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Abstract. In this paper, we derive the singular Moser-Trudinger inequality which in-
volves the first eigenvalue and several singular points, and further prove the existence
of the extremal functions for the relative Moser-Trudinger functional. Since the prob-
lems involve more complicated norm and multiple singular points, not only we can’t
use the symmetrization to deal with a one-dimensional inequality, but also the pro-
cesses of the blow-up analysis become more delicate. In particular, the new inequality
is more general than that of [1,2].
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1 Introduction

Let QCIR? be a smooth bounded domain. The famous Moser-Trudinger inequality [3-5]
says that

sup / e’ dx < +o0 (1.1)
ueWS’Z(Q),HVMHLZ(Q)g o

for any o <47m. Moreover, for any fixed u € W&’Z(Q), it also holds that
/ ¢l dx < 400
Q
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for any ¢ > 0. In particular, the constant ¢ =47t is optimal in (1.1), which implies that, for
any o > 471, the inequality (1.1) is invalid and there exists a sequence of {u.} in W, (Q2)
and [|Vue||12(q)=1 such that

2
/e""‘e' dx — o0 as €—0.
Q

Moser-Trudinger inequality (1.1), as a limit case of the Sobolev embedding, plays
an important role in two-dimensional analytic and geometric problems. The further in-
teresting subject is the existence of extremal functions to (1.1). By using the blow-up
method Carleson and Chang [6] showed that the supremum is actually attained if () is
a ball. Flucher [7] generalized this result to arbitrary bounded domains in IR?. See also
Adimurthi-Tintarev [8], Malchiodi-Martinazzi [9] and Mancini-Sandeep [10] and the ref-
erences in these papers for recent developments on this subject.

This inequality was generalized in many ways. One kind of generalization of (1.1) is
the so-called singular Moser-Trudinger inequality, which was originally established by
Adimurthi-Sandeep [11]. They proved that

e —1

sup ———dx < +oo,
1,2 Q |x|2t

ueWgA(Q)[|Vul| 2, <1

for s € (0,4t(1—t)) and t € [0,1). Further, Csaté-Roy [12] proved that the supremum is
attained for this singular Moser-Trudinger embedding.
For the case of several singular points, lula-Mancini [1] proved that the supremum

sup / V(x)e4n(l+“)(l+w”|‘iq(m)dx (1.2)
ueWA(Q), [, |Vupdr<1’?

is finite and is attained for A € [0,A,4(Q))). Here
/ |Vu|*dx
Ay (Q) = inf R
1 ueWy*(Q), [ | Vul2dx<1 ] ‘%4(0)

forg>1, and
V(x)=K(x) [ lx—pil*, (1.3)
i=1

where K(x)>0, K(x)eC°(Q); p1,p2,++,pm are the different points in Q; and ;€ (—1,+00),
«; ¢ Z such that

= mi ; d -1,0).
It 122},1{“1} and a€(—1,0)
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Now we describe another kind of generalization of (1.1). Tintarev [13] introduced the
first eigenvalue

/!Vu]zdx
MOQ)=  inf SO (1.4)
1,2
HEWS2(Q)u£0 / 1w2dx
(@)

to the Moser-Trudinger inequality. Instead of the usual sobolev norm, he take an equiva-
lent norm of each u in W&’Z (Q)

||uH1"3: (/()]Vu’de—ﬁ/Qude>7’ (15)

where B <A1(Q). Then he proved that the supremum

sup A dx
ueWy?(@)ull <17
is finite.
Later, Yang-Zhu [2] extended Tintarev'result to Moser-Trudinger inequalities with a
singular point, i.e. they prove the supremum

pAr(l—a),2
sup ——dx
2u
1,2 (9] ‘x‘
ue€Wy™(Q)||ull1,p<1

is finite and is attained for € [0,A1(Q))) and a € (0,1).

For more generalizations of the classical Moser-Trudinger inequality (1.1), one can see
for instance [12,14-22] and the reference therein.

In this paper, we want to introduce the equivalent norm (1.5) and the multiple sin-
gular points to the Moser-Trudinger inequality at the same time. The new inequality is
more general than that of ([1,2]). We also show the existence of the extremal functions for
such stronger inequalities. Our main results are stated as following:

Theorem 1.1. Let Q) CIR? be a smooth bounded domain and V (x) be as in (1.3). Let a € (—1,0)
be fixed and A1(QY) be defined as in (1.4). Then for any B < A1 (Q), we have

sup V(x)e* 10 gy < 400, (1.6)
ueW (), |lullyp<1”

where ||ul|1 g is defined as in (1.5).
Theorem 1.2. Under the assumption of Theorem 1.1, there exists some function ug € W&'z (Q)N

CY(Q2) with ||ug||1,p=1 satisfying

/ V(x)etr (e x — sup V(x)etr (e gy (1.7)
o neWA(Q),full <17

for any B<A1(Q)).
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For the proof of our results, we use an important tool in geometric analysis, the blow-
up analysis. Since the problems involve more complicated norm and multiple singular
points, not only we can’t use the symmetrization to deal with a one-dimensional inequal-
ity, but also the steps of the blow-up analysis become more delicate. Because of the pres-
ence of several singularities, it is difficult to identify the number of the blow up point and
to locate the position of the blow up point when the maximizing sequence blows up. Ac-
tually, in the Section 3, we illustrate the processes of identifying the number of the blow
up point and locating the position of the blow up point by combining the classification
results of Chen-Li [23] and that of Prajapat-Tarantello [24]. We should mention that we
finally prove that the only blow up point is the singular point with the least power « and
consequently get the desired bubble.

