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Abstract. In this paper, we study exact controllability and feedback stabilization for

the distributed parameter control system described by high-order KdV equation posed

on a periodic domain T with an internal control acting on an arbitrary small nonempty

subdomain ω of T. On one hand, we show that the distributed parameter control

system is locally exactly controllable with the help of Bourgain smoothing effect; on

the other hand, we prove that the feedback system is locally exponentially stable with

an arbitrarily large decay rate when Slemrod’s feedback input is chosen.
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1 Introduction

In this paper, we will investigate the following higher-order dispersive equation posed

on the periodic domain T (a unit circle in the plane) from the control point of view:

∂tu+(−1)l+1∂2l+1
x u+u∂xu= f , x∈T, t∈R, (1.1)
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where f is the control input supported in a given open set ω ⊂T. The assumption on

the periodic domain is equivalent to impose the periodic boundary conditions over the

interval (0,2π):

∂n
xu(0,t)=∂n

xu(2π,t), n=0, 1, ··· , 2l.

The following two fundamental control theory problems will be discussed:

Exact controllability: For the given initial state u0 and terminal state u1 belong in a certain

space, can one find an appropriate control input f such that equation (1.1) admits a solution u

which satisfies

u|t=0=u0, u|t=T =u1?

Feedback stabilization: Is there a feedback control law: f =Ku such that the resulting closed-

loop system

∂tu+(−1)l+1∂2l+1
x u+u∂xu=Ku, x∈T, t∈R

is exponentially stable as t→∞?

Since for the solution of (1.1) satisfies

d

dt

∫

T

u(x,t)dx=
∫

T

f (x,t)dx,

the mass will be conserved provided that

∫

T

f (x,t)dx=0.

For the purpose of mass conservation, the control input as follows is chosen (see [5]):

f (x,t)= [Gh](x,t) := g(x)

(
h(x,t)−

∫

T

g(y)h(y,t)dy

)
(1.2)

where g(x) is a given nonnegative smooth function such that {g>0}=ω⊂T and

2π[g]=
∫

T

g(x)dx=1.

With h as a new control input, the resulting control system turns to be

∂tu+(−1)l+1∂2l+1
x u+u∂xu=Gh, x∈T, t∈R. (1.3)

We state the main results as follows:

Theorem 1.1 (Exact controllability). Let T>0 and s≥s0 (see Lemma 3.2) be given. Then there

exists a δ>0 such that for any u0, u1∈Hs(T) with [u0]= [u1] and

‖u0‖Hs(T)≤δ, ‖u1‖Hs(T)≤δ.
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one can find a control function h ∈ L2([0,T];Hs(T)) such that the system (1.3) has a solution

u∈C([0,T];Hs(T)) satisfying

u|t=0=u0, u|t=T =u1.

Theorem 1.2 (Feedback Stabilizability). Let s ≥ s0 and λ > 0 be given. If one chooses the

Slemrod’s feedback control Kλ (see Section 2) in the system (1.3), then the resulting close-loop

system
{

∂tu+(−1)l+1∂2l+1
x u+u∂xu=GKλu, x∈T, t∈R,

u(x,0)=u0(x), x∈T

(1.4)

is locally exponentially stable in the space Hs(T): there exists δ>0 such that for any u0∈Hs(T)

with ‖u0‖Hs(T)<δ, the corresponding solution u of (1.4) satisfies

‖u(·,t)−[u0]‖Hs(T)≤Ce−λt‖u0−[u0]‖Hs(T),

for any t>0.

When l=1, the dispersive equation

∂tu+(−1)l+1∂2l+1
x u+u∂xu=0, (1.5)

became the famous KdV equation, therefor people often call (1.5) as high-order KdV

equation [1, 2]. More information on higher-order dispersive equations can be found

in [3]. The periodic exact controllability and exponentially stability of KdV equation and

Kawahara equation are investigated by [4–6] and [7, 8] respectively.

