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Abstract. In a series of papers, Chen [4–6] developed some efficient algorithms for

computing the maximal eigenpairs for tridiagonal matrices. The key idea is to explicitly

construct effective initials for the maximal eigenpairs and also to employ a self-closed

iterative algorithm. In this paper, we extend Chen’s algorithm to deal with large scale

tridiagonal matrices with super-/sub-diagonal elements. By using appropriate scalings

and by optimizing numerical complexity, we make the computational cost for each iter-

ation to be O (N). Moreover, to obtain accurate approximations for the maximal eigen-

pairs, the total number of iterations is found to be independent of the matrix size, i.e.,

O (1) number of iterations. Consequently, the total cost for computing the maximal

eigenpairs is O (N). The effectiveness of the proposed algorithm is demonstrated by

numerical experiments.
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1. Introduction

This paper is concerned with computing the maximal eigenpairs of tridiagonal matri-

ces, aiming at an O (N) complexity for a matrix of size N × N . The eigenpair here means

the twins consist of eigenvalue and its eigenvector, and the maximal eigenpair indicates

the largest eigenvalue and the corresponding eigenvector. The problem of computing the

maximal eigenpairs has been a classical subject treated in most books of numerical anal-

ysis. The methods for this problem that are discussed most commonly are the power

method, the inverse method, the Rayleigh quotient method, and some hybrid method, see,

e.g., [1, 16, 17]. Finding the largest eigenpairs has many applications in signal process-

ing, control, and recent development of Google’s PageRank algorithm. On the other hand,
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numerous methods exist for the numerical computation of the eigenvalues of a real tridiag-

onal matrix to high accuracy. It is well known that a transformation that reduces a general

matrix to Hessenberg form will reduce a Hermitian matrix to tridiagonal form. So, many

eigenvalue algorithms, when applied to a Hermitian matrix, reduce the input Hermitian

matrix to tridiagonal form as a first step. On the computational side, much efforts have

been made to deal with symmetric tridiagonal cases, see, e.g., [2,14,15], typically requir-

ing O (N2) operations [11], although fast algorithms exist which require O (N ln N) [7].

In [4], an efficient algorithm was introduced to compute the maximal eigenpair of the

tridiagonal matrices with positive sub-diagonal elements. The key contribution in [4] is

the explicit construction of the initial values which makes the relevant iterative algorithms

unexpectedly efficient. In a following-up article [5], Chen proposed two global algorithms

for computing the maximal eigenpair in a rather general setup, including a class of real

(with some negative off-diagonal elements) or complex matrices.

The main idea of this work is from [5] which gives elegant formulas to approximate

the largest eigenpairs in an iterative manner. It is found that for computing large scale

matrices his work needs some computational polishing since possible overflows may oc-

cur when the matrix size becomes very large. The main contributions of this work is to

introduce appropriate scalings to reduce the numerical instability. To make the algorithm

more attractive, we also take care of the numerical complexity so that the best possible

O (N) operations can be achieved. For nonsymmetric tridiagonal matrices, we introduce

a diagonal similarity transformation to convert them into symmetric ones. Note that this

symmetrization procedure can be implemented with O (N) operations.

One application of the fast algorithm developed in this work is to compute the largest

eigenpairs of the tridiagonal random matrices. In probability theory and mathematical

physics, a random matrix is a matrix-valued random variable, which in some cases share

the same eigenvalues with certain tridiagonal matrices. We can take an example of the

Gaussian Unitary Ensemble (GUE) which is defined as the n × n Hermitian matrices X ,

where the diagonal elements x j j and the upper triangular elements x jk = u jk + iv jk are

independent Gaussians with zero-mean. To compute the eigenpairs of X the main problem

is due to the computational requirements and the memory requirements which grow fast

with N . As pointed out in [9,10] computing all the eigenvalues of a full Hermitian matrix

requires a computing time proportional to N3. This means that it will take many days to

create a smooth eigenvalue histogram by simulation, even for relatively small values of

N , say N = 500. To improve upon this situation, another matrix can be studied that has

the same eigenvalue distribution as X above. In [8], it was shown that this is true for the

following symmetric matrix when β = 2:

Hβ ∼
1

2





















N(0,2) χ(n−1)β

χ(n−1)β N(0,2) χ(n−2)β

χ(n−2)β N(0,2) χ(n−3)β

. . .
. . .