2 Maximizers for subcritical-Moser-Trudinger functional

In this section, we will show the existence of the maximizers for Moser-Trudinger func-
tional in the subcritical case. Let us start with two useful Lemmas. The first Lemma is an
embedding Lemma of Orlicz type, i.e.

Lemma 2.1. Let V(x) be as in (1.3) and u € W&’Z(Q). For any p >0, and any -y >0 such that
—1<ay <0, there holds

/ V7 (x)e PN  qy < 4oo, 2.1)
QO

Proof. For any fixed p>0, we take g>1 such that —2 <2ayg <0. By the Holder inequality,
we have

1 L
=

/V”’(x)e‘*””(””)“zdxﬁ (/ (V(x))wdxy-(/ e4”‘7*”<1+"‘7)”2dx>q < +oo,
(@) @) @)

where g* = %. O

The other useful Lemma is the following, which is obviously obtained from (1.2).

Lemma 2.2. For any B> 0 satisfying —1 <af <0, there holds

sup /Vﬁ(x)e4”(l+“5)”2dx<+oo. (2.2)
UEWIH(Q), ||Vl 2y <17

Proposition 2.1. Forany e€(0,1-+a), there exist some uc €W, > (Q)NCO(Q) satisfying ||ue| 6=
1and
V(x)etmreeuiqy — sup V(x)etmre—el gy,

(@] (@]
ueWy*(Q),lull1 5<1
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In particular, u. satisfies the following Dirichlet problem

—Aue —Bie = %V(x)e‘l”(l*"‘_e)”g in Q,

€
ue=0 on B_Q, (2.3)
us>0 on ()

in the distributional sense, where Ao = fQ u%V(x)e‘l”(”"‘*e)”gdx.

Proof. For any fixed € € (0,1+«), we let u, ; be a maximizing sequence in W,%(Q) with
|[ute,j|]1,8 <1. Since B<A1(Q)), we have

B
(1—m /Q’Vuel]'lzdxg/Q|v1/l€’]"2dx_‘8/0ug,]’dx§1/

which implies that u, ; is bounded in W&’Z(Q) Hence their exists some u; € W1 2(0)
such that up to a subsequence,

Uej — Ue weaklyin W&’z(Q),
Ue; — uestronglyin LF(Q)), forany p>1,
Uej —> Uecae. Q.

Forany 1<p<—1,66>0,5>1, and s*=%;, by the Holder inequality and the inequality

1
u§]§(1+5)(u€,]-—ue) (1-1-45) 42
we have
/ Vp(x)e47r(1+txfe)pu§,jdx
Q

</ Vp<x)e47r(1+zx—e)(l+5)p(u&j—u6)2+47r(1+1x—e)p(1+4%5)u%dx
—Jo

1
< </ Vp(x)e4n(l+ac—e)(l+5)ps(ue,j Ue) ) (/ Vp 47T(l+ac €)ps* (1-&-45) edx> ) (24)
Q
Choose p, 1+, s sufficiently close to 1 such that
(—ap)+(1+a—e€)ps(1+6)<1. (2.5)

Clearly we have that

0< / Vi 2dx—B / 2dx<hm1nf( / Ve Pdx—p / 2 dx> (2.6)

J—+oo
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and that
/]Vue,]-—VuEFdx:/ |Vu€,]-|2dx—/ |Vite|*dx+0j(1)
0 0 0

§1—/ \Vue\zdx—i—ﬁ/ uzdx+oj(1). (2.7)
0 0

Combining (2.6) and (2.7), we conclude limsup, , , JolVitej—Vue[*dx <1. Inserting

(2.6) and (2.7) into (2.4), by Lemma 2.2 and Lemma 2.1, we have V(x)eém(”“*e)ugr/ is
uniformly bounded in L7(Q}) for some g > 1.
Since

2
‘e4n(l+ac—e)u€,j _ Ar(lta—e)u?

<4n(l+a—e) (34”(1”_6)”5]‘—|—e4”(1+“_€)”3)]ug,j—ug\,

and uej—ue strongly in LP(Q) forany p>1 as j— +oo, we conclude that

limsup/ V(x)e4"(1+“’e)“§ffdx:/ V (x)etr(a-euiqy,
o) )

j—+o

Thus we have that u. attains the supremum. Clearly u. #0. If we suppose that ||uc|[1,5<
1. It follows that

4 (1+a—e)(e—)2

/V(x)e4"(l+”‘_€)“gdx</ V(x)e Meellip” qx,
o)

Q

which is a contradiction. Hence we have |[uc||1p=1. A straightforward calculation
shows that 1, satisfies the Euler-Lagrange equation (2.3) in the distributional sense.

Moreover, using the Holder inequality and Lemma 2.1, for p>1, r > 1, ¢ >1 such that
—1<pqu<0and pr(14+a) <1+ap, we can have that

/ <V<x))p(ue)pe47rp(l+ac—e)u§dx
QO

< </Q(V(x))”(u€)r*”dx) * </Q<V<x))pe47rp"(l+ac—e)u§dx> '

o o 7
< </ (V(x))”qu> ar </ uz*pq*dx> q (/ (V(x))pe4npr(l+ae)u§dx) < +o0.
Q Q Q

So A%V(x)uee‘l”(l*"‘_e)”g is bounded in L?(Q)) for some p > 1. By the standard elliptic
estimation, we have that u. € C°(Q). O

We also have the following crucial observation.
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Lemma 2.3.
limsup | V(x)e (Fa=uidy = sup V(x)et 0w gy,
ev0 0 weWJA() Jlull <17
Proof. Obviously,
limsup | V(x)e" e Mdx < sup V(x)et 0y,
Q

0
€0 ueWy?(Q),/[ul1,4<1

On the other hand, Yu € W&’Z(Q) with |[u[[1 4 <1, we have by Proposition 2.1,

/V(x)e4”(1+”‘)”2dx§hminf V(x)et (=% g <liminf [ V(x)e*T0Te-euegy,
Q e—0 JO e—0 JO

Which implies

b / V(x)e (v qy <liminf [ V(x)e*r(Ite-euiqy,
ueWy?(Q), || 5<1 0 e—0 Jo

Hence the result holds. O

3 Blow-up analysis

In this section, we will develop the blow-up analysis when the sequence u. blows up
when € — 0. Since u, is bounded in W&’Z(Q) from the before section, we can assume
without loss of the generality

ue — o weakly in Wy?(Q),
ue — ug strongly in L1(Q)), Vg>1,

Ue —> ug a.e. in Q.