The Cauchy problem of the general dispersive equation (1.5) has been shown well-

posed recently by Bourgain method (see [1, 2, 9]). The subtle Bourgain smoothing effect

established in [1, 2, 9] will play an indispensable role in the proofs of exactly controllable

and exponentially stability in this paper. Results on initial-boundary value problem for

(1.5) see [10–14].

Since it is time-reversible for dispersive equation, we assume t > 0 in the following

sections.

The paper is organized as follows: In Section 2, we study the associated linearized

system. We obtain the controllability of the linear open loop system in the space Hs(T)

for any s ∈ R through solving a moment problem. Then the exponentially stabilizable

with arbitrarily large decay rate is proved when the Slemrod’s feedback control input

is chosen. In Section 3, aided by Bourgain smoothing properties of linear equation, we

show the nonlinear system is locally exactly controllable in the space Hs(T) for any s≥s0

by Banach fixed point theorem. In Section 4, the nonlinear feedback system is first shown

to be globally well-posed in the space Hs(T) for any s≥ s0 and then it is shown to locally

exponentially stabilizable with arbitrarily large decay rate.
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2 Linear system

Consideration is first given to the associated linear open loop control system

∂tv+(−1)l+1∂2l+1
x v=Gh, (2.1a)

v(x,0)=v0(x), x∈T, t∈R (2.1b)

where the operator G and control input h=h(x,t) are defined in Section 1.

Let A denote the operator

Aw=(−1)l+1 d2l+1

dx2l+1
w

with the domain D(A)=H2l+1(T). It generates a strongly continuous group W(t) on the

space L2(T) and its eigenfunctions are simply the orthonormal Fourier basis functions in

L2(T),

φk(x)=
1√
2π

eikx, k=0,±1, ··· .

The corresponding eigenvalue of φk is

λk =−k2l+1i, k=0,±1,··· .

For any l∈Z, let

m(l)=#{k∈Z; λk =λl}.

Then m(l)≤2l+1 for any l and m(l)=1 if l is large enough. Moreover,

lim
|k|→∞

|λk−λk+1|=∞.

The solution v of the system (2.1) can be expressed in the form

v(x,t)=
∞

∑
k=−∞

(
eλktv0,k+

∫ t

0
eλk(t−τ)Gk[h](τ)dτ

)
φk(x), (2.2)

where v0,k and Gk[h] are the Fourier coefficients of v0 and G[h], respectively,

v0,k =(v0,φk)L2(T), Gk[h]=(Gh,φk)L2(T)=(h,Gφk)L2(T)

for k=0,±1,±2,··· . Furthermore, for given s∈R, if v0∈Hs(T) and h∈L2(0,T;Hs(T)), the

function given by (2.2) belongs to the space C([0,T];Hs(T)).

We have the following exact controllability result for the open loop control system

(2.1).
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Theorem 2.1. Let T>0 and s∈R be given. There exists a bounded linear operator

Φ : Hs(T)×Hs(T)→ L2(0,T;Hs(T))

such that for any v0, v1 ∈ Hs(T), if one chooses h = Φ(v0,vT) in (2.1), then the system (2.1)

admits a solution v∈C([0,T];Hs(T)) satisfying

v|t=0=v0, v|t=T =v1.

In the sequel we will denote by C numerical constant which maybe different from line

to line. Moreover, let

‖ f‖s :=‖ f‖Hs(T) for any f ∈Hs(T)

‖ f‖ :=‖ f‖0 .