. . .

χ2β N(0,2) χβ
χβ N(0,2)





















.
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This matrix has a tridiagonal sparsity structure, and only 2N double-precision numbers

are required to store an instance of it. The time for computing the largest eigenvalue is

proportional to N , either using Krylov subspace based methods or the method of bisection.

However, these methods are of first-order rate of convergence, and need long computa-

tional time if higher accuracy (say 10−8) is required. The method proposed in Chen [4,5]

and the present work can produce highly accurate largest eigenpair with much less com-

putational time.

2. Chen’s algorithm

Consider an (N + 1)× (N + 1) square matrix A= (ai j) satisfying ai j = 0 for |i− j|> 1.

By using a shift Q := A−mI , where I is the (N + 1)× (N + 1) identity matrix and

m= max
0≤i≤N

N
∑

j=1

ai, j, (2.1)

we may assume that

Q =

















−(b0+ c0) b0 0 0 · · ·
a1 −(a1+ b1+ c1) b1 0 · · ·
0 a2 −(a2+ b2 + c2) b2 · · ·
...

...
...

. . .
...

0 0 0 aN −(aN + cN )

















, (2.2)

where ai, bi > 0, ci ≥ 0 but c j 6≡ 0.

Define, for 1≤ n≤ N ,

µ0 = 1, µn = µn−1

bn−1

an

, (2.3a)

r0 = 1+
c0

b0

, rn = 1+
an+ cn

bn

− an

bnrn−1

, (2.3b)

h0 = 1, hn = hn−1rn−1. (2.3c)

Furthermore, define

φn =

N
∑

k=n

1

hkhk+1µk bk

, 0≤ n≤ N (2.4)

with

hN+1 = cN hN + aN (hN − hN−1), bN = 1.

Theorem 2.1. ([4])For a given tridiagonal matrix A, define m, (ai, bi , ci) as in (2.1)-(2.2).

Set

ṽ0(i) = hi

p

φi , 0≤ i ≤ N ; v0 =
ṽ0

p

ṽ∗
0
ṽ0

, (2.5)
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where hi,φi are defined by (2.3a)-(2.4). Furthermore, let

z0 =
1

δ0

; δ0 = max
0≤n≤N







p

φn

n
∑

k=0

µkh2
k

p

φk +
1
p

φn

N
∑

j=n+1

µ jh
2
jφ

3/2
j





 . (2.6)

With the initial values v0 and shift δ0, we perform the shifted inverse power method on matrix

Q given in (2.2), which produces a vector sequence of {vk} and associated Rayleigh quotient

{zk}. Then m− zk converges to the largest eigenvalue of A and vk converges to the correspond-

ing eigenvector.

Although the above theorem gives a useful initial eigenpair approximation, however,

using the inverse iteration in general requires many iterations. This in turn slows down the

convergence of the computation. To improve this, a more powerful (robust and accurate)

method was introduced in [5]. First, we take the similarity transformation on Q using the

diagonal matrix Diag(hi), whose main diagonal is by the vector h, i.e.,

Q̃ = Diag(hi)
−1QDiag(hi). (2.7)

It is easy to check that Q̃ is of the following form

Q̃ =

















− b̃0 b̃0 0 0 · · ·
ã1 −(ã1+ b̃1) b̃1 0 · · ·
0 ã2 −(ã2+ b̃2) b̃2 · · ·
...

...
...

. . .
...

