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Abstract. An explicit difference scheme is described, analyzed and tested for numer-

ically approximating stochastic elastic equation driven by infinite dimensional noise.
The noise processes are approximated by piecewise constant random processes and

the integral formula of the stochastic elastic equation is approximated by a truncated
series. Error analysis of the numerical method yields estimate of convergence rate.

The rate of convergence is demonstrated with numerical experiments.
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1. Introduction

The subject of stochastic partial differential equations (SPDEs) has gained consider-

able popularity and importance due to its frequent appearance in various fields, such as

mechanics, biology, chemistry, epidemiology, microelectronics, economics and finance.

SPDEs can describe many phenomena in various fields of science and engineering. Dur-

ing the past decades, there has been an increasing demand for tools and methods of

SPDEs in various disciplines and many theoretical analyses for SPDEs have been stud-

ied theoretically, for example [9,12,18,24,25,28,30]. The numerical analysis of SPDEs

is a young topic of research. Recently, many useful numerical methods for SPDEs have

been developed, for instance, finite differences [1–3,6–14,16,19,23,26,27,29,32,33],

finite elements [4,5,21,31].

For the contributions on numerical approximating parabolic SPDEs, we refer the

reader to [1, 2, 7, 8, 10, 13, 14, 16, 19, 26, 29, 32, 33] and reference therein. In [1] the

finite element and difference methods were studied for some linear SPDEs. I. Gyöngy

and D. Nualart [13] introduced an implicit numerical scheme for a stochastic parabolic

equation and showed that it converges uniformly in probability. I. Gyöngy [14] also
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applied finite difference to stochastic parabolic equations and derived the rate of con-

vergence in Lp. In [15], a finite difference approximation scheme for an elliptic SPDE

in dimension d(d = 1, 2, 3) was studied and estimates for the rate of convergence of

the approximations were obtained. In [8], the authors studied finite element approxi-

mations of some linear parabolic and elliptic SPDEs driven by special additive noises.

The effects of the noise on the accuracy of the approximation were discussed. Annie

Millet and Pierre-Luc Morine [22] studied the speed of convergence of the explicit and

implicit space-time discretization schemes of the solution u(t, x) to a parabolic par-

tial differential equation in any dimension perturbed by a space-correlated Gaussian

noise. The influence of the correlation on the speed was observed. For the numerical

approximating of hyperbolic SPDEs, we refer the reader to [23, 27] and the reference

therein.

It should be noted that most of the papers on numerically approximating SPDEs

by finite difference approximation are devoted to the case of space-time white noise.

However, there are few papers deal with the SPDEs driven by infinite dimensional noise

by a finite difference method.

Enlightened by the above contributions, in this paper we consider strong approxi-

mations for a stochastic elastic equation in spatial dimension d = 1, 2, or3 by an explicit

difference scheme. To our best knowledge, this is a first step towards the analysis

of lattice approximations for stochastic elastic equation driven by infinite dimensional

noise.

Let D = [0, 1]d, (d = 1, 2, or 3), consider the numerical approximation of the fol-

lowing stochastic partial differential equation






utt +∆2u = f(t, x, u) + Ẇ (t), t ≥ 0, x ∈ D,

u = ∆u = 0 on ∂D,

u|t=0 = u0, ut|t=0 = υ0, on D,

(1.1)

where W (t) is a Hilbert space U = L2(D) valued Q-Wiener process defined as follows.

Q is a symmetric bounded nonnegative operator on L2(D), there exists a complete or-

thonormal system {ek} in L2(D) and a bounded sequence of nonnegative real numbers

λk such that Qek = λkek, k = 1, 2, . . ., then W has the expansion

W (t) =
∞
∑

k=1

√

λkβk(t)ek. (1.2)

And so

Ẇ (t) =
∞
∑

k=1

√

λkβ̇k(t)ek, (1.3)

where βk(t), (k = 1, 2, . . .) are real valued Brownian notions mutually independent on

a complete probability space (Ω,F ,P) and β̇k(t) is the derivative of βk(t). If TrQ =
Σ∞
k=1λk < +∞, then the series (1.2) is convergent in L2(Ω,F ,P;U) and Ẇ (t) is called

colored noise. If TrQ = +∞, then the series (1.2) is not convergent in U , but conver-

gent in a suitable Hilbert space U1 such that U is embedded continuously into U1 and
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Difference Approximation of Stochastic Elastic Equation 125

Ẇ (t) is called white noise. For more properties about the Hilbert space valued Wiener

process, we refer the reader to [24].

Stochastic elastic equation is a fourth order partial differential equation and has

very wide applications in structural engineering. As an engineering problem, it has its

applications in beams, bridges and other structures, see [3,24].

Throughout the paper, we use the letter C denotes a constant that may not be the

same form one occurrence to anther, even in the same line. We express the dependence

on some parameters by writing the parameters as arguments, e.g., C = C(α).
The rest of the paper is organized as follows. In the next section, we study the

Hölder continuity of the sample paths of the solution of Eq. (1.1). Section 3 is devoted

to approximate the noise and the integral formulation. In Section 4, we give the explicit

difference scheme and prove the rate of convergence. Finally in Section 5, numerical

experiments demonstrate the theoretical analysis.

2. Regularity of the solution

In this section, we present the conditions under which Eq. (1.1) has a unique solu-

tion and prove boundedness and Hölder continuity of the sample paths of the solution.

We fix a finite time horizon T and assume that the nonlinear term f satisfies the

following Lipschitz and linear growth conditions

|f(t, x, z1)− f(s, y, z2)| ≤ C(|t− s|+ |x− y|+ |z1 − z2|), (2.1)

sup
(t,x)∈[0,T ]×[0,1]

|f(t, x, z)| ≤ C(1 + |z|), (2.2)

for every s, t ∈ [0, T ], z1, z2, z ∈ R, x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ [0, 1]d, |x| =
(
∑d

i=1 x
2
i )

1

2 , and C is a positive constant.

