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Abstract. A nonconforming rectangular finite element method is proposed to solve

a fluid structure interaction problem characterized by the Darcy-Stokes-Brinkman

Equation with discontinuous coefficients across the interface of different structures.
A uniformly stable mixed finite element together with Nitsche-type matching condi-

tions that automatically adapt to the coupling of different sub-problem combinations
are utilized in the discrete algorithm. Compared with other finite element methods

in the literature, the new method has some distinguished advantages and features.

The Boland-Nicolaides trick is used in proving the inf-sup condition for the multi-
domain discrete problem. Optimal error estimates are derived for the coupled prob-

lem by analyzing the approximation errors and the consistency errors. Numerical

examples are also provided to confirm the theoretical results.
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1. Introduction

There are many applications of the fluid structure interaction between a fluid flow

and a porous media, a fluid flow and another fluid flow, or a porous media and another

porous media with different physical parameters. In this paper, we consider such a fluid

structure interaction problem that is modeled by the Darcy-Stokes-Brinkman equations,

ηu+∇ ·
(

p I− ν∇u
)

= f , ∇ · u = 0, x ∈ Ω ⊂ R
2, a.e., (1.1)
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Nonconforming FEM for Darcy-Stokes-Brinkman Flows 23

where u(x) is the velocity, p(x) is the pressure, and f (x) is an external force. We

assume that ν(x) and η(x) are nonnegative coefficients satisfying ν(x) + η(x) = µ(x)
with 0 < m ≤ µ(x) ≤ M a.e. on Ω. Note that if η = 0, the equations become a Stokes

flow while it is a Darcy flow if ν = 0, see Figure 1 for an illustration of different set-up

of our interest in this paper. We use the non-slip boundary condition if the part of the

boundary ∂Ω bordered with the flow with ν > 0, otherwise we use u · n = 0, where n

is the normal direction.

Without loss of generality, we refer to normalized coefficients such that m ≤ 1 ≤ M .

In this case, the ratio M/m ≥ 1 quantifies the spatial heterogeneity of the problem. We

also denote f (x) as a vector-valued forcing term and I as the identity matrix. When

both ν(x) and η(x) are positive for any x ∈ Ω, equation (1.1), complemented with

boundary conditions, represents a standard problem called a generalized Stokes equa-

tion. In this paper, we are interested in the local singular limit case, i.e., when ν(x) → 0
or η(x) → 0 in a sub-region of the domain. In the case of ν(x) = 0, a rigorous formu-

lation of problem (1.1) requires us to differentiate between Stokes and Darcy subprob-

lems and to introduce interface conditions. The aim of this work is to provide a finite

element discretization scheme for the local singular limit cases. This will be achieved

starting from the multi-domain formulation (2.1)-(2.7).
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Figure 1: Diagrams of the fluid-structure interaction problem with three typical couplings.

There is rich literature on the coupling of viscous and inviscid sub-problems and

applications [1, 2, 5, 9–13, 15–17, 19–21, 23–26, 30, 31]. It is desirable to develop a

unified discretization framework for the problem. One difficulty is the treatment of

interface conditions. Various approaches have been developed in the literature includ-

ing Lagrange multipliers and mortar elements to satisfy the discrete interface condi-

tions [5, 16, 20, 21, 25]. Generalizing the analysis in [9], D’angelo and Zunino [12]

do with the coupling based on matching conditions due to the Nitsche method. This

scheme is also particularly effective for the treatment of realistic applications, because

interface conditions of practical interest, such as the ones proposed by Beavers and

Joseph [3] and Saffman [27] for the coupling of free flows with porous media can

naturally be embedded into the scheme. A finite difference approach that utilizes fast
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24 P. Q. Huang and Z. Li

Poisson solvers is proposed in [22].

It is challenging to design finite elements that are robust and optimally conver-

gent for both viscous and inviscid problems. To guarantee the convergence, the dis-

cretization of viscous problems requires the inf-sup condition for the velocity and pres-

sure spaces, while for inviscid problems some control of the divergence of velocities

is also necessary. This difficulty was addressed in [23], where a new nonconforming

element with nine degrees of freedom was proposed. The stabilized method is used

in [9,12,15,26] to construct the unified stable mixed element. Recently, an article [32]

by Zhang et al. propose a uniformly stable nonconforming rectangular element for vis-

cous and inviscid problems that is simpler than that of [23]. In [29] and [28], Wang et

al. and Shi et al. use this element for the planar elasticity problem and the conduction-

convection problem respectively.

In this paper, we use a uniformly stable nonconforming rectangular mixed element

with a weighted interior penalty formulation that automatically adapts to the coupling

of different combinations of the heterogeneous problem. This non-conforming mixed

element is the lowest order stable finite element for the coupled problems. Thus it is rel-

atively easier to construct and implement compared with other approaches. Compared

with the work in [12], our method has no stabilized term for the pressure. The analysis

is following the similar procedure as that in [12]. But we use a different nonconform-

ing finite element that alternate the proof to some extent. Another difference is that

we construct a new auxiliary function in Section 4. In the numerical experiments, we

considered three cases: Darcy-Darcy, Stokes-Stokes, Stokes-Darcy couplings, and their

discrete meshes are non-matching on the common interface.

This paper is organized as follows. In §2, we introduce the multi-domain formula-

tion and its weak formulation. In §3, we present a nonconforming rectangular finite

element discretization. In §4, we derive the discrete inf-sup condition and the error

estimates of the finite element approximation. Numerical examples are provided in §5
to verify the error analysis. Conclusions are given in §6.

2. A Multi-domain formulation

We use a multi-domain approach by considering a partition of Ω in N non-overlapping

subregions such that Ω̄ = ∪N
i=1Ω̄i, and we denote by ni the outer unit normal of Ωi. We

assume that each subregion is characterized by a different value of the viscosity νi ≥ 0
and the hydraulic resistance ηi ≥ 0, satisfying the assumption νi + ηi > 0. For sim-

plicity, we assume that νi and ηi are constants on each subregion. We can decompose

the domain into sub-domains of three types, the Darcy flow with ν = 0 and η > 0; the

Stokes flow with ν > 0 and η = 0; and Brinkman’s flow with ν > 0 and η > 0. Let

Ni = {j = 1, · · · , N ; j 6= i, ∂Ωi ∩ ∂Ωj 6= ∅} be the set of indices relative to the neigh-

boring subregions of Ωi. We define Γij = ∂Ωi ∩ ∂Ωj for any i = 1, · · · , N and j ∈ Ni.