0 0 0 ãN −(ãN + b̃N )

















, (2.8)

where ãi, b̃i > 0. We then define

ν0 = 1, νn = νn−1

b̃n−1

ãn

, 1≤ n≤ N , (2.9a)

ϕn =

N
∑

k=n

1

νk b̃k

, 0≤ n≤ N . (2.9b)

Similar as before, we define

δ̃0 = max
0≤k≤N







p
ϕk

k
∑

i=0

νi

p
ϕi +

1
p
ϕk

N
∑

j=k+1

ν jϕ
3/2
j






. (2.10)

With the above preparations, we are now ready to state Chen’s algorithm:

Note the key contribution of the above algorithm is the use of the iteration (2.12),

which was first introduced in [5].
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Algorithm 2.1 Chen’s Algorithm.

Step 1 Choose the initial eigenpair using (2.9b) and (2.10): ω(0) =
p
ϕ,

v(0) =
ω(0)

‖ω(0)‖ν ,2

, z(0) =
1

δ̃0

.

Step 2 For n= 1,2, · · · , solve the linear equation

�

− Q̃− z(n−1) I
�

ω = v(n−1), (2.11)

and then define v(n) =ω/‖ω‖ν ,2.

Step 3 Update z(n) = 1/δ̃n with

δ̃n = max
0≤k≤N

1

v
(n)

k





ϕk

k
∑

i=0

νi v
(n)

i
+

N
∑

j=k+1

ν jϕ j v
(n)

j





 , (2.12)

until
�

�z(n) − z(n−1)
�

� is smaller than some given tolerence.

Step 4 Output the largest eigenpair as ρ(A) = m− z(n), g = Diag(hi)v
(n).

3. Practical issues relevant to large size

We begin by discussing the total number of operations used in Chen’s Algorithm intro-

duced in the last section. It is aimed to reduce the complexity of computing to O (N) in

total.

First, with the recursive formula (2.3b) and (2.3c), it only requires 2N operations to

get the sequences r and h. After that, for the similarity transformation (2.7), we know

Q̃ i j = Q i j

h j

hi

.

Note that Q is a tridiagonal matrix. Then the transformation only needs to calculate, for

0≤ i < N ,

Q̃ i,i+1 = Q i,i+1

hi+1

hi

= Q i,i+1ri , Q̃ i+1,i = Q i+1,i

hi

hi+1

=
Q i+1,i

ri

, (3.1)

which also consumes 2N operations.

The second part is to prepare ν and ϕ given by (2.9a)-(2.9b). Obviously, it takes N

operations to compute ν . For ϕ, using the backward formula

ϕn = ϕn+1 +
1

νn b̃n

(3.2)

yields N operations to obtain ϕ. We further employ Thomas algorithm for solving the

tridiagonal system (2.11), then an additional O (N) operations is required.



882 T. Tang and J. Yang

3.1. Scaling

In this part, we will discuss a scaling issue relevant to the above algorithm. Consider a

case that b̃ j ≥ 4 and 0< ã j ≤ 2 for all j. In this cae, it can be verified that νn ≥ 4n/2n = 2n.

On the other hand,

ϕn =

N
∑

k=n

1

νk b̃k

≤
N
∑

k=n

1

2k4
≤ 1

2n+1
,

which is obviously too small for large values of n.

Since νn is too large and ϕn is too small, we need to avoid using them explicitly in the

formulas. This can be done by introducing some proper scaling factors. To this end, we

first observe that the growth rate of νn is almost the same as the decay rate of ϕn. Hence,

we introduce a new variable

Wn = νnϕn, 0≤ n≤ N . (3.3)

Observe

WN = µNϕN =
1

b̃N

. (3.4)

For 0≤ n< N − 1, using the backward formula (3.2) gives

Wn =νn

�

ϕn+1 +
1

νn b̃n

�

=
1

b̃n

+
νn

νn+1

�

νn+1ϕn+1

�

=
1

b̃n

+
ãn+1

b̃n

Wn+1. (3.5)

The following ratio will be used in the computations in the following subsection:

Tn =
ϕn+1

ϕn

, 0≤ n≤ N − 1. (3.6)

It is easy to verify that when 0≤ n< N − 1

Tn =
Wn+1

Wn

νn

νn+1

=
ãn+1

b̃n

Wn+1

Wn

. (3.7)

3.2. O (N) complexity

Note that the most expensive part in the computations is to obtain δ̃k using (2.12).