Let r = (r1, . . . , rd) ∈ N
d, x = (x1, . . . , xd) ∈ R

d.Define φr(x) =
√
2d
∏d

i=1 sin(riπxi).
Then {φr}r∈Nd satisfy the boundary conditions of (1.1) and compose of a complete or-

thonormal system on L2(D) which diagonalize ∆ with

γr = π2|r|2 = π2
d
∑

i=1

r2i , (2.3)

the corresponding eigenvalues. We assume that the complete orthonormal system

{φr}r∈Nd diagonalize Q with corresponding eigenvalues {λr}r∈Nd . Since Q is bounded,

{λr}r∈Nd is a bounded sequence too. Therefore, in the following we always assume

that Ẇ has formal expression

Ẇ (t) =
∑

r∈Nd

√

λrβ̇r(t)φr, (2.4)

and the degenerate rate of λr is

λr = O(|r|−λ), λ ≥ 0. (2.5)
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Assume that u0, υ0 belong to L2(D). Since the fundamental solution of

υtt +∆2υ = 0, t ≥ 0, x ∈ D,

υ = ∆u = 0 on ∂D,

υ|t=0 = φ(x), υt|t=0 = ψ(x), x ∈ D,

is given by

υ(t, x) =
∑

r∈Nd

sin(γrt)

γr
ϕr(x)

∫

D

ψ(y)ϕr(y)dy +
∑

r∈Nd

cos(γrt)ϕr(x)

∫

D

φ(y)ϕr(y)dy.

From the theoretical results for stochastic elastic equation discussed in [3,6,11,17,33],

we know that under the conditions (2.1) and (2.2), problem (1.1) has a unique weak

solution and is given by the the integral formulation

u(t, x) =
∑

r∈Nd

sin(γrt)

γr
φr(x)

∫

D

υ0(y)φr(y)dy

+
∑

r∈Nd

cos(γrt)φr(x)

∫

D

u0(y)φr(y)dy

+
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)f(s, y, u(s, y))dsdy

+
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)Ẇ (s, y)dsdy. (2.6)

For a given function g : D → R and α ∈ R, define

‖g‖α,2 :=

(

∑

r∈Nd

(1 + |r|2)α| < g,ϕr > |2
) 1

2

,

where < ·, · > stands for the usual scalar product in L2(D), and denote by Hα,2(D) the

set of functions g : D → R such that ‖g‖α,2 < ∞. Notice that Hα,2(D) is a subspace

of the fractional Sobolev space of fractional differential order α and integrability order

p = 2 (see [27]). For a special case α = 0, it is clear that Hα,2(D) = L2(D) and we will

denote ‖ · ‖0,2 by ‖ · ‖. By Parseval’s identity, we have

‖g‖2 =
∑

r∈Nd

| < g,ϕr > |2, ∀g ∈ L2(D). (2.7)

The following lemma gives an asymptotic bounds for series that will often appear

in the rest of the paper and for a proof of them we refer the reader to [20].

Lemma 2.1. Let d ∈ {1, 2, 3} and c∗ > 0. Then there exists a constant C = C(c∗, d) > 0,
such that

∑

α∈Nd

‖α‖−d+c∗ε
Nd ≤ Cε−1,∀ε ∈ (0, 2].
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The boundedness of the sample paths of the solution is given below.

Lemma 2.2. Assume that υ0 ∈ Hβ,2(D) for some β > −4−d
2 and u0 ∈ Hα,2(D) for some

α > d
2 , and f satisfies the linear growth condition (2.2). Then, there exists a constant

C = C(α, β, λ, T ), such that

sup
(t,x)∈[0,T ]×D

E|u(t, x)|2 < C.

Proof. By the expression (2.6), it is easy to see that

E|u(t, x)|2 ≤ 4

4
∑

i=1

Ik(t, x),

with

I1(t, x) =

∣

∣

∣

∣

∣

∣

∑

r∈Nd

sin(γrt)

γr
φr(x)

∫

D

υ0(y)φr(y)dy

∣

∣

∣

∣

∣

∣

2

,

I2(t, x) =

∣

∣

∣

∣

∣

∣

∑

r∈Nd

cos(γrt)φr(x)

∫

D

u0(y)φr(y)dy

∣

∣

∣

∣

∣

∣

2

,

I3(t, x) = E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)f(s, y, u(s, y))dsdy

∣

∣

∣

∣

∣

∣

2

,

I4(t, x) = E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)Ẇ (s, y)dsdy

∣

∣

∣

∣

∣

∣

2

.

By Lemma 2.1, Cauchy-Schwartz inequality and the assumptions on υ0, we have

I1(t, x) =

∣

∣

∣

∣

∣

∣

∑

r∈Nd

sin(γrt)

γr
|r|−βφr(x) < υ0, φr > |r|β

∣

∣

∣

∣

∣

∣

2

≤ C
∑

r∈Nd

| < υ0, φr > |2|r|2β
∑

r∈Nd

|r|−4−2β

≤ C‖υ0‖2β,2
∑

r∈Nd

|r|−4−2β ≤ C,

if β > −4−d
2 . Similarly, one has

I2(t, x) ≤ C‖u0‖2α,2
∑

r∈Nd

|r|−2β ≤ C,
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if α > d
2 . Applying Cauchy-Schwartz inequality and the linear growth condition (2.2)

yield

I3(t, x) ≤ E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ t

0

sin(γr(t− s))φr(x)

γr

[∫

D

φr(y)f(s, y, u(s, y))dy

]

ds

∣

∣

∣

∣

∣

∣

2

≤ E

∑

r∈Nd

∫ t

0

∣

∣

∣

∣

sin(γr(t− s))φr(x)

γr

∣

∣

∣

∣

2

ds

∫ t

0

∑

r∈Nd

| < φr, f > |2ds

≤ C
∑

r∈Nd

1

|r|4
∫ t

0
E‖f(s, ·, u(s, ·))‖2ds

≤ C

∫ t

0
1 + E‖u(s, ·)‖2ds

≤ C

(

1 +

∫ t

0
sup
x∈D

E|u(s, x)|2ds
)

.

By the white noise expression (2.4), the orthogonal property of φr and the mutual

independence of βr, one gets

I4(t, x) = E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)

∑

k∈Nd

√

λkβ̇k(s)φk(y)dsdy

∣

∣

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ t

0

sin(γr(t− s))

γr
φr(x)

√

λrdβr(s)

∣

∣

∣

∣

∣

∣

2

=
∑

r∈Nd

∫ t

0

sin2(γr(t− s))

γ2r
φ2r(x)λrds ≤ C

∑

r∈Nd

λr

|r|4 ≤ C.

Combining together the above estimates, we can obtain that

sup
x∈D

E(|u(t, x)|2) ≤ C

(

1 +

∫ t

0
sup
x∈D

E(|u(s, x)|2)ds
)

,

with a constant C independent of t. We conclude applying Gronwall’s lemma. �

We next prove the Hölder property of the sample paths of the solution.

Lemma 2.3. Assume that υ0 ∈ Hβ,2(D) for some β > −4−d
2 and u0 ∈ Hα,2(D) for

some α > d
2 , and f satisfies conditions (2.1) and (2.2). Then there exists a constant

C = C(α, β, λ, T ), such that, for every s, t ∈ [0, T ] and x, y ∈ D.