The normal directions nij along Γij = Γji is assigned according to a predefined rule,

for example, the normal direction is defined as pointing to the Ωi side if νi ≥ νj . Note

that the arbitrariness of nij will not affect the setup of the method. On the boundary
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Nonconforming FEM for Darcy-Stokes-Brinkman Flows 25

of Ω, we consider the outward unit normal vector n = ni on ∂Ω ∩ ∂Ωi.

Let T(u, p) = pI − ν∇u. Then, our multidomain problem requires us to find N
couples (ui, pi) such that

ηiui +∇ ·T(ui, pi) = fi, ∇ · ui = 0 in Ωi, (2.1)

ui = 0 if νi > 0 on ∂Ω ∩ ∂Ωi, (2.2)

ui · ni = 0 if νi = 0 on ∂Ω ∩ ∂Ωi, (2.3)

ui = uj if νiνj > 0 on Γij, (2.4)

ui · nij = uj · nij if νiνj = 0 on Γij , (2.5)

T(ui, pi) · nij = T(uj , pj) · nij if νiνj > 0, or νi = νj = 0 on Γij , (2.6)

T(ui, pi) · nij = pjnij + nij × (κijui × nij) if νi > 0, νj = 0 on Γij, (2.7)

where, for any subregion Ωi, we have listed the governing equations (see (2.1)), exter-

nal boundary conditions (see (2.2)-(2.3)), and interface conditions for velocities, mass

fluxes and stresses (see (2.4), (2.5) and (2.6)-(2.7), respectively). In particular, (2.7)

is the so-called Beavers-Joseph-Saffman law, where κij ≥ 0 denotes a given friction

coefficient associated to the interface Γij. We note that when κij = 0, such an equa-

tion implies a free slip interface condition. This multi-domain problem includes three

typical coupled models (see Figure 2).
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Figure 2: A diagram of the multi-domain approach.

To proceed, we address the variational formulation of problem (2.1)-(2.7), which

will be the starting point to set up a discretization scheme based on finite elements. We

address the interfaces of the domain with νiνj > 0 first. Since the interface conditions

(2.4)-(2.5) and (2.6)-(2.7) prescribe the continuity of velocities and stresses for any

Γij with νiνj > 0, as well as the continuity of the normal velocities and pressures

when νi = νj = 0, it is possible to cluster all subregions characterized by νi > 0
into a single subregion, associated with a generalized Stokes problem with piecewise

constant coefficients. We proceed similarly for the subdomains with νi = 0, resorting

to a Darcy problem with variable hydraulic resistance. More precisely, we set Ωs =
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26 P. Q. Huang and Z. Li

⋃

{i:νi>0} Ωi, Ωd =
⋃

{i:νi=0} Ωi and Γsd =
⋃

{i,j:νi>0,νj=0} Γij with nsd := nij and κsd :=

κij on Γsd ∩ Γij. We define

Vs :=
{

v ∈ H1(Ωs)
∣

∣ v|∂Ω∩∂Ωs
= 0

}

, Qs := L2(Ωs),

Vd :=
{

v ∈ H(div,Ωd)
∣

∣ v · n|∂Ω∩∂Ωd
= 0

}

, Qd := H1(Ωd),

where H(div,Ωd) := {v ∈ L2(Ωd)| ∇ · v ∈ L2(Ωd)}, and we aim to find (us, ps) ∈
Vs ×Qs and (ud, pd) ∈ Vd ×Qd with

∫

Ωs
ps +

∫

Ωd
pd = 0 such that

∫

Ωs

(ν∇us : ∇vs + ηusvs −∇ · vsps −∇ · usqs)

+

∫

Γsd

κsd(us × nsd) · (vs × nsd) +

∫

Ωd

(ηudvd −∇ · vdpd −∇ · udqd)

+

∫

Γsd

(vs · nsd − vd · nsd)pd +

∫

Γsd

(us · nsd − ud · nsd)qd

=

∫

Ωs

fsvs +

∫

Ωd

fdvd, ∀vs ∈ Vs, vd ∈ Vd, qs ∈ Qs, qd ∈ Qd, (2.8)

where the additional regularity of the pressure on Ωd, namely pd ∈ H1(Ωd), is required

to make sure that the interface terms
∫

Γsd
(vs·nsd−vd·nsd)pd and

∫

Γsd
(us·nsd−ud·nsd)qd

are well defined. Finally, we denote (u, p) ∈ V × Q (with V := Vs ⊕ Vd and Q :=
(Qs ⊕Qd) ∩ L2

0(Ω) being L2
0(Ω) := {q ∈ L2(Ω)|

∫

Ω q = 0}) as the global weak solution

of (2.8) such that u|Ωs := us, p|Ωs := ps, and u|Ωd
:= ud, p|Ωd

:= pd. Existence and

uniqueness of the solution (u, p) is established in [13,21].

3. A nonconforming finite element method

Now we discuss how to discretize (2.8). For simplification of the presentation, we

borrow most of the notations from [12]. Keep in mind that we use a different finite

element and the discrete form, which are simpler than that in [12]. We assume that Ω
and Ωi are convex polygonal domains and we consider partitioning each sub-domain

Ωi into a family of conforming partition Thi
of affine rectangles K. Let the family Thi

be

shape-regular and quasi-uniform, and let hi be the local mesh characteristic parameter,

while h = maxi=1,··· ,N hi with the assumption h ≪ 1, and Th = ∪N
i=1Thi

. Nevertheless,

we do not require that the neighboring partitions Thi
be conformal to their interface.

More precisely, for any K ∈ Thi
, we difine hK = diam(K) and hE = diam(E) with

E ∈ ∂K. We denote by Bhi
the trace meshes at the external boundaries, by Fhi

the set

of all interior edges of Thi
, and by Ghij

the intersection of the trace meshes. In short,
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Nonconforming FEM for Darcy-Stokes-Brinkman Flows 27

we use the following notations:

Bhi
:= {E| E = ∂K ∩ ∂Ω ∀K ∈ Thi

}, Bh = ∪N
i=1Bhi

,

Fhi
:= {E| E = ∂Kr ∩ ∂Ks ∀Kr 6= Ks ∈ Thi

}, Fh = ∪N
i=1Fhi

,

Ghij
:= {E| E = ∂Ki ∩ ∂Kj ∀Ki ∈ Thi

∀Kj ∈ Thj
}.