Now denote M, = maxgle = Ue(xe), where x, € Q. If M, is bounded, then for any
ueWy?(Q) with ||u] |1, <1, by the Lebesgue dominated convergence theorem we have

/V(x)e4”(1+"‘)“2dleim V(x)etr(ta-eulqy
0O e—0J0)

<lim | V(x)e*(0te-eluegy :/ V(x)etm (e gy
e—0J0 Q
Hence ug is the desired maximizer.
In the following, we can assume M.— +co as €—0. We may also assume x.— P Q).
Here and in the sequel, we do not distinguish sequence and subsequence, the reader can
recognize it from the context.
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In the following, we distinguish two cases (the concentration point P lies in the inte-
rior of () or on the boundary of () to analyze the asymptotic behavior of .
Firstly, by an inequality e/ <1+te!,

/ V(x)dx < / V(x)edmHaehlgy < / V(x)dx+47(1+a)Ae.
Q Q Q
This leads to liminf._,gAs > 0.

case 1. P lies in the interior of Q).

we can prove the concentration-compactness Theorem for u. near the blow-up point.

Theorem 3.1. u=0, and |Vu,|>dx—5p, where 6p denotes the Dirac measure centered at the
point P.

Proof. Suppose ug #0, then we have
/Qywe—woyzdx:1—Huouiﬁ+oe<1).

Forp>1, 6>0, s>1, t>1suchthat—1<ptzx<0and%<1/ 1—|[uol|7 g), by

using Holder inequality again, it follow from Lemma 2.1 and Lemma 2.2 to get

/Vp P 47r 1+a— e)pugdx
/Vp P Ar(lta— e)(1+5)p(u€7u0)2+47r(1+u¢fe)p(1+%)u%dx

< ( / vv(x)e4n<1+ae><1+5>ps<ueuo>2> S
o

1
%

(/ Vp ps 471 1+a—e)ps* (l+40)M0dx> +

1 =

<C (/ VPt(x)e4n(1+a—e)ptS*(1+4la)”%dx) h </ uﬁs*t*dx) i
0 @)

<C, (3.1)

L o V(x Jueet (1He=€)u js uniformly bounded in LP(Q2) for some p> 1. By the standard

elhptlc estimation, we have u. uniformly bounded in Wg 7(Q), and then u, uniformly
bounded in C(Q2), which contradicts M, — +o0 as € — 0. Hence 1y =0.

Since [, |Viue|*dx =1+40c(1) and ue — 0 strongly in L(Q) for any g >1. Assume
|Vue|?dx — p in the sense of measure. If y # dp, we can choose a cut-off function ¥(x) €
C(Q), which is supported in B,,(P) C Q) and equal to 1 in B,/ (P) for some small 7y >0
such that
[ IV (uoPdx<1—y

By, (P)

o
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for some 77 > 0 provided that € is sufficiently small. Then by Lemma 2.1, Lemma 2.2
and Holder inequality, V (x)e*(1+0)(¥1e)* js uniformly bounded in L*(B,,(P)) for some
s> 1. Then the standard elliptic estimate on the Euler-Lagrange equation (2.3) implies u,
is uniformly bounded in B, /,(P), which contradicts M. — +oo. Therefore, |Vu,|[>?dx —
Jp. O

Next we will locate the position of the point P

Subcase 1. P€ Q\{p1,p2,*,Pm}

Let A
€ —4n(l+a—e)M?
vz m(lta—e)Me (3.2)

Since ue — 0 in L7(Q)) for any g > 1, then we have

2 _
Te=

M2 0 ase—0.

Choose a ball Bs(P) such that p; ¢ Bs(p) forall 1 <i<m.
Denote
Boe = {xelRZ:xe—l—rexe B(;(P)}.

Define the blowing up functions
e (x) =M tue(xe+7ex), Pe(x) =Me(te(xe+71ex) — Me).
A direct computation gives
— APpe(x) = MZ3ue (xe+1ex) V(e Frex)edTATae) (uelxetre) =M2) L ga1-14242 (x4 r.p),
— Ao =M e (xet1ex) V (xe+rex) et Atae) (weleetrer) =M2) L gAML 4202 (x +rer),

in Bye. Note that | (x)| <1, applying the standard elliptic estimates to above equations,

we have ¢ (x) — 9o in CL_(R?). In particular

—Ao(x)=0 in R?.

Liouville-type theorem implies o =1 in R2.
On the other hand, we have in any ball Bg (0)

U2 (XeF1ex) = M2 =20 (x) (1+0(e(x) —1)).