E|u(t, x)− u(s, y)|2

≤ C
(

|t− s|(2+β− d
2
)∧(α− d

2
)∧(2− d

2
) + |x− y|(4+2β−d)∧(2α−d)∧(4−d)∧2

)

,
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Difference Approximation of Stochastic Elastic Equation 129

where a ∧ b stands for min{a, b}. Moreover, if the nonlinear term f = 0, then for every

s, t ∈ [0, T ] and x, y ∈ D,

E|u(t, x)− u(s, y)|2

≤ C
(

|t− s|(2+β− d
2
)∧(α− d

2
)∧(2− d

2
+λ

2
)∧2 + |x− y|(4+2β−d)∧(2α−d)∧(4−d+λ)∧2

)

.

Proof. We assume that 0 ≤ s < t ≤ T . Let

H(t, x) =
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(z)f(s, z, u(s, z))dsdz,

F (t, x) =
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(z)Ẇ (s, z)dsdz.

Then we have the following decomposition

E|u(t, x)− u(s, y)|2 ≤ 4
4
∑

k=1

Jk(t, x; s, y),

with

J1(t, x; s, y) =

∣

∣

∣

∣

∣

∣

∑

r∈Nd

(

sin(γrt)

γr
φr(x)−

sin(γrs)

γr
φr(y)

)

< φr, υ0 >

∣

∣

∣

∣

∣

∣

2

,

J2(t, x; s, y) =

∣

∣

∣

∣

∣

∣

∑

r∈Nd

(cos(γrt)φr(x)− cos(γrs)φr(y)) < φr, u0 >

∣

∣

∣

∣

∣

∣

2

,

J3(t, x; s, y) = E |H(t, x)−H(s, y)|2 , J4(t, x; s, y) = E |F (t, x)− F (s, y)|2 .

Cauchy-Schwartz inequality and the assumptions on υ0 yield

J1(s, x; t, y) ≤ ‖υ0‖2β,2
∑

r∈Nd

∣

∣

∣

∣

sin(γrt)φr(x)− sin(γrs)φr(y)

γr

∣

∣

∣

∣

2

|r|−2β

≤ C





∑

r∈Nd

∣

∣

∣

∣

sin(γrt)− sin(γrs)

γr
φr(x)

∣

∣

∣

∣

2

|r|−2β

+
∑

r∈Nd

∣

∣

∣

∣

sin(γrt)

γr
(φr(x)− φr(y))

∣

∣

∣

∣

2

|r|−2β





=: C(J11 + J12).

The mean value theorem yields

J11 ≤ C
∑

r∈Nd

|r|−4−2β
(

1 ∧ |r|4(t− s)2
)

.
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If β > d
2 , it is clear that J11 ≤ C(t− s)2. If −4−d

2 < β ≤ d
2 ,

J11 ≤ C
∑

|r|≤[(t−s)−
1
2 ]

|r|−2β(t− s)2 +
∑

|r|>[(t−s)−
1
2 ]

|r|−4−2β

≤ C((t− s)2(t− s)β−
d
2 + (t− s)2+β− d

2

≤ C(t− s)2+β− d
2 ,

where [·] stands for the integer value. The above arguments implies that

J11 ≤ C(t− s)(2+β− d
2
)∧2.

Analogously, J12 ≤ C|x− y|(4+2β−d)∧2. Thus

J1(s, x; t, y) ≤ C
(

|t− s|(2+β− d
2
)∧2 + |x− y|(4+2β−d)∧2

)

. (2.8)

Now we deal with the term J2. By Cauchy-Schwartz inequality and the assumptions on

u0,

J2(s, x; t, y) ≤ ‖u0‖2α,2
∑

r∈Nd

∣

∣

∣
cos(γrt)φr(x)− cos(γrs)φr(y)

∣

∣

∣

2
|r|−2α

≤ C





∑

r∈Nd

∣

∣

∣ cos(γrt)− cos(γrs)|2|r|−2α +
∑

r∈Nd

|φr(x)− φr(y)
∣

∣

∣

2
|r|−2α



 .

Similar to the method used in the analysis of the term J1, one has

J2(s, x; t, y) ≤ C
(

|t− s|(α− d
2
)∧2 + |x− y|(2α−d)∧2

)

. (2.9)

To give a estimation of J3, we consider the decomposition

J3(s, x; t, y) = E |H(t, x)−H(s, y)|2 ,
≤ C

(

E |H(t, x)−H(s, x)|2 + E |H(s, x)−H(s, y)|2
)

=: C(J31 + J32).
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By the linear growth condition (2.2) and lemma 2.2, one gets

J31 = E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− τ))

γr
φr(x)φr(z)f(τ, z, u(τ, z))dτdz

−
∑

r∈Nd

∫ s

0

∫

D

sin(γr(s − τ))

γr
φr(x)φr(z)f(τ, z, u(τ, z))dτdz

∣

∣

∣

∣

∣

∣

2

≤ CE

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ s

0

∫

D

sin(γr(t− τ))− sin(γr(s− τ))

γr
φr(x)φr(z)f(τ, z, u)dτdz

+
∑

r∈Nd

∫ t

s

∫

D

sin(γr(t− τ))

γr
φr(x)φr(z)f(τ, z, u(τ, z))dτdz

∣

∣

∣

∣

∣

∣

2

=: J311 + J312.

By (2.2), Lemma 2.2 and Cauchy-Schwartz inequality, we have

J311 ≤ C
∑

r∈Nd

1 ∧ |r|4|t− s|2
|r|4

∫ s

0
(1 + sup

x∈D
E|u(s, x)|2)dτ

≤ C







∑

|r|≤[|t−s|−
1
2 ]

|t− s|2 +
∑

|r|>[|t−s|−
1
2 ]

|r|−4







≤ C|t− s|2− d
2 .

Similarly, we also have

J312 ≤ C|t− s|2− d
2 .

Apply the linear growth condition (2.2) and Lemma 2.2 and then the orthogonal prop-

erty of φr, we have

J32 = E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ s

0

∫

D

sin(γr(s− τ))

γr
(φr(x)− φr(y))φr(z)f(τ, z, u)dτdz

∣

∣

∣

∣

∣

∣

2

≤ C
∑

r∈Nd

1 ∧ |r|2|x− y|2
|r|4 ≤ C|x− y|(4−d)∧2.

