=σ33, σ4=σ23, σ5=σ31, σ6=σ12, (2.2b)

where aαβ is components of orthotropic compliance tensor. Here, we assume the material
is orthotropic with any types of loadings or general boundary conditions and a crack. Let
(X1,X2) be global Cartesian co-ordinate, (x,y) be local Cartesian co-ordinate and (r,θ) be
local polar co-ordinate defined on crack tip. As shown in Fig. 1.

The characteristic equation for orthotropic materials can be obtained using equilibri-
um and compatibility conditions [12]

a11µ4−2a16µ3+(2a12+a66)µ
2−2a26µ+a22=0. (2.3)

The roots of Eq. (2.3) are always either complex or purely imaginary in conjugate pairs as
µ1, µ̄1 and µ2, µ̄2.
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Figure 1: An arbitrary orthotropic body with traction t, with global Cartesian co-ordinate (X1,X2), local polar
co-ordinate (r,θ) originating at the crack-tip and various boundary conditions.

Let A1 =KI/
√

2πr, A2 =KI I/
√

2πr, B1 =
√

cosθ+µ1sinθ, B2 =
√

cosθ+µ2sinθ, then
the near-tip asymptotic stress fields [13] for pure Mode I fracture can be written as

σ11=A1Re
[

µ1µ2

µ1−µ2

(µ2

B2
− µ1

B1

)]
, (2.4a)

σ22=A1Re
[

1
µ1−µ2

(µ1

B2
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B1

)]
, (2.4b)

σ12=A1Re
[

µ1µ2

µ1−µ2

( 1
B1

− 1
B2

)]
, (2.4c)

and in the same way, for pure Mode II fracture, the stresses fields are [13]

σ11=A2Re
[

1
µ1−µ2

(µ2
2

B2
−

µ2
1

B1

)]
, (2.5a)

σ22=A2Re
[

1
µ1−µ2

( 1
B2

− 1
B1

)]
, (2.5b)

σ12=A2Re
[

1
µ1−µ2

(µ1

B1
− µ2

B2

)]
. (2.5c)

3 Problem formulation and discretization

3.1 Governing equations

The 2D static linear orthotropic thermoelasticity equation in a domain Ω bounded by Γ
are expressed as [8]

q=−k∇Tk=

[
k1 0
0 k2

]
, (3.1a)

−q+Q̄=0, (3.1b)
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ε=∇su, (3.1c)

εT=α(T−T0)Iα=

[
α1 0
0 α2

]
, (3.1d)

σ=C : (ε−εT), (3.1e)
∇·σ+b̄=0, (3.1f)

where, T is temperature, q heat flux, u displacement, ε strain tensor, σ stress tensor, εT
thermal expansion, T0 reference temperature; the material properties are diffusivities in
x,y directions k, expansion coefficients in x,y directions α, and the orthotropic Hooke ten-
sor C; Q̄ is heat source, and b̄ body force. I is the identity tensor and ∇s is the symmetric
gradient operator. The boundary conditions are listed below as

T= T̄ on ΓT, (3.2a)
q·n= q̄ on Γq, (3.2b)
u= ū on Γu, (3.2c)
σ ·n= t̄ on Γt, (3.2d)

with ΓT∪Γq=Γu∪Γt=Γ and ΓT∩Γq=Γu∩Γt=∅. A crack Γc is present in Ω. It is assumed
to be traction free (Γc ⊂ Γt, t̄= 0 on Γc). Here, we only focus on the case of an adiabatic
crack (Γc ⊂Γq, q̄=0 on Γc).

3.2 Adiabatic crack

In this case, the crack faces are adiabatic and also assumed to be traction free. The admis-
sible displacement and temperature spaces can be written as

U={u∈H3
1(Ω) : u= ū on Γu and u discontinuous on Γc}, (3.3a)

Υ={u∈H1(Ω) : T= T̄ on ΓT and T discontinuous on Γc}. (3.3b)