Applying the standard elliptic estimates to the equation of ¢., we also have ¢. — ¢ in
C} (R?). In particular,

loc

—Ap= 8n(1+a)e in R2
{ Ap=V(p)e in R?, (3.3)

¢(0)=0=supg.
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On one hand, we have for any R >0,

/ V(p)e¥ (14094 x = lim V(xe_|_rex)e47r(1+u¢fe)(ug(x€+yex),Mg)dx
Br(P)

€—0JBg (xe)

=limA; " V(y) M2t (Ha-eudy) gy

e—0 BRrg(xe)

=limA_? V(y)uletm(te—e)uiy) gy <1,

e—0 BRrg (xe)
This leads to
/ V(P)e 1 09dx <1, (3.4)
R

On the other hand, in view of (3.3) and (3.4), a result of Chen and Li [23] implies that ¢ is
radially symmetric

- 1 2
P(0) =~ ey OBV () (0,
and we get
1
8r(l+a)ep -
/IRZV(P)e dr=1—>1 (3.5)

The contradiction between (3.4) and (3.5) indicates that Subcase 1 can not occur. This
implies P€ {p1,p2,-*,Pm }-

Subcase 2. P€{p1,p2, -+ ,pm}. Set P=p; (i=1,2,---,m).
Let
2420 £€—4n(1+a—e)Mg
€ M2 *
€
Note that ue — 0 strongly in L7(Q) for any g > 1. Fix T <1+a and choose s close to 1 such
that —a+T1s< 1, then
. 2 1 2
pg+20<,€47rrM€ < Mg/ﬂugV(x)eM”‘edx

= :
g(/ uﬁS*V(x)dx>s (/ V(x)e4’”5“5dx> —0.
0 0

p2T2ATTME 0 YT < 14a

We now distinguish two steps to proceed.

We obtain

Step 1.% — 400 as e —0.

Set te=pp " |xe—p;i| % and define B; . = {x €R2: xc+tcx € B;,(pi)}, where B (pi) CQ),

some J; >0 and p; ¢ B;,(pi) for all j#1i. It is clear that t. — 0. We also assume that
V(x) =gi(x)|x—p;|** such that g;(p;) > 0. Denote the blowing up functions as

we(x)= Me_lue(xe—l—tex), Ve (x) = Me (e (xe+1tex) — Me).
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A straightforward calculation shows

Ue —2u; o 4T n—€
—Awe(x) = A,(Iz)gi@)!xe—m! zl’xe_Pi“‘tex‘z rblita—e)(u; +,3M t2“g<y) (3.6)

in B; ¢, where y=x.+t.x. Since 0<w, <1 and |xe — p;| 2% |xe —pi+tex| % —pi|** =1+40.(1)
and BM_ '12u2(y)=0¢(1), where 0. (1) —0 in Bg for any R >0, we have by applying elliptic

estimates to (3.6) that we — w in C}, (IR?), where w satisfies

—Aw(x)=0 in R?.

Since w <1 and w(0) =1, the Liouville theorem leads to w=1. Also we have

30 () =" ) i 2 itV M 2200 (3)

Clearly

u . . _ _ 00
M )‘xe ‘—sz,‘xe_pi_i_tex‘h,eéln(l—i-a €)(u2—M2) ELloc(Bi,e)/

and BMct2u?(y) =oc(1).
Applying the elliptic estimates to (3.7), we have that v. — v in C}

1 .(IR?), where v satis-
fies

—szgi (pi)687r(1+vc)v in ]RZ’
0(0) =0=supyeo,

/Rzgi(pi)eSH(I-&-a)vdx <1.

A result of Chen and Li [23] implies that v is radially symmetric and

1
8(1+a)v 3.
/Rzg (pi)e dx= —1—|—tx>1

So we get contradiction, which indicates that the step 1 can not occur.

Step 2.“‘%”’" < C for some constant C. Define

Ge(x) :Mg1”€<x€+ao€x)/ Pe(x) =M, (“e(xe +pex) _Me)-

It follows that §¢(x) is a distributional solution to the equation

Ue i a; Ar(l4+a—e
—AZe(x) = A%)gmy)! CE Pt A g Tt @8)
€ €
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in Bje.
Since pe — 0 and By — R?, we can assume ep Pi — x* for some x* € R%. Applying

elliptic estimates to (3.8), we have that &c(x) —¢(x) in C}, (R*\{—x*})NC) (R?), where
Z(x) is a distributional harmonic function on R?. Since &(x) <limsup, ,¢e(x) <1 for
all x €R? and &(0) =lim,_,0&(0) =1, the Liouville theorem implies that &(x) =1 on R2.
Hence we conclude

CG(X)_>1 in Clloc(]Rz\{_X*})mC?oc(le)' 3.9)
Clearly, ¢, is a distributional solution to

—A(P€<X):u€(x€T—ip€x)g <x€_|_p€ )\x—i—x ‘20&1647T(1+06 €)(u2—M +,3Mep§u§ (3.10)

in B; . Since &¢(x)—1in C}, (R*\{—x*})NCY (R?) and ¢¢(0) =0=maxgz¢c(x), applying

elliptic estimates to (3.10), we have that ¢, (x) = ¢(x) in C} (R*\{—x*})NC} (R?), where
¢(x) is a solution to

—Acp(x):gi(pi)]x—l—x*]z“ieS”(H"‘)"’ in IRZ\{—x*}. (3.11)

If we let y=x¢+pex with [x+x*| <R, then for any fixed R > |x*| 41, there holds |y—p;| <
2Rpe. Combining (3.9) and Fatou’s lemma, we have

x—+x* 2041687T(l+ac)¢dx
fo o SiPOI

<limsup Qi (Xe4pex)|x+p7  (xe— py) |PHiet(Fa—e) 18t g
e—0 JBr(—x*)
<limsupA_ ! V(y)udetr(Ha-euiy) gy <1.
e—0 Baree (Pi)
Hence
/Zgi(pi)]x+x*]2“i68"(1+“)¢dx§1. (3.12)
R
By the classification result of J.Prajapat, G.Tarantello [24], we have
_ 1 m(1+a) 2420
0=~ ey o8 (1480 T o2 ). 6.1
Noticing that
#(0)=1limge(0) =0, (3.14)
€—

and combining (3.13) and (3.14), we have that x* =0 and thus

0= gy 108 (L) T 212 ). 315)
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It follows that 1+
. 20; 87(1+a)p g, Xi
/Rzg,(p,)]x] e dx= e >1.
The equality holds if and only if a; =a. So we have that the blow up point P is the only
one point in {p;} with a;=a. Without loss of generality, we can assume that the blow up
point P=0and V(x) = g(x)|x|?**. Then we have