Combining together the estimations of J31 and J32, we obtain that

J3(s, x; t, y) ≤ C
(

|t− s|2− d
2 + |x− y|(4−d)∧2

)

. (2.10)
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The white noise expression (2.4) and the orthogonal property of φr(x) yield

J4(s, x; t, y) = E

∣

∣

∣

∣

∣

∣

∑

r∈Nd

(
∫ t

0

sin(γr(t− τ))

γr
φr(x)

√

λrdβr(τ)

−
∫ s

0

sin(γr(s− τ))

γr
φr(y)

√

λrdβr(τ)

)∣

∣

∣

∣

2

≤ CE

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ s

0

sin(γr(t− τ))− sin(γr(s− τ))

γr
φr(x)

√

λrdβr(τ)

∣

∣

∣

∣

∣

∣

2

+CE

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ s

0

sin(γr(s − τ))

γr
(φr(x)− φr(y))

√

λrdβr(τ)

∣

∣

∣

∣

∣

∣

2

CE

∣

∣

∣

∣

∣

∣

∑

r∈Nd

∫ t

s

sin(γr(t− τ))

γr
φr(x)

√

λrdβr(τ)

∣

∣

∣

∣

∣

∣

2

=: J41 + J42 + J43.

By using the mutual independence of βr(t), the orthogonal property of φr(x) and the

method that used in the estimate of J1, we have

J41 ≤ C
∑

r∈Nd

1 ∧ |r|4|t− s|2
|r|4 λr ≤ C|r|−4−λ

(

1 ∧ |r|4|t− s|2
)

≤ C|t− s|(2− d
2
+λ

2
)∧2,

J42 ≤ C
∑

r∈Nd

1 ∧ |r|2|x− y|2
|r|4 λr ≤ C|r|−4−λ

(

1 ∧ |r|2|x− y|2
)

≤ C|x− y|(4−d+λ)∧2,

J43 ≤ C|t− s|(2− d
2
+λ

2
)∧2.

Thus

J4(s, x; t, y) ≤ C
(

|t− s|(2− d
2
+λ

2
)∧2 + |x− y|(4−d+λ)∧2

)

. (2.11)

Combining together the estimate of Ji, (i = 1, 2, 3, 4), we finished the proof. �

3. White noise and integral formula approximation

In this section, we regularize the noise through time discretization and approximate

the integral formula (2.6) by a truncated series.

First we regularize the noise by the following manner. Define a partition of [0, T ] by

[ti, ti+1] for i = 0, 1, 2, . . . ,m − 1, where ti = i∆t, ∆t = T
m

. A sequence of noise which

approximates W is defined as

Ẇm(t, x) =
∑

r∈Nd

√

λrφr(x)
m
∑

i=1

1√
∆t

βriχi(t), (3.1)
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where χi(t) is the characteristic function for the ith time subinterval and

βri =
1√
∆t

∫ ti

ti−1

dβr(t), (3.2)

that is to say, βri are mutually independent and βri ∈ N(0, 1).

Replacing Ẇ (t, x) in (2.4) by Ẇm(t, x) and let um be the solution of the following

equation

um(t, x) =
∑

r∈Nd

sin(γrt)

λr
φr(x)

∫

D

υ0(y)φr(y)dy

+
∑

r∈Nd

cos(γrt)φr(x)

∫

D

u0(y)φr(y)dy

+
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)f(s, y, um(s, y))dsdy

+
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)Ẇm(s, y)dsdy. (3.3)

The next theorem shows that under suitable conditions, um approximates u, the solu-

tion of (1.1).

Theorem 3.1. Suppose that the Lipschitz condition (2.1) is satisfied, then there exists a

constant C = C(λ, T ), such that

sup
t∈[0,T ]

E

∣

∣

∣

∣

∫

D

|u(t, x)− um(t, x)|2dx
∣

∣

∣

∣

≤ C∆t(2−
d
2
+λ

2
)∧2.

Proof. Let e(t, x) = u(t, x) − um(t, x), and

A(t, x) =
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))φr(x)φr(y)

γr
(f(s, y, u)− f(s, y, um)) dsdy,

B(t, x) =
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))φr(x)φr(y)

γr

(

Ẇ (s, y)− Ẇm(s, y)
)

dsdy.

Then, we have e(t, x) = A(t, x) + B(t, x) and e2(t, x) ≤ 2(A2(t, x) + B2(t, x)). By

Cauchy-Schwartz inequality, Lemma 2.1 and the Lipschitz condition (2.1), one has

A2(t, x) ≤ C
∑

r∈Nd

∫ t

0

sin2(γr(t− s))

γ2r
ds

∫ t

0

∑

r∈Nd

| < u− um, φr > |2ds

≤ C

∫ t

0
‖e(s, ·)‖2ds.
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Now we estimate B(t, x). For simplicity, we assume t = tk+1, 0 ≤ k < m, by the white

noise approximation (3.1) and the orthogonal property of φr(y), one gets

B(t, x) =
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))φr(x)φr(y)

γr

×
∑

l∈Nd

√

λlφl(y)

[

β̇l(s)−
m
∑

i=1

1

∆t

∫ ti

ti−1

dβl(τ)

]

dsdy

=
∑

r∈Nd

∫ t

0

sin(γr(t− s))φr(x)

γr

√

λr

[

β̇l(s)−
m
∑

i=1

1

∆t

∫ ti

ti−1

dβl(τ)

]

ds

=
∑

r∈Nd

√
λrφr(x)

γr

k
∑

i=0

∫ ti+1

ti

(

1

∆t

∫ ti+1

ti

[sin(γr(t− s))− sin(γr(t− τ))]dτ

)

dβr(s).

By the the orthogonal property of φr and the mutual independence of βr, we have

E

∣

∣

∣

∣

∫

D

B2(t, x)dx

∣

∣

∣

∣

=
∑

r∈Nd

λr

γ2r

k
∑

i=0

∫ ti+1

ti

∣

∣

∣

∣

1

∆t

∫ ti+1

ti

[sin(γr(t− s))− sin(γr(t− τ))]dτ

∣

∣

∣

∣

2

ds

≤ C
∑

r∈Nd

λr

γ2r

k
∑

i=0

∫ ti+1

ti

∣

∣

∣

∣

1

∆t
∆t(1 ∧ |r|2|t− s|)

∣

∣

∣

∣

2

ds

≤ C
∑

r∈Nd

λr

|r|4 (1 ∧ |r|4∆t2) ≤ C∆t(2−
d
2
+λ

2
)∧2.