Proof. For give v0, v1 ∈Hs(T), we need to find h∈L2(0,T;Hs(T)) such

v1(x)=
∞

∑
k=−∞

(
eλk Tv0,k+

∫ T

0
eλk(T−τ)Gk[h](τ)dτ

)
φk(x)

or
∞

∑
k=−∞

(
v1,k−e−λkTv0,k

)
φk=

∞

∑
k=−∞

∫ T

0
e−λkτGk[h](τ)dτφk(x)

which is equivalent to the moment equation:

v1,k−e−λkTv0,k =
∫ T

0
e−λkτGk[h](τ)dτ (2.3)

for k=±1,±2,··· .
If we define pk = eλkt, then P≡{pk| −∞< k<∞} will form a Riesz basis for its closed

span PT in L2(0,T). We let Q≡{qk | −∞< k<∞} be the unique dual Riesz basis for P in

PT such that ∫ T

0
qj(t)pk(t)dt=δjk, −∞< j, k<∞. (2.4)

We take the control h in (2.3) to have the form

h(x,t)=
∞

∑
j=−∞

hjqj(t)(Gφj)(x), (2.5)

where the coefficients hj are to be determined so that, among other things, the series (2.5)

is appropriately convergent. Substituting (2.5) into (2.3) yields, using the biorthogonality

(2.4), that

v1,k−e−λkTv0,k =
∞

∑
−∞

hj

∫ T

0
e−λktqj(t)

∫

T

G(Gφj)(x)φk(x)dxdt=hk

∫

T

G(Gφk)(x)φk(x)dxdt,

(2.6)
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for −∞< k<∞. As G is a self-adjoint operator in L2(T),

∫

T

G(Gφk)(x)φk(x)dxdt=‖Gφk‖2, −∞< k<∞.

We have

‖Gφk‖2=
∫

T

∣∣∣∣g(x)

(
φk(x)−

∫

T

g(s)φk(s)ds

)∣∣∣∣
2

dx

=
1

4π2

∫

T

g2(x)dx−2

∣∣∣∣
∫

T

g(x)φk(x)dx

∣∣∣∣
2

+
∫

T

g2(x)dx

∣∣∣∣
∫

T

g(x)φk(x)dx

∣∣∣∣
2

=: βk.

It is easy to see that β0 = 0 and βk 6= 0 if k 6= 0. Moreover, the familiar Lebesgue lemma

together with the second identity above shows that

lim
k→∞

βk =
∫

T

g2(x)dx 6=0.

It follows that there is a δ>0 such that

βk >δ, for k 6=0.

Setting h0 =0 and

hk =
e−λkTv1,k−v0,k

βk
, k 6=0, (2.7)

It remains to show that h defined by (2.5) and (2.7) is in L2([0,T];Hs(T)) provided that

v0, v1 ∈Hs(T). To this end, let us write

Gφk(x)=
∞

∑
k=−∞

ajkφj(x),

where

ajk =
∫

T

Gφj(x)φk(x)dx=(Gφj(x),φk(x))L2(T), −∞< j, k<∞.

Thus

h(x,t)=
∞

∑
j=−∞

∞

∑
k=−∞

hjajkqj(t)φk(x), (2.8)

and

‖h‖2
L2([0,T];Hs(T))

=
∫ T

0

∞

∑
k=−∞

〈k〉2s

∣∣∣∣
∞

∑
j=−∞

hjajkqj(t)

∣∣∣∣
2

dt=
∞

∑
k=−∞

〈k〉2s
∫ T

0

∣∣∣∣
∞

∑
j=−∞

hjajkqj(t)

∣∣∣∣
2

dt
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≤C
∞

∑
k=−∞

〈k〉2s
∞

∑
j=−∞

|hj|2|ajk |2=C
∞

∑
j=−∞

|hj |2
∞

∑
k=−∞

〈k〉2s|ajk |2,

where the constant C comes from the Riesz basis property of Q in PT. However

|aij |=(Gφj,φk)L2(T)= |(gφj,φk)L2(T)−(g,φj)L2(T)(g,φk)L2(T)|

=
∣∣∣

∞

∑
m=−∞

gm(φmφj,φk)L2(T)−
( ∞

∑
m=−∞

gm(φm,φj)L2(T)

)( ∞

∑
m=−∞

gm(φm,φk)L2(T)

)∣∣∣

=
∣∣∣ 1

2π
gk−j−gjgk

∣∣∣= 1

2π
|gk−j|+|gj||gk |,

where

g(x)=
∞

∑
j=−∞

gmφm(x).