The weak form can be expressed as: Find u∈U and T∈Υ such that∫
Ω

ε(v) :C : ε(u)dΩ=
∫

Ω
v·b̄dΩ+

∫
ΓT

v· t̄dΓ+
∫

Ω
ε(v) :C : εTdΩ, (3.4a)∫

Ω
q(S)kq(T)dΩ=−

∫
Ω

SQ̄dΩ+
∫

Γq

Sq̄dΓ, (3.4b)

are satisfied ∀(v, S) ∈ U0×Υ0, where the subscript 0 denotes homogeneous essential
conditions. Using XFEM, a standard local temperature or displacement approximation
around the crack is enriched with jump function across the crack surfaces and the crack
tip temperature or displacement enrichment function around crack tip. The same proce-
dure is used for the thermoelastic in [8]. The shifted-XFEM [14, 15] enrichment formula-
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tion for displacement components in the orthotropic material can be written as

u(x,y)= ∑
n∈N

Nn(x,y)an+ ∑
n∈Ncr

Nn(x,y)[H(x,y)−H(xn,yn)]bn

+ ∑
n∈Ntip

Nn(x,y)
M

∑
m=1

[Fm(r,θ)−Fm(rn,θn)]cnm, (3.5)

where Ncr is the set of nodes whose support is crossed by the crack faces, while Ntip is the
set of nodes inside a fixed area around the crack tip (geometry enrichment). The selection
of enriched nodes (topological enrichment or geometry enrichment) for 2D crack problem
is illustrated in Fig. 2 or Fig. 3. an is usual finite element nodal displacements, bn and cnm
are enriched nodal displacement freedoms. H(x,y) is the generalized Heaviside function
which takes the value of +1 if (x,y) is above the crack surface and −1, otherwise. Here,
{Fm(r,θ)}4

m=1 are near tip asymptotic enrichment functions, which can be written as [14]

{Fm(r,θ)}4
m=1=

{√
rcos

( θ1

2

)√
g1(θ),

√
rcos

( θ2

2

)√
g2(θ),

√
rsin

( θ1

2

)√
g1(θ),

√
rsin

( θ2

2

)√
g2(θ)

}
, (3.6)

where

gj(θ)=

√√√√cos2(θ)+
sin2(θ)

p2
j

, j=1,2, (3.7a)

θj =arctan
y

pjx
=arctan

tanθ

pj
, (3.7b)

p1=

√√√√A−

√
A2− C22

C11
, p2=

√√√√A+

√
A2− C22

C11
, A=

1
2
×
[C66

C11
+

C22

C66
− (C12+C66)

2

C11C66

]
, (3.7c)

where (r,θ) are polar co-ordinate with the origin defined at the crack-tip as defined in
Fig. 1. Cij (i, j=1,2,6) are constitute coefficients. In this study, we assume that the crack
faces are adiabatic, so the temperature is discontinuous across the crack faces and the
heat flux is singular at the crack tip or crack front, the step function is H(x,y), which is
suitable to account for the temperature discontinuity.

Consequently, we discretize the temperature field in a way like the displacement field
but using simply the third and the fourth branch functions in Eq. (3.6) (the choosing
of enrichment terms is justified by the following Example 1), which are discontinuous
branch functions [11]

T(x,y)= ∑
n∈N

Nn(x,y)Tn+ ∑
n∈Ncr

Nn(x,y)[H(x,y)−H(xn,yn)]dn

+ ∑
n∈Ntip

Nn(x,y)
4

∑
m=3

[Fm(r,θ)−F(rn,θn)]enm. (3.8)
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Figure 2: Selection of topological enriched nodes for 2D crack problem. Circled nodes (set of nodes Ncr) are
enriched by the jump function whereas triangular nodes (set of nodes Ntip) are enriched by the crack tip branch
functions. The gray elements are those cut by the crack.

Figure 3: Fixing the near-tip enrichment scheme for selection of enriched nodes for 2D crack problem. Circled
nodes (set of nodes Ncr) are enriched by the jump function whereas triangular nodes (set of nodes Ntip) are
enriched by the crack tip branch functions.

4 SIFs calculations

The domain integral method for thermoelastic problem [16–18] is adopted for evaluating
stress intensity factors in homogeneous orthotropic media. The standard path indepen-
dent J-integral [19] for a cracked body is defined as

J= lim
Γ→0

∫
Γ
(Wδ1j−σijui,1)njdΓ, (4.1)

where W is the strain energy density and nj the component of the outward unit vector
normal to an arbitrary contour Γ, as shown in Fig. 4, which surrounds the crack tip and
encloses no other cracks. Here, we define a weight function q, which is a function varying
from q=1 on crack tip to q=0 along the contour Γ, and arbitrary value but continuous-
ly changeable elsewhere within the domain enclosed by Γ. Then using the divergence
theorem, the standard J-integral can be reduced into an equivalent domain form, given
by

J=
∫

A
(σijui,1−Wδ1j)q,jdA+

∫
A
(σijui,1−Wδ1j),jqdA. (4.2)

Where A is the domain enclosed by Γ (shaded domain in Fig. 4).
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Figure 4: Area for domain integral.