Technically, if it is computed in a straightforward manner, i.e., term by term using (2.10)

and (2.12), then the resulting complexity will be O (N2). Below we will demonstrate how

to obtain δk using O (N) operations, which is the core of complexity reduction.
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Observe that each term in computing δk ends up with evaluating the following two

sequences:

αn = xn

n
∑

k=0

yk, βn = pn

N
∑

k=n+1

qk.

The basic idea is to find recursive formula for the series {αn} and {βn} recursively. For

{αn}, we have

αn+1 =xn+1

n+1
∑

k=0

yk

=xn+1 yn+1 +
xn+1

xn

 

xn

n
∑

k=0

yk

!

=xn+1 yn+1 +
xn+1

xn

αn. (3.8)

Similarly, we have

βn = pnqn+1 +
pn

pn+1

βn+1. (3.9)

Using the forward recursive formula for {αn} and backward recursive formula for {βn}
needs {αn} and {βn} with O(N) operations. Then another N operations give αn + βn, 0 ≤
n≤ N . By choosing the maximum value from αn + βn yields δk.

If Chen’s Algorithm converges within a constant number of iterations (which will be

demonstrated numerically in the next section), then the overall complexity is O (N).
It is seen from Sect. 3.1 that the scaled variables W and T are now introduced. Con-

sequently, we need to reformulate δk in (2.12) using W and T . We follow basic idea of

deriving the recursive formulas for α in (3.8) and β in (3.9). In δ1 (2.10), we denote the

former part as η(1)n and the latter part as η(2)n , i.e.,

η(1)n =
p
ϕn

n
∑

i=0

νi

p
ϕi, η(2)n =

1
p
ϕn

N
∑

j=n+1

ν jϕ
3/2
j

. (3.10)

First η
(1)

0
=W0, and for n≥ 0

η
(1)

n+1
=Wn+1 +

p

ϕn+1

n
∑

i=0

νi

p
ϕi

=Wn+1 +

r

ϕn+1

ϕn

 

p
ϕn

n
∑

i=0

νi

p
ϕi

!

=Wn+1 +
p

Tnη
(1)
n .

Similarly, for η(2) when 0≤ n< N − 1 we have

η(2)n = Tn

�

η
(2)
n+1 +Wn+1

�

,
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with η
(2)
N = 0. Note that

δ̃1 = max
0≤k≤N

�

η
(1)

k
+η

(2)

k

�

.

To evaluate δ̃n (n> 1), we define

ξ
(1)

k
=
ϕk

v
(n)

k

k
∑

i=0

νi v
(n)

i
, ξ

(2)

k
=

1

v
(n)

k

N
∑

j=k+1

ν jϕ j v
(n)

j
. (3.11)

It can be easily verified that for k ≥ 0: Clearly, ξ1
0 =W0 and for k ≥ 0

ξ
(1)

k+1
=

v
(n)

k

v
(n)

k+1

Tkξ
(1)

k
+Wk+1, ξ

(2)

k
=

v
(n)

k+1

v
(n)

k

(ξ
(2)

k+1
+Wk+1) (3.12)

with ξ
(1)
0 =W0 and ξ

(2)
N = 0. Thus, it follows from (2.12) that

δn = max
0≤k≤N

�

ξ
(1)

k
+ ξ

(2)

k

�

.