We assume that Ghij
is non-degenerate; namely, there exists 0 < σ < ∞ such that for

any E ∈ Ghij
we have diam(Ki) + diam(Kj) ≤ σdiam(E) for Ki ∈ Thi

and Kj ∈ Thj

such that ∂Ki ∩ ∂Kj = E. For any E ∈ Fhi
with E = ∂Kr ∩ ∂Ks , Kr 6= Ks ∈ Thi

, we

define nE as the outer unit normal vector of Kr if r > s and of Ks otherwise.

We define the velocity finite element space on the element K as follows

VK =
{

v = (v1, v2)
T | v1 ∈ span{1, x, y, y2}, v2 ∈ span{1, x, y, x2}

}

,

and the local discrete velocity spaces are defined as

Vhi
=

{

vh ∈ L2(Ωi)
∣

∣ vh|K ∈ VK , ∀K ∈ Thi
; for Kr,Ks ∈ Thi

,

if ∂Kr ∩ ∂Ks = E, then
∫

E
vh|∂Kr

=
∫

E
vh|∂Ks

}

.

The approximation space for the pressure on Ωi is

Qhi
=

{

qh ∈ L2(Ωi)
∣

∣ qh|K ∈ P0(K), ∀K ∈ Thi

}

,

with P0(K) being the space of constant functions on K. We also introduce Vh :=
⊕N

i=1Vhi
and Qh = (

⊕N
i=1Qhi

) ∩ L2
0(Ω). At the discrete level, we will address the

boundary conditions by means of penalty techniques. For this reason, we do not require

the discrete functions to vanish at the external boundary.

Since the functions vh ∈ Vh may be discontinuous across Γij , we define the neigh-

boring values of vh as

v∓
h (x) = lim

δ→0+
v(x ∓ δnij) a.e. on Γij .

Set [vh] := v−
h − v+

h , {vh} := 1
2(v

−
h + v+

h ) and

{vh}w := wivhi
+ wjvhj

, {vh}
w := wjvhi

+ wivhj
,

with wi+wj = 1 a.e. on Γij. For vh is discontinuous across Fh, we also define the jump

[vh] with appropriate sign through any E ∈ Fh. We say that the averages {·}w and {·}w

are conjugate because they satisfy the following identity: [ab] = {a}w[b] + [a]{b}w. We

also apply similar definitions for any other quantity depending on (vh, qh). Let Γ be

the collection of the local interfaces, i.e., Γ :=
⋃

{i=1,··· ,N,j∈Ni,i<j} Γij with unit normal

vector nΓ := nij on Γ ∩ Γij. Similarly, we denote by Gh the collection of all the local

trace meshes Ghij
. We also introduce Gsd

h =
⋃

{i,j:νi>0,νj=0} Ghij
, i.e., the collection of
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all the trace meshes lying on Γsd. Then, for simplicity, we apply the following abridged

notation:
∫

Bhi

vh · ni :=
∑

E∈Bhi

∫

E

vh · ni,

∫

Thi

vh :=
∑

K∈Thi

∫

K

vh.

Summing them up over all the sub-regions, these notations are easily extended to

Bh,Th. Furthermore, we set

∫

Ghij

vh · nij :=
∑

E∈Ghij

∫

E

vh · nij ,

∫

Gh

vh · nΓ :=
N
∑

i=1

∑

j∈Ni,i<j

∫

Ghij

vh · nij.

For any uhi
,vhi

∈ Vhi
and phi

, qhi
∈ Qhi

and, given a constant parameter γE to be

discussed later on, we define the local bilinear forms

ahi
(uhi

,vhi
) :=

∫

Thi

(

νi∇huhi
: ∇hvhi

+ ηiuhi
· vhi

)

−

∫

Bhi

(

νi
∂uhi

∂ni
· vhi

+ νi
∂vhi

∂ni
· uhi

)

+

∫

Bhi

νi
γE
hE

uhi
· vhi

, (3.1)

bhi
(vhi

, phi
) := −

∫

Thi

∇h · vhi
phi

+

∫

Bhi

vhi
· niphi

, (3.2)

where ∇h and ∇h· are the gradient operator and the divergence operator respectively

taken piecewise over Thi
, i = 1, · · · , N . Denote

ah(uh,vh) :=

N
∑

i=1

ahi
(uhi

,vhi
), bh(vh, ph) :=

N
∑

i=1

bhi
(vhi

, phi
).

In this paper, we define the weights wi =
νj

νi+νj
. Then, we introduce the bilinear forms

responsible for the coupling conditions:

ch(uh,vh) :=

∫

Gh

{ν}w
γE
hE

[uh][vh] +

∫

Gsd
h

κsd({uh}
w × nsd) · ({vh}

w × nsd)

−

∫

Gh

(

{ν
∂uh

∂nΓ
}w · [vh] + {ν

∂vh

∂nΓ
}w · [uh]

)

, (3.3)

dh(vh, ph) :=

∫

Gh

[vh] · nΓ{ph}w, (3.4)

Jh(uh,vh) =

∫

Gh

γE
hE

([uh] · nΓ)([vh] · nΓ) +

∫

Bh

γE
hE

(uh · n)(vh · n), (3.5)

where γE are constant parameters that should be suitably chosen to ensure the sta-

bility of the method. Owing to the definitions of {·}w and the weights, we notice
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Nonconforming FEM for Darcy-Stokes-Brinkman Flows 29

that {uh}
w = uhi

if νi > 0, νj = 0, while {uh}
w = uhj

in the opposite case. The

term
∫

Gsd
h

κsd({uh}
w ×nsd) · ({vh}

w ×nsd) in (3.3) is equivalent to the Beavers-Joseph-

Saffman condition (2.7), also applied in (2.8).

Then, we define

Ah(uh,vh) := ah(uh,vh) + ch(uh,vh),

Bh(vh, ph) := bh(vh, ph) + dh(vh, ph),

and we denote the right-hand side by Fh(vh) :=
∑N

i=1

∫

Ωi
fi · vhi

. The mixed formu-

lation of the discrete problem reads as follows: given a sufficiently regular Fh(·), find

(uh, ph) ∈ Vh ×Qh such that

Ah(uh,vh) + Jh(uh,vh) +Bh(vh, ph) = Fh(vh) ∀vh ∈ Vh,

Bh(uh, qh) = 0 ∀qh ∈ Qh.
(3.6)

Introducing the product space Wh = Vh × Qh, the right-hand side Gh(vh, qh) =
(Fh(vh), 0), and the bilinear form

Ch((uh, ph), (vh, qh)) = Ah(uh,vh) + Jh(uh,vh) +Bh(vh, ph)−Bh(uh, qh),

problem (3.6) is equivalent to the following: given a sufficiently regular Gh(·), find

(uh, ph) ∈ Wh such that

Ch((uh, ph), (vh, qh)) = Gh(vh, qh) ∀(vh, qh) ∈ Wh. (3.7)

4. Convergence analysis of the proposed FE method

In this section we aim to analyze the stability and the convergence of the problem

(3.7). We show that our proposed FE method is stable and has optimal convergence

order.