Hence

|ajk|2≤C(|gk−j|2+|gk|2|gj|2)
and

∞

∑
k=−∞

〈k〉2s|ajk |2≤C
∞

∑
k=−∞

〈k〉2s|gk−j|2+C
∞

∑
k=−∞

〈k〉2s|gj|2|gk|2

=C
∞

∑
k=−∞

〈k+ j〉2s|gk|2+C|gj|2
∞

∑
k=−∞

〈k〉2s|gk|2.

Thus, in the case of s≥0,

∞

∑
k=−∞

〈k〉2s|ajk |2≤C
∞

∑
k=−∞

〈k〉2s〈j〉2s|gk|2+C|gj|2
∞

∑
k=−∞

〈k〉2s|gk|2

=C(〈j〉2s+|gj|2)‖g‖2
s .

We have, according to (2.7), that

‖h‖2
L2([0,T];Hs(T))≤C

[ ∞

∑
j=−∞

(〈j〉2s+|gj|2)|hj|2
]
‖g‖2

s

≤C
[ ∞

∑
j=−∞

(〈j〉2s+|gj|2)
|eλjTvj,1−vj,0|2

β2
j

]
‖g‖2

s

≤Cmax
j 6=0

|β j|−2(1+‖g‖2
0)

∞

∑
j=−∞

〈j〉2s(|vj,1|2+|vj,0|2)

≤Cmax
j 6=0

1

|β j|2
(1+‖g‖2

0)‖g‖2
s

(
‖v1‖2

s +‖v0|2s
)

.
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In the case of s<0, as for any −∞< k, j<∞,

〈j〉−2s〈k+ j〉2s ≤〈k〉−2s, 〈j〉−2s|gj|2≤‖g‖2
−s,

∞

∑
k=−∞

〈j〉−2s〈k〉2s|ajk |2≤C
∞

∑
k=−∞

〈j〉−2s〈k+ j〉2s |gk|2+C〈j〉−2s|gj|2
∞

∑
k=−∞

〈k〉2s|gk|2

≤C(1+‖g‖2
s )‖g‖2

−s

and therefore

‖h‖2
L2([0,T];Hs(T))≤C

∞

∑
j=−∞

|hj|2
∞

∑
k=−∞

〈k〉2s|ajk|2

≤C
∞

∑
j=−∞

〈j〉2s|hj|2
∞

∑
k=−∞

〈j〉−2s〈k〉2s|ajk |2

≤C(1+‖g‖2
s )‖g‖2

−s

∞

∑
j=−∞

〈j〉2s|hj|2

≤Cmax
j 6=0

1

|β j|2
(1+‖g‖2

s )‖g‖2
−s

(
‖v1‖2

s +‖v0|2s
)

.

Now we turn to consider feedback stabilization problem of the linear system (2.1).

According to [4, 7], it is possible to establish the exponential stability with decay rate as

large as one desires for the resulting closed-loop system if the Selmord feedback law is

chosen. For any λ>0, define

Lλφ=
∫ 1

0
e−2λτW(−τ)GG∗W∗(−τ)φdτ

for any φ∈Hs(T). Then, we have

Lemma 2.1. For any s≥ 0, the operator Lλ is an isomorphism from Hs(T) onto Hs(T) for all

s≥0.

Proof. See Lemma 2.4 in [4].

According to Lemma 2.1, Lλ has bounded inverse in Hs(T). Taking the control func-

tion h(x,t)=−G∗L−1
λ v(x,t), we obtain the following closed-loop system:

∂tv+(−1)l+1∂2l+1
x v=−Kλv, v(x,0)=v0(x), x∈T (2.9)

with the feedback control law

Kλv(x,t)≡−GG∗L−1
λ v(x,t).
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Proposition 2.1. Let s≥0 and λ>0 be given. Then for any v0∈Hs(T), the system (2.9) admits

a unique solution v ∈ C([0,T];Hs(T)). Moreover there exist positive constants Ms depending

only on s such that

‖v(·,t)‖s ≤Mse
−λt‖v0‖s (2.10)

for any t>0.