Note that in the reformulation of δn another sequence v
(n)

k+1
/v
(n)

k
is introduced. It is expect-

ed that for smooth variation of the eigen-approximation v(n) this ratio should be bounded

uniformly.

3.3. Non-symmetric matrix

Our numerical experiments demonstrated that the algorithm described at the end of

Section 2 together with above two subsections work well for a class of large size symmetric

tridiagonal matrices. However, for non-symmetric case, the result is quite unsatisfactory.

The main reason can be seen from the following simple example. Consider the following

simple non-symmetric tridiagonal matrix:

















c b 0 0 · · ·
a c b 0 · · ·
0 a c b · · ·
...

...
...

. . .
...

0 0 · · · a c

















N×N

.

It is known that the eigenvalue of the above matrix is given by, (see, e.g. [12]),

λ j = c + 2
p

ab cos
π j

N + 1
, 1≤ j ≤ N ,

and the associated eigenvector is given as

~v j =

�

�

a

b

� 1

2

sin

�

jπ

N + 1

�

,

�

a

b

� 2

2

sin

�

2 jπ

N + 1

�

, · · · ,
�

a

b

� N

2

sin

�

N jπ

N + 1

�
�T

.
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Note that each element of the eigenvector has an exponential factor. Consider the case

that a/b > 1. Then most of the elements will blow up if N is large. Likewise, in the case

0 < a/b < 1, most of the elements will be recognized by machine as 0, which also causes

numerical difficulty.

To fix the above problem, we introduce a well-known diagonal scaling technique given

in many textbook of Linear Algebra, which is a diagonal similarity transformation to con-

vert the non-symmetric tridiagonal matrix into a symmetric one. More precisely, consider

a general tridiagonal matrix with positive off-diagonal elements:

A=





















c1 b2 0 0 · · ·
a2 c2 b3 0 · · ·
0 a3 c3 b4 · · ·
...

...
...

. . .
...

0 · · · aN−1 cN−1 bN

0 0 · · · aN cN





















N×N

. (3.13)

Define the diagonal matrix P in form of

P = diag



1,

r

b2

a2

,

È

b2 b3

a2a3

, · · · ,
È

b2 b3 · · · bN

a2a3 · · ·aN



 . (3.14)

Thus,

B = PAP−1 =























c1

p

a2 b2 0 0 · · ·
p

a2 b2 c2

p

a3 b3 0 · · ·
0

p

a3 b3 c3

p

a4 b4 · · ·
...

...
...

. . .
...

0 · · ·
p

aN−1 bN−1 cN−1

p

aN bN

0 0 · · ·
p

aN bN cN























N×N

. (3.15)

This end up with a symmetric matrix. Obviously, the total computation of this similarity

transformation is also O (N).
Note the above similarity transformation works for A with positive off-diagonal ele-

ments, or in a loose sense, by only requiring a j · b j > 0,2≤ j ≤ N .

4. Numerical experiments

In this section, we will take several numerical examples to demonstrate the perfor-

mance of Chen’s Algorithm with proper scalings introduced above.
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Example 4.1. We start with a simple symmetric tridiagonal matrix:

SN−1 =

















4 1 0 0 · · ·
1 4 1 0 · · ·
0 1 4 1 · · ·
...

...
...

. . .
...

0 0 0 1 4

















N×N

. (4.1)

As shown previously the eigenvalues of the above matrix is

λ j = 4+ 2 cos
π j

N + 1
, 1≤ j ≤ N .

The largest eigenvalue is

λN = 4+ 2 cos
π

N + 1
→ 6 as N →∞.

In this example, we set m = ‖A‖∞ = 6. Thus, define

QN = A−mI =

















−2 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·
...

...
...

. . .
...

0 0 0 1 −2

















. (4.2)

Hence we have ai = bi = 1 and ci = 0 except c0 = cN = 1. It can be easily verified that

those numerical parameters given in Sect. 2 can be evaluated analytically. For example,

µ j ≡ 1,

r0 = 2, h0 = 1; rn =
n+ 2

n+ 1
, hn = n+ 1, 1≤ n≤ N .