First, for any vh ∈ Vh, we introduce the following norm:

‖vh‖
2
∓ 1

2
,h,Γ

=
∑

E∈Gh

h±1
E ‖vh‖

2
0,E ,

where ‖ · ‖0,Σ denotes the standard norm in L2(Σ). The definition can be straight-

forwardly extended to Bh. Then, we introduce the following norms in Vh and Wh,

respectively

|||vh|||
2 := ‖η

1

2vh‖
2
0,Ω + ‖ν

1

2∇hvh‖
2
0,∪Ωi

+ ‖ν
1

2vh‖
2
1

2
,h,∂Ω

+ ‖{ν}
1

2
w[vh]‖

2
1

2
,h,Γ

+ ‖κ
1

2

sd{vh}
w × nsd‖

2
0,Γsd

,

|||(vh, qh)|||
2 := |||vh|||

2 + ‖∇h · vh‖
2
0,∪Ωi

+ ‖[vh] · nΓ‖
2
1

2
,h,Γ

+ ‖vh · n‖21
2
,h,∂Ω

+ ‖qh‖
2
0,Ω,
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where ‖vh‖
2
0,∪Ωi

denotes
∑N

i=1 ‖vhi
‖20,Ωi

, and

‖∇hvh‖
2
0,Ωi

=

∫

Thi

|∇hvhi
|2, ‖∇h · vh‖

2
0,Ωi

=

∫

Thi

|∇h · vhi
|2.

We shall also make use of the broken Sobolev space H1(Ω) =
⊕N

i=1 H
1(Ωi) equipped

with the broken seminorm |v|2h,∪Ωi
:=

∑N
i=1 |v|

2
h,Ωi

and |v|h,Ωi
= ‖∇hv‖0,Ωi

. We also set

H1
0(Ω) =

{

v ∈ H1(Ω)| v|∂Ω = 0, ∀K ∈ Th(Ω)
}

.

Owing to the assumption νi + ηi = µi ≥ m > 0 and exploiting Poincaré-Friedrichs

inequalities (see [7]), we obtain

m‖vh‖
2
0,Ωi

≤ ‖ν
1

2∇hvh‖
2
0,Ωi

+ ‖η
1

2vh‖
2
0,Ωi

+ ‖ν
1

2vh‖
2
1

2
,h,∂Ωi

,

which easily implies that |||vh|||
2 ≥ m‖vh‖

2
0,Ω. We will also make use of the following

inverse inequalities (see [8]) that hold true for any E ∈ ∂K,K ∈ Thi
, i = 1, · · · , N ,

provided that the mesh family is shape-regular:

h
1

2

E‖vh‖0,E . ‖vh‖0,K , (4.1)

hK‖∇vh‖0,K . ‖vh‖0,K . (4.2)

Here and in what follows, the symbol “ . ” denotes an inequality involving a positive

constant C independent of the size of the mesh, h, the viscosity, ν, and the hydraulic

resistance η.

In order to ensure that the bilinear forms (3.1)-(3.5) make sense for the exact weak

solution of the problem, we require the following additional regularity:

(us, ps) ∈ H
3

2
+ǫ(Ωs)×H

1

2
+ǫ(Ωs) ∀ǫ > 0. (4.3)

To study the convergence of the discrete solution, we need the approximating prop-

erties of the finite element spaces. As in [28] and [32], we define the interpolation

operator πhi
: H1(Ωi) → Vhi

, for any v ∈ H1(Ωi)
∫

E

πhi
v =

∫

E

v, ∀E ∈ ∂K, ∀K ∈ Thi
. (4.4)

Set πh = ΠN
i=1πhi

: [H1(Ω)]2 → Vh. Since the operator πhi
preserves the linear poly-

nomials locally, it follows from a standard scaling argument, using the Bramble-Hilbert

lemma, that the following estimates hold

Lemma 4.1. (Interpolation errors [32]) For s = 1, 2, we have

‖v − πhv‖L2(K) ≤ ChsK |v|Hs(K) ∀K ∈ Th, (4.5)

|v − πhv|H1(K) ≤ ChK |v|H2(K) ∀K ∈ Th, (4.6)

‖∇ · (v − πhv)‖L2(K) ≤ ChK |∇ · v|H1(K) ∀K ∈ Th. (4.7)
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4.1. Well-posedness of the discrete formulation

The first step in analyzing the method proposed here consists of observing that it

is by construction consistent with problem (2.8), and that the bilinear form Ch(·, ·) is

bounded and positive. These properties can be proved similarly to those in [12].

Lemma 4.2. (Consistency) Let (u, p) be the solution of the problem (2.8) with the regu-

larity assumption (4.3), and let (uh, ph) ∈ Wh be the solution of the problem (3.7). Then

we have

Ch((u− uh, p− ph), (vh, qh))

=

∫

Fh

(

ν
∂u

∂n
· [vh]− [vh · n]p

)

∀(vh, qh) ∈ Wh. (4.8)

Proof. First, we observe that (4.8) is equivalent to

Ch((u, p), (vh, qh)) =Gh(vh, qh) +

∫

Fh

(

ν
∂u

∂n
· [vh]− [vh · n]p

)

∀(vh, qh) ∈ Wh. (4.9)

Since (u, p) is the solution in the weak sense of (2.1)-(2.7), we have Jh(u,vh) = 0 and

Bh(u, qh) = 0. As a result we obtain

Ch((u, p), (vh, qh)) = ah(u,vh) + ch(u,vh) + bh(vh, p) + dh(vh, p) (4.10)

=ah(u,vh) + bh(vh, p) +

∫

Gsd
h

κsd({u}
w × nsd) · ({vh}

w × nsd) +

∫

Gh

{T(u, p)nΓ}w[vh].