Combining the estimates of A2(t, x) and B2(t, x) together, we obtain that

E

∣

∣

∣

∣

∫

D

e2(t, x)dx

∣

∣

∣

∣

≤ C

(

∆t(2−
d
2
+λ

2
)∧2 +

∫ t

0
E

∣

∣

∣

∣

∫

D

e2(s, x)dx

∣

∣

∣

∣

ds

)

.

We conclude the theorem by applying Gronwall’s lemma. �

Now we approximate the integral formula (2.6) by a truncated series. Let n be a

positive integer and um,n be the solution of the following equation

um,n(t, x) =
∑

r,n

∗ sin(γrt)

γr
φr(x)

∫

D

υ0(y)φr(y)dy +
∑

r,n

∗
cos(γrt)φr(x)

∫

D

u0(y)φr(y)dy

+
∑

r,n

∗
∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)f(s, y, um,n(s, y))dsdy

+
∑

r,n

∗
∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)Ẇm(s, y)dsdy, (3.4)
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where, and throughout this section, we use the notation

∑

r,n

∗
:=

∑

r∈Nd,max1≤i≤d ri<n

.

Then um,n approximates um, the solution of (3.3), in the following way.

Theorem 3.2. Suppose that the Lipschitz condition (2.1) and linear growth condition

(2.2) are satisfied, υ0 ∈ Hβ,2(D) for some β > d−4
2 and u0 ∈ Hα,2(D) for some α > d

2 ,

then there exists a constant C = C(α, β, λ, T ), such that

sup
t∈[0,T ]

E

∣

∣

∣

∣

∫

D

|um(t, x)− um,n(t, x)|2dx
∣

∣

∣

∣

≤ C(
1

n
)(4+2β−d)∧(2α−d)∧(4−d) .

Moreover, if f = 0, then

sup
t∈[0,T ]

E

∣

∣

∣

∣

∫

D

|um(t, x)− um,n(t, x)|2dx
∣

∣

∣

∣

≤ C(
1

n
)(4+2β−d)∧(2α−d)∧(4−d+λ) .

Proof. Let e(t, x) = um(t, x)− um,n(t, x), and

A1(t, x) =
∑

r,n

∗ sin(γrt)

γr
φr(x) < υ0, φr >,

A2(t, x) =
∑

r,n

∗
cos(γrt)φr(x) < u0, φr >,

A3(t, x) =
∑

r∈Nd

∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)f(s, y, um(s, y))dsdy

−
∑

r,n

∗
∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)f(s, y, um,n(s, y))dsdy,

A4(t, x) =
∑

r,n

∗
∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)Ẇm(s, y)dsdy.

Then,

e(t, x) =

4
∑

k=1

Ak(t, x), e2(t, x) ≤ 4

4
∑

k=1

A2
k(t, x).

By Cauchy-Schwartz inequality and the assumptions on υ0, we have

A2
1(t, x) ≤ C‖υ0‖2β,2

∑

r,n

∗
|r|−4−2β ≤ C

∑

r∈Nd,|r|≥n

|r|−4−2β ≤ C(
1

n
)4+2β−d.

Similarly,

A2
2(t, x) ≤ ‖u0‖2α,2

∑

r,n

∗
|r|−2α ≤ C

∑

r∈Nd,|r|≥n

|r|−2α ≤ C(
1

n
)2α−d.
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Now consider the decomposition of A3(t, x),

A3(t, x) =
∑

r,n

∗
∫ t

0

∫

D

sin(γ(t− s))

γr
φr(x)φr(y)f(s, y, um(s, y))dsdy

+
∑

r,n

∗
∫ t

0

∫

D

sin(γ(t− s))

γr
φr(x)φr(y)

× (f(s, y, um(s, y))− f(s, y, um,n(s, y))) dsdy

=: A31(t, x) +A32(t, x).

Then we have A2
3(t, x) ≤ 2

(

A2
31(t, x) +A2

32(t, x)
)

. By a similar way as in the proof of

Lemma 2.2, we can derive that there exists a constant C independent of m, such that

sup
(t,x)∈[0,T ]×[0,1]

E|um(t, x)|2 < C. (3.5)

By Cauchy-Schwartz inequality, the linear growth condition (2.2) and (3.5), one gets

E |A31(t, x)|2 ≤ C
∑

r∈Nd,|r|≥n

1

|r|4 ≤ C(
1

n
)4−d.

By the Lipschitz condition (2.1), one has

E |A32(t, x)|2 ≤ C
∑

r∈Nd,|r|≥n

1

|r|4
∫ t

0
E‖e(s, ·)‖2ds ≤ C

∫ t

0
E‖e(s, ·)‖2ds.

For A4(t, x), without of loss of generality, we assume t = tk+1. By the expression (3.1)

of Ẇm(t, x) and the orthogonal property of φr(y), we have

E |A4(t, x)|2

= E

∣

∣

∣

∣

∣

∑

r,n

∗
∫ t

0

∫

D

sin(γr(t− s))

γr
φr(x)φr(y)Ẇm(s, y)dsdy

∣

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

∣

∑

r,n

∗
∫ t

0

sin(γr(t− s))

γr
φr(x)

√

λr

m
∑

i=1

1√
∆t

βriχi(s)ds

∣

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

∣

∑

r,n

∗
k
∑

i=0

∫ ti+1

ti

sin(γr(t− s))

γr
φr(x)

√

λr
1√
∆t
βr(i+1)ds

∣

∣

∣

∣

∣

2

=
∑

r,n

∗
k
∑

i=0

∣

∣

∣

∣

∫ ti+1

ti

sin(γr(t− s))

γr
φr(x)

√

λr
1√
∆t

ds

∣

∣

∣

∣

2

≤ C
∑

r,n

∗
k
∑

i=0

∣

∣

∣

∣

|r|−2
√

λr∆t
1√
∆t

ds

∣

∣

∣

∣

2

≤ C
∑

r∈Nd,|r|≥n

|r|−4−λ ≤ C(
1

n
)4−d+λ.
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Combining the estimation of A2
i (t, x), (i = 1, 2, 3, 4) together, we obtain

E

∣

∣

∣

∣

∫

D

e2(t, x)dx

∣

∣

∣

∣

≤ C

(

(
1

n
)(4+2β−d)∧(2α−d)∧(4−d) +

∫ t

0
E

∣

∣

∣

∣

∫

D

e2(s, x)dx

∣

∣

∣

∣

ds

)

.

Moreover, if f = 0, then A3 = 0, thus in this case

E

∣

∣

∣

∣

∫

D

e2(t, x)dx

∣

∣

∣

∣

≤ C

(

(
1

n
)(4+2β−d)∧(2α−d)∧(4−d+λ) +

∫ t

0
E

∣

∣

∣

∣

∫

D

e2(s, x)dx

∣

∣

∣

∣

ds

)

.