This gives that
hi

h j

=
i + 1

j+ 1
.

The numerical result is shown in Table 1. It is observed that the initial guess is very close

to the largest eigenvalue, which leads to the desired eigenvalue with only 2 or 3 iterations.

It is also interesting to see that the larger the matrix size the faster the convergence for the

maximal value.

Example 4.2. Consider the tridiagonal matrix in Gauss-Laguerre quadrature [13]

GN+1 =

















α0 β0 0 0 · · ·
β0 α1 β1 0 · · ·
0 β1 α2 β2 · · ·
...

...
...

. . .
...

0 0 0 βN−1 αN

















, (4.3)
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Table 1: (Example 4.1) Numerical performance of rescaled algorithm for Example 4.1.

N 102 103 104

λmax 5.999032564583976 5.999990150113323 5.999999901323693

z0 5.999132539362944 5.999991169380220 5.999999911534810

z1 5.999034149120376 5.999990166273074 5.999999901485584

z2 5.999032564938140 5.999990150116939 5.999999901323729

N
102102

103

104 Largest eigenvalue

N
200 400 600 800 1000

10-16

10-15

10-14

10-13

10-12

10-11

10-10 Relative Errors

N
200 400 600 800 1000

6

7

8
Iterations

Figure 1: (Example 4.2) the largest eigenvalue in Gauss-Laguerre quadrature versus the matrix size N

(left), the corresponding relative errors (middle), and the total number of iterations (right).

where

αi = 2i+ 1+α, βi =
p

(i + 1)(i+ 1+α), i ≥ 0,

and α is chosen as α= −0.75.

In Fig. 1, we display the growth of the largest eigenvalue with respect to the matrix size

N . It is noticed that the eigenvalue grows almost quadratically with respect to N . By use of

the method given by Chen [5] together with scaling and recurrence techniques proposed

in Section 3, the corresponding approximation errors can reach machine accuracy after 8

iterations for N = 1000.

We further increase the value of N to 10,000. The rescaled variables W and T and

the original variables µ and ϕ (with logarithmic scale) are shown in Fig. 2. It is seen that

the original variable µ grows exponentially and ϕ decays exponentially, and the rescaled

variables are well behaved.

In Table 2, we present numerical results for Example 4.2 with N = 10,000 using Chen

[5] together with scaling and recurrence techniques proposed in Section 3. It is observed

that very accurate approximations are obtained after 10 iterations. In fact, as the largest

eigenvalue is of order 104 it takes a couple of more iterations for this case.
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Figure 2: (Example 4.2) The rescaled variables W and T versus the matrix size N (left) and the original
variables log(µ) and log(ϕ) (right).

Table 2: (Example 4.2) Numerical approximation for the largest eigenvalue of the Gauss-Laguerre
quadrature problem with N = 10000. The exact value of the largest eigenvalue is λ

max
≈

3.986965228013262 ∗ 104.

# iteration Numerical l∞ Absolute Error Relative Error

0 3.988534579649927e+04

1 3.988534579649927e+04 15.69 3.936e-04

2 3.988349568611173e+04 13.84 3.472e-04

3 3.988099826354650e+04 11.35 2.846e-04

4 3.987815640126808e+04 8.504 2.133e-04

5 3.987522432114032e+04 5.572 1.398e-04

6 3.987253111806946e+04 2.879 7.221e-05

7 3.987056788545732e+04 9.1561e-01 2.296e-05

8 3.986975020621370e+04 9.793e-02 2.456e-06

9 3.986965323980745e+04 9.597e-04 2.407e-08

10 3.986965228020606e+04 7.344e-08 1.842e-12

Example 4.3. Consider a random matrix taken from [10]

H =
1

2
p

n





















N(0,2) χn−2

χn−2 N(0,2) χn−3

χn−3 N(0,2) χn−4

. . .
. . .