For thermoelastic orthotropic material, the strain energy density can be written as

W=
1
2

σij[ε ij−αij(T−T0)], (4.3)

while the constitutive equation is

σij =Dijkl [εkl−αkl(T−T0)], (4.4)

where Dijkl is the components of constitutive tensor, αkl the components of thermal ex-
pansion vector, T and T0 are the absolute and reference temperature, respectively.

For the homogeneous orthotropic medium, Eq. (4.2) can be reduced into the classical
domain form of thermal J-integral

J=
∫

A
(σijui,1−Wδ1j)q,jdA+

∫
A
(σijαijT,1)qdA. (4.5)

By combining the actual and auxiliary solutions for obtaining the J-integral, one can write

J(1+2)= J(1)+ J(2)+ I(1,2), (4.6)

where J(1+2) is the J-integral value for the superposition state, J(1) and J(2) are J-integral
value for actual and auxiliary states, respectively, and I(1,2) is the so-called interaction
integral, which is given by

I(1,2)=
∫

A

[
(σ

(1)
ij u(2)

i,1 +σ
(2)
ij u(1)

i,1 )−
1
2
(σ

(1)
ij ε

(2)
ij +σ

(2)
ij ε∗ij)δ1j

]
q,jdA+

∫
A
[σ

(2)
ij α

(1)
ij T(1)

,1 ]qdA, (4.7)

where ε∗ij = ε
(1)
ij −α

(1)
ij (T(1)−T(1)

0 ), superscript 1, 2 and 1+2 indicate fields and quantities
associated with states 1, 2 and 1+2.

For elastic orthotropic solids under mixed-mode load conditions, the J-integral is just
the energy release rate at the crack tip and is also related to SIFs as

J=β11K2
I +β12KIKI I+β22K2

I I , (4.8)
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where

β11=− a22

2
Im

[µ1+µ2

µ1µ2

]
, β22=

a11

2
Im(µ1+µ2), β12=− a22

2
Im

[ 1
µ1µ2

]
+

a11

2
Im(µ1µ2).

Applying Eq. (4.8) to states 1, 2 and the superposed state 1+2 gives

J(1)=β11K1
I

2
+β12K1

I K1
I I+β22K1

I I
2
, (4.9a)

J(2)=β11K2
I

2
+β12K2

I K2
I I+β22K2

I I
2
, (4.9b)

I(1,2)=2β11K1
I K2

I +β12(K1
I K2

I I+K2
I K1

I I)+2β22K1
I IK

2
I I . (4.9c)

Let K2
I =1 and K2

I I =0, Eq. (4.9c) reduces to

I(1,I)=2β11K1
I +β12K1

I I . (4.10)

Similarly, let K2
I =0 and K2

I I =1, Eq. (4.9c) reduces to

I(1,I I)=β12K1
I +2β22K1

I I . (4.11)

Hence, the mixed-mode SIFs (K1
I and K1

I I) can be obtained by solving a system of linear
algebraic Eq. (4.10) and Eq. (4.11).

5 Numerical examples

In this section, the following examples are provided to assess the robustness of the pro-
posed method. In all examples, plane stress condition is assumed. To improve the numer-
ical accuracy, two layers of crack tip enrichment is used in the first or second examples,
however, in third example, only one layer crack tip enrichment is used

(1) Homogeneous orthotropic plate with an inclined center crack under constant ther-
mal strain.

(2) Inclined edge crack with several orientations of the axes of orthotropy under uni-
form heat flux.

(3) Plate with a central crack in special case (isotropy) of orthotropic thermoelasticity.

All three examples produce a pure Mode-II loading. The uncoupled orthotropic ther-
moelastic problem, the associated orthotropic temperature field problem is first solved
by XFEM, the temperature field results so obtained are then used in subsequent XFEM
numerical stress analysis. After stress analysis, the stress intensity factors in the crack tip
are then obtained using domain form of interaction integral. Five different integral paths
are used in J-integral, the resulting stress intensity factors are average value of five value
obtained by five integral paths.
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5.1 Example 1

This example presents an inclined center cracked homogeneous orthotropic plate, the ge-
ometry and boundary condition of the center crack are illustrated in Fig. 5. In [5], the
author also neglect the effect of crack on the temperature fields, i.e., the mechanical fields
are affected by the thermal response, while the thermal fields are not affected by the crack
and mechanical fields. The material parameters of Young’s modulus, Poisson’s ratio and
thermal expansion coefficient can be obtained from those special case in [5], i.e., in case of
β=δ1=δ2=0, the orthotropic functionally material restores to homogeneous orthotropic
material. a/W=0.1, L/W=1.0 and three crack inclined angles θ=0◦,36◦ and 72◦ are con-
sidered here. The thermal boundary condition and corresponding equivalent mechanical
load are shown in Fig. 5(a) and Fig. 5(b), respectively. The plane stress condition results
in a uniform thermal strain when the crack is not considered.