We conclude the theorem by applying Gronwall’s lemma. �

4. Difference scheme and error analysis

In this section, an explicit difference scheme is used to approximate um,n(t, x), and

the error between the numerical solution and the solution u(t, x) of (1.1) is analyzed.

Let n be the positive integer that has been used in Section 3 to truncate integral

formula (2.6). Define a partition of D = [0, 1]d by

xk = (k1∆x, k2∆x, . . . , kd∆x),

where ∆x = 1
n

and

k ∈ K = {r = (r1, . . . , rd) ∈ N
d : 1 ≤ ri ≤ n− 1, 1 ≤ i ≤ d}.

Define

K̄ =
{

r = (r1, . . . , rd) ∈ N
d : 0 ≤ ri ≤ n− 1, 1 ≤ i ≤ d

}

.

For l ∈ K̄, let

[xl, xl+1] =
{

x = (x1, . . . , xd) ∈ R
d : li∆x ≤ xi ≤ (li + 1)∆x, 1 ≤ i ≤ d

}

.

We consider the difference solution unm,n defined on the lattice {(ti, xk); i ∈ {0, 1, . . . ,m},
k ∈ K}, as

unm,n(ti+1, xk) =
1

nd

∑

l∈K

∑

r∈K

sin(γrti+1)

γr
φr(xk)φr(xl)υ0(xl)

+
1

nd

∑

l∈K

∑

r∈K

cos(γrti+1)φr(xk)φr(xl)u0(xl)

+
i
∑

q=0

∑

l∈K̄

∫ tq+1

tq

∫

[xl,xl+1]

∑

r∈K

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)f(tq, xl, u

n
m,n(tq, xl))dsdy

+

i+1
∑

q=1

∫ tq

tq−1

∑

r∈K

sin(γr(ti+1 − s))

γr
φr(xk)

√

λr
βrq√
∆t

ds. (4.1)

The following theorem gives the error in the difference method given by (4.1).
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Theorem 4.1. Assume the conditions in theorem 3.1 and 3.2 are all satisfied, υ0 ∈
Hβ,2(D) with β > d

2 and u0 ∈ Hα,2(D) with α > d, then there exists a constant

C = C(α, β, λ, T ), such that

sup
0≤i≤m

E

∣

∣

∣

∣

∣

1

nd

∑

k∈K

|um,n(ti, xk)− unm,n(ti, xk)|2
∣

∣

∣

∣

∣

≤ C
(

∆t(2+β− d
2
)∧(α− d

2
)∧(2− d

2
) +∆x(2β−d)∧(2α−2d)∧(4−d)∧2

)

.

Moreover, if f = 0, then

sup
0≤i≤m

E

∣

∣

∣

∣

∣

1

nd

∑

k∈K

|um,n(ti, xk)− unm,n(ti, xk)|2
∣

∣

∣

∣

∣

≤ C∆x(2β−d)∧(2α−2d).

Proof. It is clear that um,n(ti+1, xk) satisfies

um,n(ti+1, xk) =
∑

r∈K

sin(γrti+1)

γr
φr(xk)

∫

D

υ0(y)φr(y)dy

+
∑

r∈K

cos(γrti+1)φr(xk)

∫

D

u0(y)φr(y)dy

+
∑

r∈K

∫ ti+1

0

∫

D

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)f(s, y, um,n(s, y))dsdy

+
∑

r∈K

∫ t

0

∫

D

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)Ẇm(s, y)dsdy

=: A1(ti+1, xk) +A2(ti+1, xk) +A3(ti+1, xk) +A4(ti+1, xk).

For y = (y1, . . . , yd) ∈ D, t ∈ [0, T ], set kn(y) = ( [ny1]
n
,
[ny2]
n
, . . . ,

[nyd]
n

) and kmT (t) =
T
m
[mt
T
], then the difference scheme (4.1) can be written as

unm,n(ti+1, xk) =
∑

r∈K

sin(γrti+1)

γr
φr(xk)

∫

D

υ0(kn(y))φr(kn(y))dy

+
∑

r∈K

cos(γrti+1)φr(xk)

∫

D

u0(kn(y))φr(kn(y))dy

+
∑

r∈K

∫ ti+1

0

∫

D

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)

×f(kmT (s), kn(y), u
n
m,n(kmT (s), kn(y)))dsdy

+
i+1
∑

q=1

∫ tq

tq−1

∑

r∈K

sin(γr(ti+1 − s))

γr
φr(xk)

√

λr
βrq√
∆t

ds

=: B1(ti+1, xk) +B2(ti+1, xk) +B3(ti+1, xk) +B4(ti+1, xk).
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Let ei,k = um,n(ti, xk)− unm,n(ti, xk). It is clear that

ei+1,k =

4
∑

j=1

(

Aj(ti+1, xk)−Bj(ti+1, xk)
)

.

Thus

E|ei+1,k|2 ≤ 4

4
∑

j=1

E

∣

∣

∣Aj(ti+1, xk)−Bj(ti+1, xk)
∣

∣

∣

2
.

As mentioned in [14,27], the (n− 1)d-dimensional vectors

νr =

(

√

1

nd
φr(xk), k ∈ K

)

, r ∈ K, (4.2)

are an orthonormal basis of R(n−1)d. That is to say,

∫

D

φr(kn(y))φl(kn(y))dy = δrl, r, l ∈ K, (4.3)

where δrl is the Kronecher symbol. Then, it holds

|A1(ti+1, xk)−B1(ti+1, xk)|2

=

∣

∣

∣

∣

∣

∑

r∈K

sin(γrti+1)

γr
φr(xk)

∫

D

υ0(y)φr(y)− υ0(kn(y))φr(kn(y))dy

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

r∈K

sin(γrti+1)

γr
φr(xk)

(∫

D

υ0(y)φr(y)dy

−
∑

l∈Nd

< υ0, φl >

∫

D

φl(kn(y))φr(kn(y))dy





∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∑

r∈K

sin(γrti+1)

γr
φr(xk)

∑

l∈Nd−K

< υ0, φl >

∫

D

φl(kn(y))φr(kn(y))dy

∣

∣

∣

∣

∣

∣

2

≤ C
∑

l∈Nd−K

| < υ0, φl > |2|l|2β
∑

l∈Nd−K

|l|−2β

∣

∣

∣

∣

∣

∑

r∈K

sin(γrti+1)

γr
φr(xk)

∣

∣

∣

∣

∣

2

≤ C‖υ0‖2β,2
∑

|l|≥n

|l|−2β ≤ C(
1

n
)2β−d.