(3.16)

/zg(O)\x\2“68”(1+“)¢(x)dx:1. (3.17)
R

Define . =min{u,Mc/L}. Similar to [21], we have the following:

Lemma 3.1. For any L>1, there holds

lim [ |Vuer|*dx <
e—0J/0

1

I

Proof. In view of the equation (2.3) and by Theorem 3.1, we choose (ug—%)Jr a test
function and then obtain

+ + +
/ |V<ue—%> lzdx:/ VMEV(MG—%> dx:—/ (ue—%> Audx
Q L 0 L 0 L

. M. +u€(x) 4rr(1+a—e)u2(x) Me ’
_/Q(ue—T> V(x)e dx—l-[%/Q ue—T Uedx

€

A
B BRPe(xé) L Aé?
Ue 1 +l/le(xe+p€y) Xe 20 ar(1+a—e) (u(x +o y)—MZ)
o\ ML) T amIp T s e tpey)e lxetoer) =M gy 4 0, (1)
R e c

Taking R — +0c0, we have form (3.17) that

. . 1V1€ 2 1
1 \V/ I >1——.
iminf | <1/l€ > ’ dx>1

e—0

Noticing that

M +
/Q|Vu€,L|2dx+/Q|V(ue—Te) Pv=lucllp+B | udx=1+oc(1),

we get the conclusion. O

As a consequence of Lemma 3.1, we also have the following:
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Lemma 3.2. There holds

A
li Vix 64”(1+""€)”§dx</ V(x)dx+1i <.
lim | V{x) </, V) imsup

Proof. For any L>1, there holds

/ V(x)eéln(l—i-ac—e)u%dx
(9]

_ V(x)e4n(l+ac—e)u§dx+ V<x)e47r(1+o<—e)u§dx
Lue <M Lue>Me

47t (14+a—e)u? AeL?
S/QV(x)e m(lra—e)ucL qx 4 M2

(3.18)

By Lemmas 3.1 and 2.2, V(x)e4"(l+”‘_€)“gi is bounded in L7(Q)) for some g > 1. Noticing

also that u ; convergence to 0 almost everywhere, V (x)e*7(1+4-¢€)

L'(Q). Taking € — 0 in (3.18), we obtain

A
lim [ V(x)etm(ra—edqy < / V(x)dx—+ L2limsup =< .
e—0J0 ( ) —Ja ( ) e—)Ong

Let L —1, we conclude the Lemma.

It follows Lemma 3.2 that

limsup A—ee =400, Vo < 2.

e—0 €

2 .
“e converges to V(x) in

(3.19)

For otherwise, we have A /M2 — 0 as e—0. Let v€ W,*(Q) be such that ||| l1,=1. Then

we have by Lemma 3.2 that

/V(x)€4ﬂ(l+ac)vzdx§ sup /V(x)e4n(l+ac)u2dx
o WEWLA(O), |Vl 20y <17

=lim V(x)e4"(1+”"€)“gdx:/ V(x)dx.
e—=0J0 Q

This is impossible since v #0. Thus (3.19) holds.
The following Lemma will be used in Section 5.

Lemma 3.3.
lim V(x)e4”(1+""€)”gdx:/ V(x)dx+ lim limsup V(x)g‘l”(lﬂ*e)u?dx.
e—0J0) (@) R—+00 4 BRpe(xe)
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Proof. On the one hand,

limsup V(x)etm(reeqy
e—0 BRpe (xe)
<limsup V(x)e4”(1+”‘_€)“%dx—liminf V(x)e4”(1+"‘_€)”5dx
e—0 Q €—0 O\ Brpe (xe)
<limsup | V(x)e*T0teeuiqy / V(x)dx. (3.20)
e—0 JQ Q
On the other hand,

A
\%4 47r(1+o<—e)u§d _ € </ 0 2u 8n(1+a)¢(x)d i 1 ),
/BRpe(xg) (x)e X M2 BR(o)g( )|x|"*e x+o0e(1)

which gives

A
lim limsup V(x)e4”(1+"‘_€)”gdxzlimsup—ez. (3.21)
R=teo o 40 BRoe (¥e) e—0 €
Combining (3.20), (3.21), Lemma 3.2 and Lemma 2.3, we get the result. O

In order to investigate the convergence behavior of 1. away from P =0, we need the
following Lemma.