Proof. The existence of the solution v follows from the standard semigroup theory [15].

The decay estimate (2.10) can be proved by interpolation:

The case of s=0 follows from [16].

For s=2l+1, let w=vt. Then w solves

∂tw+(−1)l+1∂2l+1
x w=−Kλw, w(x,0)=w0(x), x∈T

where w0(x)=(−1)lv
(2l+1)
0 (x)−Kλv0(x). Thus

‖w(·,t)‖=‖vt(·,t)‖≤Ce−λt‖w0‖

for any t≥0. It then follows from

w=(−1)l∂2l+1
x v−Kλv

that

‖v(·,t)‖2l+1 ≤ e−λt‖v0‖2l+1

for any t≥0.

The case of 0< s<2l+1 follows by interpolation. The other cases of s can be proved

similarly.

3 Exact controllability

In this section, we study the exact controllability for the open loop nonlinear control

system:

∂tu+(−1)l+1∂2l+1
x u+u∂xu=Gh, u(x,0)=u0(x), x∈T, t>0. (3.1)

To apply the Bourgain smoothing effect, some technical preparations are needed. For

given b,s∈R, and a function u :T×R→R, define the quantities

||u||Xb,s
:=

(
∞

∑
k=−∞

∫

R

〈k〉2s〈τ−p(k)〉2b |û(k,τ)|2dτ

) 1
2

,
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||u||Yb,s
:=

(
∞

∑
k=−∞

(∫

R

〈k〉s 〈τ−p(k)〉b |û(k,τ)|dτ

)2
) 1

2

where û(k,τ) denotes the Fourier transform of u with respect to the space variable x and

the time variable t, 〈·〉=
√

1+|·|2 and p(k)=−k2l+1. Then Bourgain space Xb,s (resp. Yb,s)

associated to the higher-order KdV equation on T is the completion of the space S(T×R)

under the norm ‖u‖Xb,s
(resp. ‖u‖Yb,s

).

For given b,s∈R, let

Zb,s=Xb,s∩Yb− 1
2 ,s

be endowed with the norm

||u||Zb,s
= ||u||Xb,s

+||u||Y
b− 1

2 ,s
.

For a given interval I, let Xb,s(I) (resp. Zb,s(I)) be the restriction space of Xb,s to the

interval I with the norm

‖u‖Xb,s(I)= inf
{
‖ũ‖Xb,s(I) | ũ=u on T× I

}

(resp. ‖u‖Zb,s(I)= inf
{
‖ũ‖Zb,s

| ũ=u on T× I
}
).

For simplicity, we denote Xb,s(I) (resp. Zb,s(I)) by XT
s,b (resp. ZT

s,b) if I=(0,T). In addition,

let

‖u‖
ZT

1
2 ,s

:=ZT
1
2 ,s
∩C([0,T];Hs(T)).

There are a series of smoothing estimates:

Lemma 3.1. Let b,s∈R and T>0 be given. There exists a constant C>0 such that

(i) for any φ∈Hs(T),

‖W(t)φ‖
ZT

1
2 ,s

≤‖φ‖s,

(ii) for any f ∈ZT
− 1

2 ,s
,

∥∥∥∥
∫ t

0
W(t−τ) f (τ)dτ

∥∥∥∥
ZT

1
2 ,s

≤C‖ f‖ZT

− 1
2 ,s

.

Proof. See [2, 9].
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Lemma 3.2. For

s≥ s0 =





−1

2
, for l=1,

−2, for l=2,

− l

2
, for l>2.

There exist a constant C such that the following bilinear estimate

‖(uv)x‖ZT

− 1
2 ,s

≤C‖u‖ZT
1
2 ,s

‖v‖ZT
1
2 ,s

holds.

Proof. See [17, 18] and [9].