Figure 5: Inclined edge crack, (a) thermal-induced prescribed strain, and (b) mechanical loadings.

Table 1 presents the comparison of the normalized SIFs at the right crack tip using
XFEM with those in [5] in terms of different crack inclined angles. It is shown that the re-
sults of good accordance is observed. This accordance also reflects the proposed example
is a special case of that in [5] and the valid choosing of enrichment function in Eq. (3.8).
In the FEM discretization, there are at least 182 nodes, 1504-node quadrilateral elements,
as shown in Fig. 6(a). Fig. 6(b) shows the deformed mesh when α=15◦.

Table 1: Normalized SIFs at the right crack tip.

crack angle (degree) KI (XFEM) KI (see [5]) KII (XFEM) KII (see [5])
0 1.429 1.428 0.000 0.000
36 1.008 1.019 0.40 0.409
72 0.211 0.216 0.32 0.29

5.2 Example 2

For the second example (see [20]), as shown in Fig. 7, an adiabatic edge crack in the rect-
angular plate are considered, the dimensions of the plate is: W is width and its length
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(a) (b)
Figure 6: Finite element mesh of edge crack with enriched nodes and circular J-integral contour around crack
tip. (a) Finite element mesh of edge crack (α=15◦) with enriched nodes and circular J-integral contour around
crack tip. Circled nodes are enriched by the discontinuity function whereas squared nodes are enriched by the
crack tip function, (b) deformed mesh edge crack (α=15◦).

Figure 7: Inclined edge crack.

is taken to be four times its width, the two opposite ends, AB and CD, of the plate are
assumed to be constrained in the x2 direction and free to x1 direction. The plate is sub-
jected to a steady-state temperature load, the sides BC, AD and the crack surfaces are
thermally insulated; the temperature of side AB is unchanged, but the side CD is cooled
by temperature Θ0. The plate material is glass/epoxy, the asterisks denoting values in
directions of the principal material axes, the properties are those in [20].

In the present analysis, the range of inclined angle of the crack considered is 0◦ to 45◦,
and for each crack angle, the SIFs for relative crack lengths, a=0.5 is adopted. The results
of SIFs are compared with those of boundary element method (BEM). The presented
stress intensity factors are all being normalized by K0=E∗

22α∗
22Θ0

√
πa [20].

Table 2 gives the comparison of the presented normalised stress intensity factors at the
crack tip of the inclined edge crack obtained using XFEM and those obtained using BEM.
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Table 2: Normalized SIFs-Example 2 for a/W=0.5.

crack angle (degree) KI (XFEM) KI (see [20]) % Diff KII (XFEM) KII (see [20])
0 0.628 0.643 2.33 0.000 -
15 0.620 0.622 0.32 0.06 0.060
30 0.543 0.554 1.99 0.096 0.133
45 0.423 0.470 10 0.161 0.179

The excellent accordance is obtained from the table. The relatively greater percentage
discrepancies for KI I/K0 can be attributed to their small magnitudes, which considerably
decreases the accuracy of the results.

5.2.1 Influence of mesh refinement

The variation of the normalized SIFs KI/K0 with the mesh refinement using fixed near-
tip enrichment domain scheme and topological enrichment scheme are shown in Fig. 8
and Fig. 9, respectively. Both scheme are in cases of α=0◦ and α=15◦.

Five different meshes are used with a normalized characteristic element length h/W
varying between 0.15 and 0.015, we can see that most of the results are within 0.8% and
compared to the topological enrichment scheme,the fixed near-tip enrichment domain
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Figure 8: Convergence of the KI/K0 for Example 2 using fixed near-tip enrichment domain scheme.
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Figure 9: Convergence of the KI/K0 for Example 2 using topological enrichment scheme.
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scheme improved the convergence of SIFs greatly.