Furthermore, by Green’s formula we obtain

ah(u,vh) + bh(vh, p) =

∫

Th

(

ν∇u : ∇hvh + ηu · vh −∇h · vhp
)

+

∫

Bh

[(

T(u, p)n
)

vh

]

=

∫

Th

f · vh −

∫

Fh

[(

T(u, p)n
)

vh

]

−

∫

Gh

[(

T(u, p)nΓ

)

vh

]

. (4.11)

By virtue of the regularity of (u, p) and [ab] = {a}[b] + [a]{b}, we have
∫

Fh

[(

T(u, p)n
)

vh

]

=

∫

Fh

{

T(u, p)n
}

[vh] =

∫

Fh

T(u, p)n[vh]

= −

∫

Fh

(

ν
∂u

∂n
· [vh]− [vh · n]p

)

. (4.12)

Thanks to the algebraic identity [ab] = {a}w[b]+ [a]{b}w and to the interface conditions

(2.6)-(2.7) (i.e., [T(u, p)n] = 0 on Γ \ Γsd and T(us, ps)ns = pdns + ns × (κsdus × ns)
on Γsd), the last term of (4.11) is equivalent to

∫

Gh

[(

T(u, p)nΓ

)

vh

]

=

∫

Gh

{

T(u, p)nΓ

}

w
[vh] +

∫

Gsd
h

κsd({u}
w × nsd) · ({vh}

w × nsd). (4.13)
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Finally, we substitute (4.11)-(4.13) into (4.10) and we obtain (4.9). �

Lemma 4.3. (Boundedness [12]) The bilinear form Ch(·, ·) satisfies

Ch((uh, ph), (vh, qh)) . |||(uh, ph)||| |||(vh, qh)||| ∀(uh, ph), (vh, qh) ∈ Wh.

Lemma 4.4. (Positivity [12]) For γE & 1, there exists a constant Cpos > 0 such that

Ch((vh, qh), (vh, qh)) & Cpos|||vh|||
2 + Jh(vh,vh) ∀(vh, qh) ∈ Wh.

To analyze the stability of our numerical method we follow the approach of Boland

and Nicolaides (see [6] and also Chapter II, Section 1.4 in [18]) in order to split the

inf-sup condition into a local condition on each subdomain and a global condition

on a suitable subspace of Wh. To this aim, we introduce Q̃hi
= Qhi

∩ L2
0(Ωi) :=

{qhi
∈ Qhi

|
∫

Ωi
qhi

= 0} and by consequence Qhi
= Q̃hi

⊕ R, where phi
= p̃hi

+ p̄hi

is the corresponding splitting of the pressure. Finally, let Q̄h be the space of constant

functions on each subdomain Ωi that satisfy
∑N

i=1 q̄hi
|Ωi| = 0. We aim to prove a local

inf-sup condition on Vhi
× Q̃hi

, and a global one, relative to the subspace Vh × Q̄h. To

this aim, we introduce the following lemmas.

Lemma 4.5. (Local inf-sup condition) For any p̃hi
∈ Q̃hi

, there exists ṽhi
∈ Vhi

∩
[H1

0(Ωi)]
2, such that

bhi
(ṽhi

, p̃hi
) = ‖p̃hi

‖20,Ωi
, (4.14)

‖ṽhi
‖h,Ωi

. ‖p̃hi
‖0,Ωi

, (4.15)

where ‖vh‖
2
h,Ωi

= ‖vh‖
2
0,Ωi

+ |vh|
2
h,Ωi

.

Proof. We observe that, by means of the surjectivity of the divergence operator from

H1
0(Ωi) to L2

0(Ωi), for any p̃hi
∈ Q̃hi

there exists a stable function vi ∈ H1
0(Ωi) such that

−∇ · vi = p̃hi
, ‖vi‖H1(Ωi) . ‖p̃hi

‖0,Ωi
.

We define an interpolation operator πhi
: H1

0(Ωi) → Vhi
∩[H1

0(Ωi)]
2, for any vi ∈ H1

0(Ωi)
∫

E

πhi
vi =

∫

E

vi ∀E ∈ ∂K, ∀K ∈ Thi
.

By Lemma 3.1 in [28] and the Poincaré inequality, we have

bhi
(vi − πhi

vi, p̃hi
) = 0,

‖πhi
vi‖h,Ωi

. ‖vi‖H1(Ωi). (4.16)

So we have the desired result from the Fortin rule. �

In order to prove the inf-sup condition on Vh × Q̄h, we define the conforming

linear element space V̂hi
with a refined partition of the partition Thi

by connecting the

diagonal line of each rectangular element in Thi
, note that V̂hi

× V̂hi
is a subspace of

Vhi
, i = 1, · · · , N , and construct the following functions.
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Lemma 4.6. (Auxiliary functions [12]) For any i = 1, · · · , N, j ∈ Ni there exist functions

w
(i)
Γij

∈ V̂hi
, w

(j)
Γij

∈ V̂hj
with w

(i)
Γij

= 0 on ∂Ωi \ Γij , w
(j)
Γij

= 0 on ∂Ωj \ Γij, and

wΓij
= w

(i)
Γij

+ w
(j)
Γij

∈
(

V̂hi
⊕ V̂hj

)

∩H1
0(Ωi ∪ Ωj)

such that

∫

Ghij

w
(k)
Γij

= 1, k = i, j, (4.17)

‖w
(k)
Γij

‖1,Ωk
. 1, k = i, j, (4.18)

‖[wΓij
]‖ 1

2
,h,Γij

. 1. (4.19)

Lemma 4.7. (Global inf-sup condition on subspace) For any p̄h ∈ Q̄h there exists v̄h ∈
Vh ∩ [H1

0(Ω)]
2, such that

Bh(v̄h, p̄h) & ‖p̄h‖
2
0,Ω, (4.20)

‖v̄h‖h,∪Ωi
. ‖p̄h‖0,Ω, (4.21)

∫

Gh

[v̄h] · nΓ = 0, (4.22)

‖[v̄h] · nΓ‖ 1

2
,h,Γ . ‖p̄h‖0,Ω, (4.23)

where ‖v̄h‖
2
h,∪Ωi

=
∑N

i=1 ‖v̄h‖
2
h,Ωi

.

Proof. The proof is similar to that for Lemma 4.6 in [12], with the new nonconform-

ing element used. Set

v̄hij
:= −p̄hi

|Ωi|
(

πhi
(w

(i)
Γij

ni) + πhj
(w

(j)
Γij

ni)
)

,

where πhi
is the interpolated operator defined in (4.4), and v̄h :=

∑N
i=1

∑

j∈Ni
v̄hij

.