. . .

χn−k N(0,2) χn−k−1

χn−k−1 N(0,2)





















,

where N(0,2) is a zeros-mean Gaussian with variance 2, and χr is the square-root of a

χ2-distributed number with r degrees of freedom.

In the first part of this example, a size of 103 × 103 matrix is considered, i.e., n = 106

and k = 1000. In Fig. 3, we first show the diagonal elements and the distribution of

eigenvalues, where it is observed that all off-diagonal elements are positive and uniformly
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Figure 3: (Example 4.3) Elements and the distribution of eigenvalues.
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Figure 4: (Example 4.3) Comparison of computed eigenvector and the reference one for left: N = 1000
and right: N = 10000.

bounded. It is further seen that the main diagonal are close to zero, and the two off-

diagonals are close to 0.5. The eigenvalues are continuously distributed over (−1,1).

Table 3 presents the numerical approximations and the errors for the largest eigenvalue

approximation, with not only N = 103 but also N = 104 (in the latter case n = 109 and

k = 104). In both cases, machine accuracy is achieved after 4 or 5 iterations.

Fig. 4 shows the comparison of computed eigenvector and the reference one (which

was obtained by MATLAB software), for both cases N = 103 and 104. We list two observa-

tions below. First, the numerical accuracy is very satisfactory, and secondly, the magnitude

of the smallest component of the eigenvector is very small.

All three previous examples test symmetric matrix. Next we consider a non-symmetric

tridiagonal matrice.



890 T. Tang and J. Yang

Table 3: (Example 4.3) The approximation of the largest eigenvalue, top: N = 103 and the exact
λ

max
= 0.999978982089438, and bottom: N = 10000 and λ

max
= 0.999998519368622.

Case N = 1000

# iteration Numerical Error

0 1.000184076339609 2.050942501710118e-04

1 1.000014529642320 3.554755288270872e-05

2 0.999983838833936 4.856744498682453e-06

3 0.999979272929260 2.908398220036190e-07

4 0.999978983270231 1.180793351984732e-09

5 0.999978982089456 1.787459069646502e-14

Case N = 10,000

# iteration Numerical Error

0 1.000002323023300 3.803654677891899e-06

1 0.999999120257260 6.008886387354195e-07

2 0.999998623640710 1.042720878530190e-07

3 0.999998524745736 5.377114309368380e-09

4 0.999998519385876 1.725475318181680e-11

Example 4.4. We consider a simple non-symmetric tridiagonal matrix:

SN−1 =

















4 2 0 0 · · ·
1 4 2 0 · · ·
0 1 4 2 · · ·
...

...
...

. . .
...

0 0 0 1 4

















N×N

. (4.4)

As shown previously, the eigenvalues of the above matrix is

λ j = 4+ 2
p

2 cos
π j

N + 1
, 1≤ j ≤ N ,

and the associated eigenvector is given as

~v j =

 

�

1

2

� 1

2

sin

�

jπ

N + 1

�

,

�

1

2

� 2

2

sin

�

2 jπ

N + 1

�

, · · · ,
�

1

2

� N

2

sin

�

N jπ

N + 1

�

!T

. (4.5)

Thus, the largest eigenvalue is

λN = 4+ 2
p

2cos
π

N + 1
→ 4+ 2

p
2 as N →∞.
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Table 4: (Example 4.4) Numerical performance of rescaled algorithm.

N 20 200 2000

λmax 6.796835930680340 6.828081652004034 6.828423638801624

z0 6.817202941350335 6.828427124746190 6.828427124746190

z1 6.798773435375877 6.828146565080354 6.828427124746191

z2 6.796852823590889 6.828083591205758 6.828425005492695

z3 6.796835931884297 6.828081653523198 6.828423852767121

z4 6.828423644005617

In this example, we set m= ‖A‖∞ = 7. Thus, define

QN = A−mI =

















−3 2 0 0 · · ·
1 −3 2 0 · · ·
0 1 −3 2 · · ·
...