Proof of Theorem 1.1. Rewrite the system (3.1) in its equivalent integral equation form:

u(t)=W(t)u0+
∫ t

0
W(t−τ)(Gh)(τ)dτ−

∫ t

0
W(t−τ)(uux)(τ)dτ. (3.2)

Define

ω(T,u) :=
∫ T

0
W(T−τ)(uux)(τ)dτ.

According to Theorem 2.1, for given u0, u1∈Hs
0(T), if one chooses

h=Φ(u0,u1+ω(T,u))

in the equation (3.2), then

u(t)=W(t)u0+
∫ t

0
W(t−τ)

(
GΦ(u0,u1+ω(T,u))

)
(τ)dτ−

∫ t

0
W(t−τ)(uux)(τ)dτ,

and

u|t=0=u0, u|t=T =u1.

This leads us to consider the map

Γu(t)=W(t)u0+
∫ t

0
W(t−τ)

(
GΦ(u0,u1+ω(T,u))

)
(τ)dτ−

∫ t

0
W(t−τ)(uux)(τ)dτ.

If we can prove that Γ is a contraction mapping in an appropriate space, then its fixed

point u is a solution of (3.2) with h=Φ(u0,u1+ω(T,u)) and satisfies u|t=T =u1.

Applying Lemma 3.1-3.2 yields that

‖Γu‖
Z

T
1
2 ,s

≤C‖u0‖s+C
∥∥∥
∫ t

0
W(t−τ)(GΦ(u0,u1+w(T,u)))(τ)dτ

∥∥∥
ZT

1
2 ,s

+C‖uux‖ZT

− 1
2 ,s
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≤C‖u0‖s+C‖GΦ(u0,u1+ω(T,u))‖L2([0,T];Hs
0(T))+C‖u‖2

ZT
1
2 ,s

≤C‖u0‖s+C
[
‖u1‖s+‖u0|s+‖ω(T,u)‖s

]
+C‖u‖2

ZT
1
2 ,s

.

Notice that

‖w(T,u)‖s =
∥∥∥
∫ T

0
W(T−τ)uux(τ)dτ

∥∥∥
s

≤C sup
t∈(0,T)

∥∥∥
∫ t

0
ψ(t)W(t−τ)uux(τ)dτ

∥∥∥
s
≤C‖u‖2

ZT
1
2 ,s

.

Consequently,

‖Γ(u)‖
ZT

1
2 ,s

≤C(‖u0‖s+‖u1‖s)+C‖u‖2
ZT

1
2 ,s

.

For R>0, let BR be a bounded subset of Z
T
1
2 ,s

:

BR=
{

v∈Z
T
1
2 ,s
| [v]=0, ‖v‖

ZT
1
2 ,s

≤R
}

.

Then, for any u∈BR

‖Γ(u)‖
ZT

1
2 ,s

≤C(‖u0‖s+‖u1‖s)+CR2.

We choose δ>0 and R>0 such that

2Cδ+CR2≤R, CR<
1

2
.

Then,

‖Γ(u)‖
ZT

1
2 ,s

≤R,

which means that Γ map BR into itself.

Similarly, for any u, v∈BR, we deduce that

‖Γ(u)−Γ(v)‖
ZT

1
2 ,s

≤ 1

2
‖u−v‖

ZT
1
2 ,s

,

which implies that Γ is an contracting map on BR.

By the Banach fixed point theorem, there is unique solution to the integral equation

(3.2) which is the desired solution of (3.1). �
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4 Exponential stabilizability

For the linearized system
{

∂tu+(−1)l+1∂2l+1
x u+2aux =−Kλu, x∈T, t>0,

u(x,0)=u0(x), x∈T.

Its solution can be written as

u(t)=Wλ(t)u0,

where Wλ is the C0-semigroup associated to the linearized system.