From the definition of πhi
in (4.4) and (4.17), we have v̄hij

∈ [H1
0(Ωi ∪ Ωj)]

2, v̄h ∈
[H1

0(Ω)]
2, and

∫

Ghij

[v̄hij
· ni] = −p̄hi

|Ωi|

(
∫

Ghij

πhi
(w

(i)
Γij

ni) · ni −

∫

Ghij

πhj
(w

(j)
Γij

ni) · ni

)

= −p̄hi
|Ωi|

(
∫

Ghij

w
(i)
Γij

−

∫

Ghij

w
(j)
Γij

)

= 0.

So
∫

Gh

[v̄h] · nΓ =

N
∑

i=1

∑

j∈Ni,i<j

∫

Ghij

[v̄hij
] · nij = 0,
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which leads to (4.22), and that
∫

Gh
[v̄hij

] · nΓ{p̄h}w = 0. Now, we prove (4.20) below:

Bh(v̄hij
, p̄h) = −

∫

Th

∇h · v̄hij
p̄h +

∫

Gh

[v̄hij
] · nΓ{p̄h}w

= −p̄hi

∫

Ghij

v̄hij
· ni − p̄hj

∫

Ghij

v̄hij
· nj

= p̄2hi
|Ωi| − p̄hi

p̄hj
|Ωi| = p̄hi

|Ωi|(p̄hi
− p̄hj

).

Thus

Bh(v̄h, p̄h) =

N
∑

i=1

∑

j∈Ni

Bh(v̄hij
, p̄h) =

N
∑

i=1

∑

j∈Ni

p̄hi
|Ωi|(p̄hi

− p̄hj
),

which can be reinterpreted algebraically as Bh(v̄h, p̄h) = p̄T
hBp̄h, where the vector

p̄h = [p̄hi
]1≤i≤N and the matrix B = (bij)1≤i,j≤N is defined as follows:

bij =







|Ωi|card(Ni) if j = i,
−|Ωi| if j ∈ Ni,
0 otherwise.

We also introduce the matrix D = diag(|Ω1|, · · · , |ΩN |) and observe that p̄T
hDp̄h =

‖p̄h‖
2
0,Ω. Then, the quantity γ := minp̄h∈Q̄h

(p̄T
hBp̄h)(p̄

T
hDp̄h)

−1 is positive from the

argument proposed in [4] (see Theorem 4.3) and it is independent of h. This deduces

(4.20). Using (4.16), inequality (4.21) can be derived as follows:

‖v̄h‖
2
h,∪Ωi

.

N
∑

i=1

∑

j∈Ni

‖v̄hij
‖2h,∪Ωi

.

N
∑

i=1

p̄2hi
|Ωi|

2
(

∑

j∈Ni

∥

∥πhi
(w

(i)
Γij

ni)
∥

∥

2

h,∪Ωi

)

.

N
∑

i=1

p̄2hi
|Ωi|

2‖w
(i)
Γij

‖21,Ωi

.

N
∑

i=1

p̄2hi
|Ωi|

2 . ‖p̄h‖
2
0,Ω.

We finally prove (4.23). For i = 1, · · · , N and j ∈ Ni, we can get

‖[v̄h] · nΓ‖
2
1

2
,h,Γ

.

N
∑

i=1

∑

j∈Ni

‖[v̄hij
] · nΓ‖

2
1

2
,h,Γ

.

N
∑

i=1

∑

j∈Ni

p̄2hi
|Ωi|

2 . ‖p̄h‖
2
0,Ω,

where we have used the definition of v̄hij
and (4.19) for the second inequality. �

Next, we introduce the global inf-sup condition for the bilinear form Bh(vh, ph).
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Lemma 4.8. (Global inf-sup condition) For any ph ∈ Qh there exists vh ∈ Vh∩[H
1
0(Ω)]

2,

such that

Bh(vh, ph) & ‖ph‖
2
0,Ω, (4.24)

‖vh‖h,∪Ωi
. ‖ph‖0,Ω, (4.25)

|||vh||| . M
1

2‖ph‖0,Ω. (4.26)

Proof. Let ṽh =
∑N

i=1 ṽhi
and p̃h =

∑N
i=1 p̃hi

be as in Lemma 4.5 and let v̄h be as in

Lemma 4.7. We set vh := ṽh+ δv̄h, where δ is a constant parameter to be chosen small

enough. We note that vh ∈ [H1
0(Ω)]

2 since ṽhi
∈ [H1

0(Ωi)]
2 and v̄h ∈ [H1

0(Ω)]
2. Then,

we follow the argument by Boland and Nicolaides. We observe that

Bh(vh, ph) = Bh(ṽh, p̃h) + δBh(v̄h, p̄h) +Bh(ṽh, p̄h) + δBh(v̄h, p̃h). (4.27)

Exploiting ṽhi
∈ [H1

0(Ωi)]
2 and Lemma 4.7, we obtain that Bh(ṽh, p̄h) vanishes:

∫

Thi

∇h · ṽhi
p̄hi

= p̄hi

∫

Bhi

ṽhi
· ni = 0,

∫

Ghij

[ṽh] · ni{p̄h}w = {p̄h}w

∫

Ghij

[ṽh] · ni = 0,

while Bh(v̄h, p̃h) can be estimated as follows:

∣

∣Bh(v̄h, p̃h)
∣

∣ =
∣

∣−

∫

Th

∇h · v̄hp̃h +

∫

Gh

[v̄h] · nΓ{p̃h}w
∣

∣

. ‖p̃h‖
2
0,Ω + ‖v̄h‖

2
h,∪Ωi

+
(

ǫ‖[v̄h] · nΓ‖
2
1

2
,h,Γ

+
1

ǫ
‖{p̃h}w‖

2
− 1

2
,h,Γ

)

.

(

1 +
C

ǫ

)

‖p̃h‖
2
0,Ω + (1 + Cǫ)‖p̄h‖

2
0,Ω. (4.28)

By substituting (4.28), (4.14), and (4.20) into (4.27), and suitably choosing δ and ǫ,
we obtain (4.24), while (4.25) follows from the combination of (4.15) and (4.21).