5.2.2 Influence of Gauss quadrature

Due to the presence of enrichment term in XFEM, therefore the quadrature requires a
higher order Gauss quadrature, the sub domain integration is adopted here, as shown
in Fig. 10 (see [5]). A 3×3 Gauss quadrature is adopted in unenriched elements, a 5×5
Gauss quadrature is utilized for integration in elements containing Heaviside enriched
node(s), and 7×7, 9×9, 11×11, 13×13 and 15×15 Gauss quadrature schemes are utilized
for integration in elements containing crack tip enriched node(s).

Figure 10: Integration sub domain around a crack.

(a) Convergence of normalized Mode I SIFs with
order of quadrature when α=0◦

(b) Convergence of normalized Mode I SIFs with
order of quadrature when α=15◦

Figure 11: Convergence of normalized Mode I SIFs.

Fig. 11(a) and Fig. 11(b) present the convergence of normalized SIFs KI/K0 with in-
creasing quadrature order for sub domain in cases of α = 0◦ and α = 15◦, respectively.
When the quadrature order increases, the % error in normalized SIFs KI/K0 tends to ze-
ro. From these figures, it is shown that a high order (>11th order) of quadrature scheme
is recommended around crack tip.

5.2.3 Influence of crack tip enrichments

In addition, to show the influence of crack tip enrichments on SIFs, Fig. 12 presents the
comparison of normalized Mode II SIFs with and without orthotropic crack tip enrich-
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Figure 12: Comparison of normalized Mode II SIFs with and without orthotropic crack tip enrichments in cases
of α=0◦,15◦,30◦ and 45◦.
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Figure 13: Normalized Mode I SIFs versus radius of J-integral domain in cases of α=15◦ and 30◦.

ments in cases of α= 0◦,15◦,30◦ and 45◦. From Fig. 12, we can see that the results using
orthotropic crack tip enrichments agrees quite well with the reference solution, however,
without using crack tip enrichment, the results dramatically deviate from the reference
solution.

5.2.4 Influence of radius of the J-integral domain

In order to study the influence of radius of the J-integral domain on SIFs, five different
J-integral contour paths with normalized domain radius of r/a = 0.3,0.45,0.6,0.75 and
0.9 are adopted, as depicted in Fig. 13, which presents Normalized Mode I SIFs versus
radius of J-integral domain in cases of α=15◦ and 30◦, from this figure, it is obvious that
the radius of J-integral domain does not has notably influence on the SIFs.

5.3 Example 3

A rectangular plate of width 2W and length 2L and a central crack of length 2a is shown
in Fig. 14. This configuration with L/W=1.0 and a/W varying from 0.1 to 0.6 is solved for
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Figure 14: Plate with a central crack.

Figure 15: Finite element mesh of central crack with enriched nodes and circular J-integral contour around
crack tip. Circled nodes are enriched by the discontinuity function whereas squared nodes are enriched by the
crack tip functions.

adiabatic pure Mode II condition. The example have the following material properties
used in [21]: E1 = E2 = 2.184×1011Pa, Poisson’s ratio υ12; and the coefficients of linear
expansion α1,α2=1.67×10−5 per◦C, in x,y directions. Results are regardless of the thermal
conductivities k1, k2, here, k1 = k2. The finite element mesh with enriched nodes and
circular J-integral contour around crack tip is shown in Fig. 15, in the mesh, there are 400
square elements, 441 nodes, to model the isotropy, µ1 = 0.99i, µ1 = 1.01i in characteristic
Eq. (2.4a) is assumed. The resulting SIFs are normalized by K0=α1Θ2E(W)0.5. In Table 3,
the SIFs are compared with those reported in the handbook [1], and those reported in [22]
obtained by a dual boundary element method. The results are in close agreement.

Table 3: Normalized SIFs-Example 3.

a/W This study see [22] see [1]
0.1 0.020 0.018 0.021
0.2 0.055 0.054 0.053
0.3 0.096 0.095 0.094
0.4 0.142 0.141 0.141
0.5 0.192 0.190 0.188
0.6 0.248 0.243 0.247
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6 Conclusions

The XFEM was applied to the analysis of steady-state orthotropic thermoelastic problems
in cracked structures. The temperature is discretized similarly to the common XFEM dis-
cretization of the displacement field. A domain-independent interaction integral which
is applied to orthotropic material is used to extract the SIFs from the thermomechanical
XFEM solution.Numerical examples are presented to validate the accuracy of the pro-
posed method.
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