Lemma 3.4. We have
lim [ Mette
e—=0Ja Ae

Proof. We divide () into three parts

0= ({u > %}\Bm(xe)) U{ueg %}UBM(%)

for some L >1 and any R > 0. Denote the integral on the above domains by I;, I, and I3
respectively. Since

V(x)etrta-euigy =1, (3.22)

2
L <L/ &V(x)eM(H”‘_e)“gdx
T e Mo} \Broe(xe) Ae

12

<L/ Zey (x)etrita—eluiqy
T JO\Bry (xe) Ae &)

uZ
BRpe(xe) /\6

L 1_/ 0 x2a68n(1+a—e)¢(x)dx>’
( [ Ol

—I—L V(x)e4n(l+ac—e)u§dx

then we have
Iim limI; =0. (3.23)

R—+400e—0
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For I, it is easy to get
= e / e A€l gy s, (3.24)
QO

For I3, since

13:/ ue(xe‘i‘Pex)g(xe_i_pex)‘ﬁ_|_x’2046471(14-04—6)(ug(xe—i-pex)—Mg)dx
Br M€ pe

_>/ g<0) ’x’2a687r(1+vc)¢(x)dx’

then we have

lim limz3=1. (3.25)
R—+oc0e—0
Putting (3.23)—(3.25) together, the result holds. O

Let ge = Mcue. It is clear that g. satisfies the following equation

—Age+Bge = %V(x)e‘*”(w—f)”? in D'(Q). (3.26)

€

Eq. (3.22) and its proof show that $ §=V(x)e an(lta—e)ug converges to the Dirac operator Jy
in D'(Q)). This suggests that g¢ should tend to the corresponding Green’s function G.
That is confirmed as follows.

Lemma 3.5. g. is uniformly bounded in Wl’q( Q) for any 1<q<2. Furthermore, ge— G weakly
in WS’ (Q) for any 1< q <2 and ge — G uniformly in C) (Q\{0}), where G satisfies

_AG+BG=34 o,
{ TPG=d  x€ (3.27)

G=0 X e BQ,
in the distributional sense.

Proof. 1t follows from (3.22) that MA;:“?V(x)e‘l”(”"‘*‘?)”g is uniformly bounded in L'(Q).
We claim that g is uniformly bounded in L(Q)). To see this, we suppose on the contrary

that ||ge[11(q)— +o0 as €—0. Set fe= Hgﬁﬁ' and we have ||fe|[11(q)=1. Then applying

a result of Struwe ([26, Theorem 2.2]), we have that f, is uniformly bounded in Wg q(Q)
for any 1< ¢ <2, in particular fe — f strongly in L'(Q). Since
1 Mecue

|I8el ’LI(Q) Ae V<x)€4n'(1+leg)u§ 0

in L'(Q), f is a distributional solution to —Af+Bf =0 in ), which leads to f =0. This
contradicts

IS :yg})HfGHLI(Q) =
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Tta—e)u¢_ e is uniformly bounded in

and confirms our claim. Now since Mfuevw)em (
LY(Q), applying Struwe ([26, Theorem 2.2]) again, we have that g, is uniformly bounded
in Wé’q (Q) for any 1<g<2. Hence there exist G ﬁl<q<2W3’q (Q)) such that gc— G weakly
in Wé’q (Q)) for any 1<g<2. Since (3.22) implies that M)\#:‘GV(Jc)e‘“T(lJ”"_e)“g —Jp in sense of
measure. Then G is a distributional solution to (3.27). Sobolev embeding implies g — G
in L'(Q) for any ¢ > 1.

Moreover, using the Holder inequality and Lemma 2.1, for p>1, ¥ >1, ¢ >1 such that
—1<pqu<0and pr(14+a) <1+ap, we can have that

/ (V(x))p(ge)peélnp(l-&-(x—e)u%dx
@)

<([weriarras)” ([ vappemise-a)’

- (/Q(V(x))pqu> e (/ng*pq*dx> rr (/Q(V(x))f"e‘l”py(l”‘e)“gdx) '

<H-o00.

So A%V(x)gee‘m(lﬂ‘*e)“g is uniformly bounded in L?(Q)) for some p >1. By using the
standard elliptic estimation to the (3.26), then g is uniformly bounded in Wg P(Q). The
Sobolev embeding Theorem implies g — G uniformly in C? (Q\{0}). O

loc

Obviously, G takes the form
1
G(x)=—5log|x|+Co+9 (), (3.28)

where Cg is a constant and ¥ € C1(Q)).
Up to now, we have described the convergence behavior of u. near P and away from
P when the concentration point P is in the interior of ().

Case 2. P lies on o).
Lemma 3.6. Let d. =dist(x¢,0Q)), and re be defined in (3.2). There holds 1. /de — 0.

Proof. We suppose on the contrary that there exists R > 0 such that d. < Rr.. Take some
ye €0Q) such that de = |xc —ye|. Set Bs= Bs(P)NQ with some § >0 such that p; ¢ B for all
1<i<m and

Bse= {xelR2|xe-|-r€xeB5}.

Then Bse — lR%r(to) = {(x1,x2) ER?:x1 >t9} as € = 0. Let To = M 'ue(ye+7ex). In this

case Te —Tin C},_(R3 (tp)) and T satisfies

{—A5:0 x€R2 (ty),
=0 xea]R%_(to).
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By a reflection argument, we have —A7=0 in R?. For |[Te|;~(5) =1, we can easily get
that 7=1. Then we have 5. —1in C, (IR? (t)). This contradicts to the fact 7.(0)=0. O

loc

dist(x¢,00))
Te

By Lemma 3.6, we have lim_, — 400, and Bs — R? as € — 0. Define the

blowing up functions

ﬁezMe_lue(xe—l—rex) in Bj,
@ =Me(ue(xe+1ex) —Me) in Bje.

(R?),and ¢, — @ in CL_(RR?). @ satisfy

Similar to Subcase 1, . — 1 in cl oc

loc

—AP(x)=V(P)ef 1407 in R2
9(0) =0=supg.9

P00) =~ a7 OB+ V(D) (1) ),

and we get

- 1
/ V(P)ef 1+ 0dy = — >1.
R? 14+a

Thus we get a contradiction. So the case don’t occur.

4 Proof of theorem

In this section,we show extremal functions exist. To this purpose, we need to derive the
upper bound first. We also need the following similar result motivated by the arguments
by Carleson and Chang in [6].