Inequality (4.26) arises by observing that

|||vh|||
2 = ‖η

1

2vh‖
2
0,Ω + ‖ν

1

2∇hvh‖
2
0,∪Ωi

+ ‖{ν}
1

2
w[vh]‖

2
1

2
,h,Γ

+ ‖κ
1

2

sd{vh}
w × nsd‖

2
0,Γsd

, (4.29)

where the first two terms on the right-hand side can be estimated as follows:

N
∑

i=1

∫

Thi

(

ηi|vh|
2 + νi|∇hvh|

2
)

. ‖µ
1

2vh‖
2
h,∪Ωi

. M‖vh‖
2
h,∪Ωi

. M‖ph‖
2
0,Ω.
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In regard to the last two terms of (4.29), we observe that vh × nij = 0 on Γ from the

definition of vh. By consequence, κ
1

2

sd{vh}
w × nsd = 0 on Γ and

‖{ν}
1

2
w[vh]‖

2
1

2
,h,Γ

= ‖{ν}
1

2
w[vh] · nsd‖

2
1

2
,h,Γ

. M‖ph‖
2
0,Ω.

The combination of the previous inequalities into (4.29) proves (4.26). �

A classical result by Nečas on the solution of saddle-point boundary value problems,

which we restrict here to the discrete case (see, for instance, Proposition 2.21 and

Theorem 2.22 in [14]), ensures that the existence of a unique solution of problem

(3.7) is a consequence of Theorem 4.1.

Theorem 4.1. (Stability) Provided that γE & 1, for any (uh, ph) ∈ Wh, there exists

(wh, qh) ∈ Wh such that

Ch((uh, ph), (wh, qh)) &
1

M
|||(uh, ph)||| |||(wh, qh)|||. (4.30)

Proof. Using the property ∇h · Vhi
⊂ Qhi

, we choose (wh, qh) = (uh + δ1vh, ph +
δ2∇h · uh) with δ1, δ2 > 0 being vh as in Lemma 4.8. We split the proof of (4.30) into

two parts. First, we prove Ch((uh, ph), (wh, qh)) &
1
M
|||(uh, ph)|||

2; then we show that

|||(wh, qh)||| . |||(uh, ph)|||.
For the first part, we use the bilinearity of Ch(·, ·) to obtain

Ch((uh, ph), (wh, qh)) = Ch((uh, ph), (uh, ph)) + δ1Ch((uh, ph), (vh, 0))

+ δ2Ch((uh, ph), (0,∇h · uh)). (4.31)

The first term on the right-hand side of (4.31) can be estimated as

Ch((uh, ph), (uh, ph)) ≥ Cpos|||uh|||
2 + Jh(uh,uh). (4.32)

Applying Lemma 4.3 and Lemma 4.8 and the arithmetic/geometric inequality, the sec-

ond term of (4.31) can be estimated as

Ch((uh, ph), (vh, 0)) = Ah(uh,vh) + Jh(uh,vh) +Bh(vh, ph)

≥ (1− C1ǫ1)‖ph‖
2
0,Ω −M

C1

ǫ1
|||uh|||

2. (4.33)

The third term on the right-hand side of (4.31) is equivalent to

Ch((uh, ph), (0,∇h · uh))

=

∫

Th

(∇h · uh)
2 −

∫

Gh

[uh] · nΓ{∇h · uh}w −

∫

Bh

uh · n(∇h · uh)

≥(1− C2ǫ2)‖∇h · uh‖
2
0,∪Ωi

−
C2

ǫ2

(

‖[uh] · nΓ‖
2
1

2
,h,Γ

+ ‖uh · n‖21
2
,h,∂Ω

)

. (4.34)
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Then, combining (4.31)-(4.34), we obtain (4.30) as follows:

Ch((uh, ph), (wh, qh))

&
(

Cpos −MC1
δ1
ǫ1

)

|||uh|||
2 + δ2(1−C2ǫ2)‖∇h · uh‖

2
0,∪Ωi

+
(

γE − C2
δ2
ǫ2

)

(

‖[uh] · nΓ‖
2
1

2
,h,Γ

+ ‖uh · n‖21
2
,h,∂Ω

)

+ δ1(1− C1ǫ1)‖ph‖
2
0,Ω

&
1

M
|||(uh, ph)|||

2, (4.35)

for any γE & 1, choosing ǫi <
1
Ci

for i = 1, 2, and δi such that δ1 <
Cposǫ1
MC1

, δ2 < γEǫ2
C2

.

From the previous estimates for δ1, δ2, we conclude that 1
M

. δ1 . 1
M

and 1 . δ2 . 1,

which imply (4.35).

For the second part of the proof, we observe that

|||(wh, qh)||| . |||(uh, ph)|||+ δ1|||(vh, 0)||| + δ2|||(0,∇h · uh)|||. (4.36)

The second term on the right-hand side can be estimated owing to δ1 . 1
M

, (4.23) and

(4.26), namely,

δ1|||(vh, 0)|||
2 = δ1

[

|||vh|||
2 + ‖∇h · vh‖

2
0,∪Ωi

+ ‖[vh] · nΓ‖
2
1

2
,h,Γ

]

. δ1M‖ph‖
2
0,Ω . |||(uh, ph)|||

2

while for the third term we exploit δ2 . 1 to obtain

δ2|||(0,∇h · uh)|||
2 = δ2‖∇h · uh‖

2
0,∪Ωi

. |||(uh, ph)|||
2.

The desired result can be obtained by substituting the two previous inequalities into

(4.36). �

Inequality (4.30) shows that the stability of the scheme (3.7) depends on the coef-

ficients of the problem only through the upper bound M ; in particular, the scheme is

robust with respect to the critical Stokes-Darcy transition, i.e., for vanishing viscosity

ν → 0.

4.2. The Error estimates

Now we aim to study the convergence of (uh, ph) to (u, p) when h → 0. From

Lemma 4.2, we have the standard second Strang’s lemma.

Lemma 4.9. Let (u, p) be the solution of the problem (2.8) and (uh, ph) be the solution

of the problem (3.6). Then, under the assumptions of Theorem 4.1, the following error

estimate holds

|||(u − uh, p− ph)|||

. inf
(vh,qh)∈Wh

|||(u − vh, p− qh)||| + sup
wh∈Vh

∣

∣

∫

Fh

(

ν ∂u
∂n

· [wh]− [wh · n]p
)
∣

∣

|||wh|||
.
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To estimate the approximation errors, we first note that the distance of the pressure

p from the space Qh can be bounded in a standard way: Define L2 projection operator

θhi
: H1(Ωi) → Qhi

, if pi ∈ H1(Ωi), then

inf
qhi∈Qhi

‖pi − qhi
‖0,Ωi

≤ ‖pi − θhi
pi‖0,Ωi

. hi|pi|H1(Ωi).