Using similar arguments, one can obtain that

|A2(ti+1, xk)−B2(ti+1, xk)|2 ≤ C(
1

n
)2(α−d).
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By Cauchy-Schwartz inequality, one has

E |A3(ti+1, xk)−B3(ti+1, xk)|2

=
∣

∣

∣

∑

r∈K

∫ ti+1

0

∫

D

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)

×(f(s, y, um,n(s, y))− f(kmT (s), kn(y), u
n
m,n(kmT (s), kn(y))))dsdy

∣

∣

∣

2

=
∣

∣

∣

∑

r∈K

∫ ti+1

0

∫

D

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)

×(f(s, y, um,n(s, y))− f(kmT (s), kn(y), um,n(kmT (s), kn(y))))dsdy
∣

∣

∣

2

+
∣

∣

∣

∑

r∈K

∫ ti+1

0

∫

D

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)

×(f(kmT (s), kn(y), um,n(kmT (s), kn(y)))

−f(kmT (s), kn(y), u
n
m,n(kmT (s), kn(y)))

)

dsdy
∣

∣

∣

2

=: A31 +A32.

Using the same method as in Lemma 2.3, we can obtain

E|um,n(t, x) − um,n(s, y)|2

≤ C
(

|t− s|(β− d−4

2
)∧(α− d

2
)∧(2− d

2
) + |x− y|(2β−(d−4))∧(2α−d)∧(4−d)∧2

)

, (4.4)

for every s, t ∈ [0, T ] and x, y ∈ D. By (4.4) and the Lipschitz condition (2.1), one has

A31 ≤ C
∑

r∈K

1

|r|4
(

∆t2 +∆x2 + E|um,n(s, y)− um,n(kmT (s), kn(y))|2
)

≤ C
(

∆t(β−
d−4

2
)∧(α− d

2
)∧(2− d

2
) +∆x(2β−(d−4))∧(2α−d)∧(4−d)∧2

)

,

and

A32 ≤ CE

∣

∣

∣

∣

∫ ti+1

0

∫

D

∣

∣um,n(kmT (s), kn(y))− unm,n(kmT (s), kn(y))
∣

∣

2
dsdy

∣

∣

∣

∣

= C∆t

i
∑

q=0

E

∣

∣

∣

∣

∣

1

nd

∑

∈K

|eq,k|2
∣

∣

∣

∣

∣

.

Thus

E |A3(ti+1, xk)−B3(ti+1, xk)|2

≤ C

(

∆t(β−
d−4

2
)∧(α− d

2
)∧(2− d

2
) +∆x(2β−(d−4))∧(2α−d)∧(4−d)∧2

+∆t
i
∑

q=0

E

∣

∣

∣

∣

∣

1

nd

∑

∈K

|eq,k|2
∣

∣

∣

∣

∣

)

.
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By the orthogonal property φr, there holds

A4(ti+1, xk) =
∑

r∈K

∫ t

0

∫

D

sin(γr(ti+1 − s))

γr
φr(xk)φr(y)Ẇm(s, y)dsdy

=

i+1
∑

q=1

∫ tq

tq−1

∑

r∈K

sin(γr(ti+1 − s))

γr
φr(xk)

×
∑

l∈K

√

λl
βlq√
∆t

∫

D

φr(y)φl(y)dyds

=

i+1
∑

q=1

∫ tq

tq−1

∑

r∈K

sin(γr(ti+1 − s))

γr
φr(xk)

√

λr
βrq√
∆t

ds

= B4(ti+1, xk).

Thus we have

E|A4(ti+1, xk)−B4(ti+1, xk)|2 = 0.

Combining together the above arguments, we can obtain that

E

∣

∣

∣

∣

∣

1

nd

∑

k∈K

|ei+1,k|2
∣

∣

∣

∣

∣

≤ C

(

∆t(β−
d−4

2
)∧(α− d

2
)∧(2− d

2
)

+∆x(2β−d)∧(2α−2d)∧(4−d)∧2 +∆t
i
∑

q=0

E

∣

∣

∣

∣

∣

1

nd

∑

k∈K

|eq,k|2
∣

∣

∣

∣

∣

)

.

Moreover, if f = 0, then A3 = B3 = 0, thus in this case

E

∣

∣

∣

∣

∣

1

nd

∑

k∈K

|ei+1,k|2
∣

∣

∣

∣

∣

≤ C∆x(2β−d)∧(2α−2d).

We conclude the theorem by using the Gronwall’s inequality of discrete form. �

By Theorems 3.1, 3.2, 4.1 and Lemma 2.3, we have the following theorem.

Theorem 4.2. Assume the conditions in Theorem 4.1 are all satisfied. Then there exists a

constant C = C(α, β, λ, T,K,L), such that

sup
0≤i≤m

E

∣

∣

∣

∣

∣

1

nd

∑

k∈K

|u(ti, xk)− unm,n(ti, xk)|2
∣

∣

∣

∣

∣

≤ C
(

∆t(2+β− d
2
)∧(α− d

2
)∧(2− d

2
) +∆x(2β−d)∧(2α−2d)∧(4−d)∧2

)

.
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Moreover, if the nonlinear term f = 0, then

sup
0≤i≤m

E

∣

∣

∣

∣

∣

1

nd

∑

k∈K

|u(ti, xk)− unm,n(ti, xk)|2
∣

∣

∣

∣

∣

≤ C
(

∆t(2+β− d
2
)∧(α− d

2
)∧(2− d

2
+λ

2
)∧2 +∆x(2β−d)∧(2α−2d)∧(4−d+λ)∧2

)

.

5. Numerical results

The numerical methods described in the above sections are computationally tested

in this section. Notice that by Theorem 4.2, for sufficiently smooth initial conditions

the rate of convergence in l2 of the difference scheme with respect to x is of order

1 ∧ (2 − d
2) for fixed temporal step length, and with respect to t is of order 1 − d

4 for

fixed spacial step length. We now test this statement by the following examples.

Example 5.1. Consider Eq. (1.1) with d = 1, T = 1, u0(x) = sin(πx), υ0(x) =
sin(2πx), f(t, x, u) = 1 + cos(t) + sin(x) + u+ arctan(u), and λk = 1, (k = 1, 2, . . .).

Here, the exact solution u is approximated by the explicit difference method (4.1)

with a very small step size, ∆x = 1
nexact

= 2−8 and ∆t = 1
mexact

= 2−9. The expected

values are approximated by computing averages over M = 100 times.
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Figure 1: l2-convergence for Example 5.1 with respect to t and x.