Definition 4.1. For n >2. A sequence {u.} C W&’Z(Q) is a normalized concentrating sequence

if
(i) [o|Vuel?dx=1,
(i) e —0 weakly in Wé’Z(Q),
(iii) there exist xo € () such that any r >0, fQ\B,(xO) |Vue|?dx—0as e—0.

Then we call uc as a normalized concentrating sequences, and x is called as a blow up point.
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Theorem 4.1. Assume that {u.} C W&’Z(BP(O)) is a normalized concentrating sequence with a
blow up point, the origin. Then for a € (—1,0], we have

242w

limsup x| (e (H 08 _ 1) dx < 7P

< e. 4.1)
e—0 Bp(o) IT+a

Proof. Let uf is the schwarz symmetry rearrangement of the function u¢(x). Set ipe(x) =
(14a)2u?(|x|™) , then we have

J

Moreover, by Hardy-Littlewood inequality,

Vi, [2d :/
(0)’ peldx By

0

|Vu:]2dx§/ |Viue|>dx=1.
0) B,(0)

o o

/ ’x’na(e47r(1+a)\u€(x)|2_1)dxS/ |x|2¢x(e47r(1+oc)|uz(x)\2_1)dx
B, (0) B,
20

— P / 47'[1,{)5_1 d
T4a Bp(o)(e Jdx.

Now we use a fact in [6]: For any normalized concentrating sequence { } EW& 2 (Bp(0))
it holds
limsup (e —1)dx < mrp2e.
e—0 B, (0)
Hence (4.1) holds. O

Set .
To= sup V(x)et 10wy,
HeWRA(Q) lull p<17

Motivated by the arguments in [6] and [27], we first compute the upper bound of Ty if u,
blows up. Our Lemma is the following:

Lemma 4.1. Iflimsup,_,||ue||co =00, then

g(0)m 471(14a)Co+1
< e 6T, .
To_/QV(x)dx—l- T 4.2)
Proof.

/ yvc\de:—/ 6% ds+ Ga—Gds—/ AGdx
0\Bs(0) 9B;(0) OV o0 OV 0\B;(0)

:—/ 62 4s+8 G2dx

3B;(0) OV 0\By(0)

1
:—EIOS5+CG+,3"GH%Z(QWOJ(U/
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where 05(1) — 0 as 6 — 0. Hence we obtain

2. 1 1 X
/Q\BJ(O)‘V”E‘ dx_ﬁg —Elog(SJrCG—I—,B\\GHLZ(Q)+05(1)+O€<1) , 4.3)

where 0.(1) —0as € 0. Let b = SUP,p, (o) Ue and i, = (u.—be)". Then i, € W&’Z(Bg(O)),
by (4.3) and the fact that

/ |Vu€|2dx:1—/ ]Vuelzdx-l-ﬁ/ uzdx,
Bs(0) O\B;(0) Q

we have
1 1
U dyi=1.<1—— [ —— .
/BA(O)\Vuel dr:=7<1 Mg( 2n10g5+CG+05(1)—|—o€(1)>
By Theorem 4.1,
2 R
limsup |2 (4% —_1)dx <
=0 J/Bs(0) 1+

Then if we set g(¢) =max, g, {g(x)} with &€ Bs(0), we have

2 242
limsup g ()] x| (Y% —1)dx < M(e. (4.4)
e—0 JBs(0) 1+a

Now we focus the estimate on bubbling domain Bg,, (x¢). By Step 2, ¢ — ¢ in
CL.(R"), and whence ue = Mc+0c(R), where 0¢(R) — 0 as € — 0 for any fixed R > 0.
Together with the fact Mcue — G strongly in C2 (Q\{0}), we have

loc

dr(1+a—e)u <4m(1+a)(Fe+be ) =4m(1+a)u2+8m(1+a)ucbe +4m(1+a)b2, (4.5)

and )
ﬁebez—Elogé—l—CG—i—o(;(l)—l—oe(l). (4.6)
Notice that
Ar(1+a)u? 1
4n(1+a)ﬁggw—471(1+zx)(—Elogé—l—CG—l—o‘;(l)—i—oe(l))
€
—2
_AAHOEE o4 ) log—dm(14a)Cotos(1)+o(1). (A7)

Te

Putting (4.5)-(4.7) together, we obtain on Bg,_(xe)

dr(1+a)u;

4r(1+a—e)u2 <
Te

2(1+a)logd+4m(1+a)Cc+o05(1)+0e(1).
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Therefore, we have

. _ 2
limsup V (x)etrite—euigy
e—0 BRpe(xg)
-2
. 2
limsup g(x)] x| e 1% dx
e—0 BR/)e(Xs)

<5 2(1+a) A (14a)Co+05(1)

72
e
T¢

§5—2(1+a)e4n(l+ac)CG+05(l)hmsup g<x) ‘X‘Za <e47r(1+u¢) < —1)dx
e—0 BRpe(xe)

§5—2(1+a)e4n(l+ac)CG+05(l)hmsup g(x) szx (e4n(1+a)§ _ 1)dx
e—0 )

<5—2(1+a)e4n(1+a)cG+05(1)8(5) O .
- 1+«

Taking 6 — 0, by the continuity of g(x) near the origin, we have

limsup V(x)e47f(1+“*€)u§dx < g(o)”e47r(1+a)cc+1.
e—=0 Y Brpe(xe) 1+«

Then by the Lemma 3.3, we have

. _ 0)r
1 4 (1+a e)u§</ d g( 47r(1+(x)CG+1.
n?sgp QV(x)e < QV(x) X+ TraC

The proof is completed by using Lemma 2.3.

91

O

The proof of Theorem 1.1 If the sequence ||ue|| .~ () is uniformly bounded, by Lemma
2.3, we can easily get To < +oco. While if ||uc||;~(q) — +00, then by Lemma 4.1 we also get

To < —+o00.