Set θh = ΠN
i=1θhi

: H1(Ω) → Qh. Recalling that Thi
, i = 1, · · · , N are a family of

shape-regular and quasi-uniform triangulations and assuming v ∈ [H2(Ωi)]
2, we have

‖v − πhv‖ 1

2
,h,Γ . h|v|2,∪Ωi

,

where we have used the trace inequality (4.1) and Lemma 4.1. So it holds

Lemma 4.10. (Approximability). For any (v, q) ∈ [H2(Ω)]2 ×H1(Ω), we have

|||(v − πhv, q − θhq)||| . Mh
(

|v|2,∪Ωi
+ |q|1,∪Ωi

)

.

The consistency error caused by the nonconforming rectangular element can be

estimated by using the results in Lemma 4.2 of [28].

Lemma 4.11. (Consistency error) For any wh ∈ Vh, we have

∣

∣

∣

∫

Fh

(

ν
∂u

∂n
· [wh]− [wh · n]p

)
∣

∣

∣

.h(ν
1

2 |u|2,∪Ωi
+ |p|1,∪Ωi

)|||wh|||, ∀(u, p) ∈ [H2(Ω)]2 ×H1(Ω).

Combining the previous lemmas, we conclude that the following optimal priori

error estimate holds.

Theorem 4.2. (Convergence) Let (u, p) and (uh, ph) be the solutions of the problems

(2.8) and (3.6) respectively. Assume that (u, p) ∈ [H2(Ω)]2 ×H1(Ω), then we have

|||(u − uh, p − ph)||| . Mh
(

|u|2,∪Ωi
+ |p|1,∪Ωi

)

.

5. Numerical experiments

In this section, we show some numerical experiments to validate our method and

the analysis. We consider three coupling cases as in [12]: a Darcy-Darcy problem (Pdd),

a Stokes-Stokes problem (Pss), and a Stokes-Darcy problem (Psd). The computational

domain is Ω1 = (0, 1) × (0, 1), Ω2 = (0, 1) × (1, 2) and the interface is the line segment

y = 1, 0 < x < 1. The penalty parameter is chosen as γE = 10. The results are almost

the same with modest choice of γE.
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Figure 3: The H(div) norm of u and L2 norm of p errors for the example of Pdd versus mesh levels:
h2/h1 = 1

2
(left), h2/h1 = 2

1
(right).

5.1. Darcy-Darcy coupling (Pdd)

In this example, we consider the case of ν1 = ν2 = 0, η1 = η2 = 1, i.e. Darcy-Darcy

coupled problem. The boundary data and the forcing terms are chosen such that the

exact solution is given by

ud = (π sin(πx), π sin(πy))T ,

pd = x2 − 1
3 .

In Figure 3, we plot the errors of the velocity in H(div) norm and the errors of

the pressure in L2 norm for the coupled Darcy-Darcy problem. The discrete meshes

are non-matching on the common interface. In the left figure and the right figure, we

consider the diameter of the discrete grid in Ω1 and that in Ω2 satisfying h1/h2 = 2 and

h1/h2 = 1/2, respectively. Both results show that the errors decrease by half when the

discrete grids refined once.

5.2. The Stokes-Stokes coupling (Pss)

In this example, we consider the case of ν1 = ν2 = 1, η1 = η2 = 0, i.e. Stokes-Stokes

coupled problem. The boundary data and the forcing terms are chosen such that the

exact solution is given by

us =
(

2π sin2(πx) sin(πy) cos(πy),−2π sin2(πy) sin(πx) cos(πx)
)T

,

ps = sin(πx)− 2
π
.

In Figure 4, we plot the errors of the velocity in H1 semi-norm and the errors of

the pressure in L2 norm for the coupled Stokes-Stokes problem, the discrete meshes

are nonmatching on the common interface. In the left figure and the right figure, we

consider the diameter of the discrete grid in Ω1 and that in Ω2 satisfying h1/h2 = 2 and

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1610
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1610
https://www.cambridge.org/core


40 P. Q. Huang and Z. Li

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

5

−log
2
 h

1

−
lo

g 2 e
rr

or
s

 

 

1

| u− u
h
|
1,Ω

||p−p
h
||

0,Ω

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

−log
2
 h

2

−
lo

g 2 e
rr

or
s

 

 

1

| u− u
h
|
1,Ω

||p−p
h
||

0,Ω

Figure 4: The H1 semi-norm of u and L2 norm of p errors for the example of Pss versus mesh levels:
h2/h1 = 1

2
(left), h2/h1 = 2

1
(right).

h1/h2 = 1/2, respectively. Both results show that the errors decrease by half when the

discrete grids are refined once.

5.3. Stokes-Darcy coupling (Psd)

At last, we choose Ωd = Ω1,Ωs = Ω2 and set ν1 = η2 = 0, i.e. Stokes-Darcy

coupled problem, and set the physical parameters η1 = ν2 = κ12 = 1 for simplicity. The

boundary data and the forcing terms are chosen such that the exact solution is given

by

ud =
(

−π2

8 sin(π2x)y,
π
4 cos(

π
2x)

)T

,

pd = −π
4 cos(

π
2x)y,

us =
(

− cos2(π2 y) sin(
π
2x),

1
4 cos(

π
2x)(sin(πy) + πy)

)T
,

ps = −π
4 cos(

π
2x)

(

y − 2 cos2(π2 y)
)

.

In Figure 5, we plot the errors between the exact solution and the finite element

solution by using non-matching meshes with the mesh ratio being equal to h2/h1 = 1
2

and 2
1 separately. From the figures, we observe that the contraction factors are all

around 1
2 as the mesh is refined once. This clearly illustrates that the approximation

order is linear. Therefore, we conclude that our numerical experiments confirm the

error estimates in Section 4.

6. Conclusions

By using weighted interior penalties, we have proposed a unified nonconforming

rectangular element method for incompressible flow problems modeled by the Darcy-
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Figure 5: The error plots of finite element solutions in different norms for the example of Psd versus mesh
levels: hs/hd = 1

2
(left), hs/hd = 2

1
(right).

Stokes-Brinkman equations with discontinuous coefficients. The choice of the coeffi-

cients between different phases leads to different fluid-structure interactions such as

Darcy-Stokes, Darcy-Darcy, Stokes-Stokes couplings. One of the advantage of the pro-

posed new method is its flexibility; multi-domain heterogeneous problems are handled

by the same method. We have shown the stability and optimal order error estimates

for piecewise smooth solutions.
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