Lemma 4.1. Let s∈R and T>0 be given. There exists a constant C>0 such that

(i)

‖Wλ(t)φ‖ZT
1
2 ,s

≤C‖φ‖s

for any φ∈Hs
0(T);

(ii) ∥∥∥
∫ t

0
Wλ(t−τ) f (τ)dτ

∥∥∥
Z

T
1
2 ,s

≤C‖ f‖ZT

− 1
2 ,s

for any f ∈ZT
− 1

2 ,s
.

Proof. For given φ∈Hs
0(T) and f ∈ZT

− 1
2 ,s

, let

u(t)=Wλ(t)φ+
∫ t

0
Wλ(t−τ) f (τ)dτ.

Then u solves {
∂tu+(−1)l+1∂2l+1

x u=−Kλu+ f , x∈T, t>0,

u(x,0)=φ(x), x∈T.
(4.1)

Consequently,

u(t)=W(t)φ+
∫ t

0
W(t−τ) f (τ)dτ−

∫ t

0
W(t−τ)[Kλu](τ)dτ

and for any 0<T′≤T,

‖u‖
ZT

1
2 ,s

≤C
(
‖φ‖s+‖ f‖ZT

− 1
2 ,s

)
+C‖Kλu‖

ZT′
− 1

2 ,s

where C>0 depends only on s and T. As

‖Kλu‖
ZT′
− 1

2 ,s

≤C1‖Kλu‖
XT′
− 1

2 +ǫ,s

≤C1(T
′)ν‖u‖ZT

1
2 ,s
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for some ν>0 and C1 depending only on s and T. Thus if T′ is chosen small enough, we

have

‖u‖
ZT

1
2 ,s

≤C
(
‖φ‖s+‖ f‖ZT

− 1
2 ,s

)
.

It then follows from the semigroup property of the system (4.1) that

‖u‖
ZT

1
2 ,s

≤C
(
‖φ‖s+‖ f‖ZT

− 1
2 ,s

)
.

The proof is complete.

We first show the closed loop system

{
∂tu+(−1)l+1∂2l+1

x u+u∂xu=−Kλu, x∈T, t>0,

u(x,0)=u0(x), x∈T.
(4.2)

is well-posedness in the space Hs(T) for any s≥0.

Proposition 4.1. Let T > 0 and s ≥ s0 be given. Then there exists a δ > 0 such that for any

u0∈Hs(T) with

‖u0‖s ≤δ,

the system (4.2) admits a unique solution u∈Z
T
1
2 ,s

. Moreover, the corresponding solution map is

Lipschitz continuous.

Proof. Rewrite the system (4.2) in its equivalent integral equation form:

u(t)=Wλ(t)u0−
∫ t

0
Wλ(t−τ)(uux)(τ)dτ. (4.3)

Then define the map

Γu(t)=Wλ(t)u0−
∫ t

0
Wλ(t−τ)(uux)(τ)dτ.

Applying Lemma 4.1, Lemmas 3.1-3.2, we obtain

‖Γu‖
ZT

1
2 ,s

≤C‖u0‖s+
∥∥∥
∫ t

0
[Wλ(t−τ)(u2)x](τ)dτ

∥∥∥
ZT

1
2 ,s

≤C‖u0‖s+C‖u‖2
ZT

1
2 ,s

.

For R>0, let BR be a bounded subset of ZT
1
2 ,s

:

BR=
{

v∈ZT
1
2 ,s
| [v]=0, ‖v‖

ZT
1
2 ,s

≤R
}

.
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Then, for any u∈BR, we have

‖Γ(u)‖
ZT

1
2 ,s

≤C‖u0‖s+CR2.

We choose δ>0 and R>0 such that

Cδ+CR2≤R, CR<
1

2
.

Then, ‖Γ(u)‖
ZT

1
2 ,s

≤ R, which implies that Γ maps BR into itself. In addition, for any u,

v∈BR, we have

‖Γ(u)−Γ(v)‖
ZT

1
2 ,s

≤ 1

2
‖u−v‖

ZT
1
2 ,s

,

which implies that Γ is an contracting mapping on BR. By Banach’s contracting mapping

principle, Γ has unique fixed point which is the desired solution of the system (4.2).