...
...

. . .
...

0 0 0 1 −3

















, (4.6)

which is still a non-symmetric matrix.

It is seen from (4.5) that the components of the eigenvector decay exponentially. The

resulting difficult poses numerical challenges even for MATLAB. To see this, we take the

MATLAB function eig(full(A)) to get the maximal eigenpair, with N = 100 and N = 1000

respectively. The comparison for the first eigenvector (which corresponds to the largest

eigenvalue) is presented in Fig. 5. It is seen that when N is small, both MATLAB and

the proposed algorithm provide accurate approximations. However, for larger N , the one

given by MATLAB is far away from the exact one, especially for large index of components.

On the other hand, our algorithm still provides accurate approximation. This is further

confirmed by plotting the relative errors in Fig. 6, in which even for the last component

(which is ∼ 10−150) about 10−6 relative error is achieved.

In the second part, we still aim to show the performance for the approximation of the

largest eigenvalue. We vary N as 20, 200, and 2000. The numerical result is shown in

Table 4. It is seen that the initial guess is very close to the largest eigenvalue, which leads

to the desired eigenvalue super efficiently, only 3 or 4 iterations.

Note the above computations for Example 4.4 have not used the similarity transfor-

mation. Numerical experiments show that for this non-symmetric case the matrix size has

to be of order of O (103). In other words, if we choose N = 10,000, then convergence

will be failed. As expected, this situation can be improved if the similarity transformation

(3.14)-(3.15) is used. In fact, as seen from Table 5, with 103 ≤ N ≤ 105 fast convergence

is obtained. It is even observed that the initial approximation can give 10 effective digits

for the very large size case N = 105.
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Figure 5: (Example 4.4) Comparisons of the maximal eigenvector obtained by using the revised algorithm
and the MATLAB with the exact one given by (4.5), for N = 100 (upper) and N = 1000 (lower).
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1060

1080

10100 Matlab
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10-14

10-12

10-10

10-8

10-6 fast Algo.

Figure 6: (Example 4.4) Component-wise relative-error for the approximated maximal eigenvector ob-
tained by using sc MATLAB (left) and the revised method (right), for N = 1000.

5. Concluding remarks

In this work, we focus on numerical approximation of maximal eigenpair of tridiagonal

matrices with positive super-/sub-diagonal elements. The starting algorithm is proposed

by Chen in [4], which offers an accurate initial guess of the desired eigenpair. This efficient
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Table 5: (Example 4.4) Numerical performance of rescaled algorithm with similarity transformation.

N 103 104 105

λmax 6.828413194902865 6.828426985196819 6.828427123350446

z0 6.828414636367414 6.828426999637519 6.828427123494879

z1 6.828413217756257 6.828426985425766

z2 6.828413194907978

initial guess is equipped with a modified inverse iteration method. A more effective self-

closed iterative algorithm without using the traditional inverse algorithms was proposed

by Chen [5]. Note that both [4, 5] are proposed for medium size matrices, some efforts

handling stability and complexity have to be made in order to solve large size matrix

problems. In this work, we reduce the computational complexity to O (N) operations, and

we also introduce two rescaling variables to overcome the overflow/underflow problem.

Moreover, a diagonal similarity transformation is used to make the computation for non-

symmetric matrices much more effective.

It is pointed out that due to the use of the self-closed iterative algorithm of Chen [5],

the total number of iterations used in our computation is found less than 10. By testing

1000 randomly generated tridiagonal matrices, about 5–8 iterations are sufficient to make

the relative errors below 10−10.

We close this work by noting a very recent work of Chen [6] which applying [5] to

block tridiagonal and Toeplitz matrix cases. It is natural to extend the present work to

more general cases including these applications.
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