First, we fix n = 28 and let m changes from 23 to 27. The MATLAB command loglog

plots our approximation to (E| 1
n

∑n−1
k=1 |u(1, xk)− unm,n(1, xk)|2|)

1

2 against ∆t on a log-

log scale. This produces the asterisks connected with solid lines in the left-hand plot of

Fig. 1. A dashed line of slope 0.75 is added. We see that the slopes of the two curves

appear to match well. We test this further by assuming that

(

E

∣

∣

∣

1

n

n−1
∑

k=1

|u(1, xk)− unm,n(1, xk)|2
∣

∣

∣

)
1

2

= C(∆t)q
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for fixed sufficiently small ∆x, so that

log

(

E

∣

∣

∣

1

n

n−1
∑

k=1

|u(1, xk)− unm,n(1, xk)|2
∣

∣

∣

)
1

2

= logC + q log(∆t).

A least squares fit for logC and q producing the value q = 0.7465 with a least squares

residual of 0.1214. Hence, the computational results are consistent with the order of

convergence with respect to t equal to 0.75.

Second, we fix m = 29 and let n changes from 22 to 26. The MATLAB command

loglog plots our approximation to (E| 1
n

∑n−1
k=1 |u(1, xk)−unm,n(1, xk)|2|)

1

2 against ∆x on

a log-log scale. This produces the asterisks connected with solid lines in the right-hand

plot of Fig. 1. For a reference, a dashed line of slope 1 is added. We see that the slopes

of the two curves appear to match well. As the case for ∆t, a least squares fit for logC
and q producing the value q = 0.9905 with a least squares residual of 0.01011. Hence,

the computational results are consistent with the order of convergence with respect to

x equal to 1.0.

Example 5.2. Consider Eq. (1.1) with d = 1, T = 1, u0(x) = sin(πx), υ0(x) =
sin(2πx), f = 0, and λk = 1

k
, (k = 1, 2, . . .).

Since f = 0 and the initial conditions are smooth, by Theorem 4.2, the rate of

convergence in l2 of the difference scheme with respect to x is of order 1∧(2− d
2+

λ
2 ) = 1

for fixed temporal step length, and with respect to t is of order 1 ∧ (1 − d
4 + λ

4 ) = 1 for

fixed spacial step length.

Here, the exact solution u is approximated by the explicit difference method (4.1)

with a very small step size, ∆x = 1
nexact

= 2−9 and ∆t = 1
mexact

= 2−10. The expected

values are approximated by computing averages over M = 100 times.
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Figure 2: l2-convergence for Example 5.2 with respect to t and x.

First, we fix n = 29 and let m changes from 23 to 28. The MATLAB command loglog

plots our approximation to (E| 1
n

∑n−1
k=1 |u(1, xk) − unm,n(1, xk)|2|)

1

2 against ∆t on a log-

log scale. This produces the asterisks connected with solid lines in the left-hand plot
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of Fig. 2. A dashed line of slope 1 is added. We see that the slopes of the two curves

appear to match well. We test this further by assuming that

(

E

∣

∣

∣

1

n

n−1
∑

k=1

|u(1, xk)− unm,n(1, xk)|2
∣

∣

∣

)
1

2

= C(∆t)q

for fixed sufficiently small ∆x, so that

log

(

E

∣

∣

∣

1

n

n−1
∑

k=1

|u(1, xk)− unm,n(1, xk)|2
∣

∣

∣

)
1

2

= logC + q log(∆t).

A least squares fit for logC and q producing the value q = 1.0009 with a least squares

residual of 0.3141. Hence, the computational results are consistent with the order of

convergence with respect to t equal to 1.

Second, we fix m = 210 and let n changes from 22 to 26. The MATLAB command

loglog plots our approximation to (E| 1
n

∑n−1
k=1 |u(1, xk)− unm,n(1, xk)|2|)

1

2 against ∆x on

a log-log scale. This produces the asterisks connected with solid lines in the right-hand

plot of Fig. 2. For a reference, a dashed line of slope 1 is added. We see that the slopes

of the two curves appear to match well. As the case for ∆t, a least squares fit for logC
and q producing the value q = 0.9960 with a least squares residual of 0.0067. Hence,

the computational results are consistent with the order of convergence with respect to

x equal to 1.0.

6. Conclusions

An explicit difference method for stochastic elastic equations driven by infinite di-

mensional noise are investigated. Our main results Theorem 4.2 showed that for suffi-

ciently smooth initial conditions, the rate of convergence of the difference scheme with

respect to x is of order 1 ∧ (2− d
2), while with respect to t is of order 1− d

4 . Numerical

experiments showed that the theoretical analyses for the order of convergence were

correct and the methods were computationally feasible. In this paper we only studied

the case of additive noise. We will investigate the case of multiplicative noise in our

future works.

Acknowledgments The authors appreciate the handling editor and anonymous re-

viewers for their valuable comments to improve this paper. This research was sup-

ported by the Innovation Foundation of BUAA for PhD Graduates and the National

Natural Science Foundation of China under grant 61271010.

References

[1] E. J. ALLEN, S. J. NOVOSEL, AND Z. ZHANG, Finite element and difference approximation

of some linear stochastic partical differential equations, Stoch. Stoch. Rep., vol. 64 (1998),

pp. 117–142.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.y14002
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:06:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.y14002
https://www.cambridge.org/core


Difference Approximation of Stochastic Elastic Equation 145

[2] V. BALLY AND D. TALAY, The law of the Euler scheme for stochastic differential equations. I.

Convergence rate of the distribution function, Probab. Theory Relat. Field., vol. 104 (1996),

pp. 43–60.
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[15] I. GYÖNGY AND T. MART´iNEZ, On numerical solution of stochastic partial differential equa-

tions of elliptic type, Stochatics, vol. 78 (2006), pp. 213–231.

[16] A. JENTZEN AND P. E. KLOEDEN, The numerical approximation of stochastic partical differ-

ential equations, Milan J. Math., vol. 77 (2009), pp. 205–244.
[17] J. U. KIM, On a stochatic plate equation, Appl. Math. Optim., vol. 44 (2001), pp. 33–48.

[18] P. KLOEDEN AND E. PLATEN, Numerical Solution of Stochastic Differential Equations,

Springer-Verlag, Berlin, 1992.
[19] P. KLOEDEN, E. PLATEN, AND N. HOFFMANN, Extrapolation methods for the weak approxi-
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