Remark 4.1. The local well-posedness result presented in Proposition 4.2 can be restated

as follows:

Let s≥ s0 and r> 0 be given. There exists a T > 0 such that for any u0 ∈ Hs(T) with

‖u0‖s ≤ r, the system (4.2) admits a unique solution u∈Z
T
1
2 ,s

.

Next we show that the system (4.2) is globally well-posed in the space Hs(T) for any

s≥0.

Theorem 4.1. Let s ≥ s0 and T > 0 be given. For any u0 ∈ Hs(T), the system (4.2) admits a

unique solution u∈Z
T
1
2 ,s

. Furthermore, the following estimate holds

‖u‖
ZT

1
2 ,s

≤αT,s(‖u‖0)‖u0‖s,

where αT,s :R+→R
+ is a nondecreasing continuous function depending only on T and s.

Proof. The proof is very much similar to that of Theorem 4.7 in [5] and is therefore omit-

ted.

Proof of Theorem 1.2. For given s≥0 and λ>0, by Proposition 2.3, there exists positive

constant C such that

‖Wλ(t)u0‖s ≤Ce−λt‖u0‖s, ∀ t≥0.

For any given 0<λ′
<λ, pick T>0 such that

2Ce−λT ≤ e−λ′T.
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We seek a solution u to the integral equation (4.3) as a fixed point of the map

Γu(t)=Wλ(t)u0−
∫ t

0
Wλ(t−τ)(uux)(τ)dτ

in some closed ball BR(0) in the function space Z
T
1
2 ,s

. This will be done provided that

‖u0|s ≤ δ where δ is a small number to be determined. Furthermore, to ensure the expo-

nential stability with the claimed decay rate, the numbers δ and R will be chosen in such

a way that

‖u(T)‖s ≤ e−λ′T‖u0‖s.

By Lemma 4.1, there exist some positive constant C1, C2 (independent of δ and R) such

that

‖Γ(u)‖
ZT

1
2 ,s

≤C1‖u0‖s+C2‖u‖2
ZT

1
2 ,s

,

‖Γ(u1)−Γ(u2)‖ZT
1
2 ,s

≤C2

(
‖u1‖ZT

1
2 ,s

+‖u2‖ZT
1
2 ,s

)
‖u1−u2‖ZT

1
2 ,s

.

On the other hand, we have for some constant C>0 and all u∈BR(0)

‖Γ(u)(T)‖s ≤C1‖Wλ(T)u0‖s+C2

∥∥∥
∫ T

0
Wλ(T−τ)(uux)(τ)dτ

∥∥∥
s
≤ e−λTδ+C′R2.

Pick δ=C4R2, where C4 and R are chosen so that

C′

C4
≤Ce−λT, (C1C4+C2)R2≤R, 2C2R≤ 1

2
.

Then we have

‖Γ(u)‖
ZT

1
2 ,s

≤R, ∀u∈BR(0),

‖Γ(u1)−Γ(u2)‖ZT
1
2 ,s

≤ 1

2
‖u1−u2‖ZT

1
2 ,s

, ∀u1, u2∈BR(0).

Therefore, Γ is a contraction in BR(0). Furthermore, its unique fixed point u∈BR(0) fulfills

‖u(T)‖s ≤‖Γ(u)(T)‖s ≤ e−λ′Tδ.

Assume now that 0<‖u0‖0)<δ. Changing δ into δ′≡‖u0‖s and R into R′≡ (δ′/δ)
1
2 R, we

infer that

‖u(T)‖s ≤ e−λ′T‖u0‖s,

and an obvious induction yields

‖u(nT)‖s ≤ e−λ′nT‖u0‖s
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for any n≥0. We infer by the semigroup property that there exists some positive constant

C>0 such that

‖u(t)‖s ≤Ce−λ′t‖u0‖s,

if ‖u0‖s ≤δ. �
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