0

Next we construct a sequence to get the lower bound estimate, which is an opposite
to Tp. Thus we get a contradiction and consequently we complete the proof of Theorem

1.2.
Lemma 4.2. There holds

8(0)7T 4r(14a)Co+1
T V(x)dx+=—— e
0>/Q (x)dx+ T+a ©
Proof. Define a sequence of functions on () by

"

crll 2t g1+ (o)l-’x’z(m) +b), x€B
C\ 4n(l+a) 8 STy el ’ Re
o = G_ =
gbe 7C17¢’ xe BZRe\BRe

G
s x € O\ Bage,

(4.8)

(4.9)
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where G is the Green function and ¢ is the regular part as (3.28), R = (—loge) T, ne
C}(Bare) satisfying that 7=1 on Bg. and |V#|< £, b and C are constants depending only
on € to be determined later. Here and in the sequel, B, stands for a ball centered at 0 with
radius r. Clearly Byre C Q) provided that € is sufficiently small. In order to assure that
$.€ W2 (Q), we set

11 8O paisa) 1) = L (- L
C-I-C( 47((1_1_06)10g<1-|— o R +b =C anog(Re)-i-CG ,

which gives

1 1 0 1
2_ _ g(0)m
C = 2nloge+CG b+4n(1—i—zx) log Tt +O(R2(1+a)>' (4.10)

Noting that (x) =O(|x|) as x —0, we have |V (5¢)|=0(1) as e — 0. It follows that

/ IV () [2dx = O(R2€?), / VGV (59)dx=O(Re).
Bore\Bre Bare\Bre

Integration by parts gives

/ \vcyzdx:—/ Gacdr— [ 62C4ds
Q\Bge Q\Bge B OV

__ %log(Re) +CG+/3/QG2dx+o(Relog(Re)).

This leads to
— 1 1
V. [Pdx=— / el / V() Pd
/Q\BRJ (Pe’ X C2 O\Bg ‘ ’ x+C2 ZRS\BRe’ <771/))’ X
1
—= VGV d
2 /BZRe\BRe (17p)dx
_ 1L 2
_@< anog(Re)‘f‘Cc-i-,B/QG dx—l—O(Relog(Re))>.

Also we have

2+44x

— 1 g +4tx
V. [2dx = /
s, VPP 1+g<o>ir Fay

dx

1
S Y UV
_4(1+1X)2C2 Bx <1+g(0 e ’]/‘2 (14a) )2
) 3+4u

)1is
I /R g%(0
T 2(1+a)2C% o (1+g(0) % 2002

dr
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B 1 SO Ry it
_471(1+0c)C2/o (141)?

— 1 g(O) 242 1
T <log o —1+logR +O(R2+2‘")

Hence

— . 1 ( loge / 2.1 1 g(0)m
/QW‘PG‘ dx=z | "o TCeP O Ay T i) %8 e

+0 <R2£2/x> +O(Relog(Re)).

/aﬁdx:é </ szx—l—O(Re)>

and O(Relog(Re)) =O(%z —5-). If we choose the suitable constant C such that

Note that

Bellip= [ V@ Ldx—p [ glax=1,

the we must have

1 1 1 (0)r 1
1 B g
C = 2ﬂloge—i—CG 47r(1—|—0¢)+47r(1—|—a)10g T +O(R2+2a>‘ (4.11)

Combine (4.10) and (4.11), we obtain

1 1
= s +o<R2+2a>. (4.12)

In view of (4.11) and (4.12), there holds on Bg,,

T |x|2 14a)
T+a e2+a)

47r(1—|—o¢)$§ >47(14+a)C?—2log <1+g( )—— ) +8m(14+a)b

T ’x’21+u¢
=—2log | 1+g(0 )1—1-06 20 —2(14a)loge+1

0 1
—|—47t(1+0¢)CG+logg1< L +O<R2+2a>,

which together with the estimate

‘th 1+20¢

ly _ !
0, i@ =20 |, g
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g(O) T R2+21x 1 1
/o (1+1)2 1+8(0) Fig R* 2
leads to

g<x) ‘x‘2a647r(1+a)$§dx

\

BRre
ey " S
ke (148 (0) iz omar )2
S IO (5(0) 4oe 1) [ e )‘f\y!ﬂ% v
gl(f)l-): (100G +1+0(m) (1 4.0, (1)) (1 1+g(0 )1’r RMD‘)

On the other hand, since

1
2
Jo st ar=0 ).

/ g |x|2aG2dx O((R€)2+2"‘]Og (Re)) O(ﬁ),

we obtain
/\ |x|2a 47 ( 1+a)¢€dx
0O\B
> [ SR (1 +an(14a)2)dx
2Re
4 (1+«)
2 20 2
- dr+ 7 | *G2d
/Q\Bmg(’“)”" T [ S G
477(1+« 1
:/Qg(x)|x|2"‘dx-|—%/Q (x )]x]z”‘szx-i—O(RHZa)
Therefore

/Qg(x) |x|2ae4n(l+ac)$§dx

4r(1+w)
> 20 20 ~2
> [ (o) xfdr+ o [ g()]xf G

8(0)T 4r(1+a)Co+1+0(mplyr) 1
+ 1+lx e G R2+2 _|_O R2+20¢



Extremal Functions of the Singular Moser-Trudinger Inequality 95

In view of R=(—loge) %, we have ﬁ =0¢(1). And thus we obtain

4n(1+0¢)$§ / g(O)TL' 47 (1+a)Ce+1
/QV(x)e dx > QV(x)dx—i——l_Hx e

provided that € >0 is chosen sufficiently small. O
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