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is more general than that of [1, 2].
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1 Introduction

Let Ω⊂R
2 be a smooth bounded domain. The famous Moser-Trudinger inequality [3–5]

says that

sup
u∈W1,2

0 (Ω),||∇u||
L2(Ω)≤1

∫

Ω
eσ|u|2 dx<+∞ (1.1)

for any σ≤4π. Moreover, for any fixed u∈W1,2
0 (Ω), it also holds that

∫

Ω
eσ|u|2 dx<+∞
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for any σ>0. In particular, the constant σ=4π is optimal in (1.1), which implies that, for

any σ>4π, the inequality (1.1) is invalid and there exists a sequence of {uǫ} in W1,2
0 (Ω)

and ||∇uǫ||L2(Ω)=1 such that

∫

Ω
eσ|uǫ |

2
dx→∞ as ǫ→0.

Moser-Trudinger inequality (1.1), as a limit case of the Sobolev embedding, plays

an important role in two-dimensional analytic and geometric problems. The further in-

teresting subject is the existence of extremal functions to (1.1). By using the blow-up

method Carleson and Chang [6] showed that the supremum is actually attained if Ω is

a ball. Flucher [7] generalized this result to arbitrary bounded domains in R
2. See also

Adimurthi-Tintarev [8], Malchiodi-Martinazzi [9] and Mancini-Sandeep [10] and the ref-

erences in these papers for recent developments on this subject.

This inequality was generalized in many ways. One kind of generalization of (1.1) is

the so-called singular Moser-Trudinger inequality, which was originally established by

Adimurthi-Sandeep [11]. They proved that

sup
u∈W1,2

0 (Ω),||∇u||
L2(Ω)

≤1

∫

Ω

esu2
−1

|x|2t
dx<+∞,

for s∈ (0,4π(1−t)) and t∈ [0,1). Further, Csató-Roy [12] proved that the supremum is

attained for this singular Moser-Trudinger embedding.

For the case of several singular points, Iula-Mancini [1] proved that the supremum

sup
u∈W1,2

0 (Ω),
∫

Ω
|∇u|2dx≤1

∫

Ω
V(x)e

4π(1+α)(1+λ||u||2
Lq(Ω)

)
dx (1.2)

is finite and is attained for λ∈ [0,λq(Ω)). Here

λq(Ω)= inf
u∈W1,2

0 (Ω),
∫

Ω
|∇u|2dx≤1

∫

Ω
|∇u|2dx

||u||2
Lq(Ω)

for q>1, and

V(x)=K(x)
m

∏
i=1

|x−pi|
2αi , (1.3)

where K(x)>0 , K(x)∈C0(Ω); p1,p2,··· ,pm are the different points in Ω; and αi∈(−1,+∞),
αi 6∈Z such that

α= min
1≤i≤m

{αi} and α∈ (−1,0).
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Now we describe another kind of generalization of (1.1). Tintarev [13] introduced the

first eigenvalue

λ1(Ω)= inf
u∈W1,2

0 (Ω),u 6=0

∫

Ω
|∇u|2dx
∫

Ω
u2dx

(1.4)

to the Moser-Trudinger inequality. Instead of the usual sobolev norm, he take an equiva-

lent norm of each u in W1,2
0 (Ω)

||u||1,β =

(

∫

Ω
|∇u|2dx−β

∫

Ω
u2dx

)
1
2

, (1.5)

where β<λ1(Ω). Then he proved that the supremum

sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
e4πu2

dx

is finite.

Later, Yang-Zhu [2] extended Tintarev’result to Moser-Trudinger inequalities with a

singular point, i.e. they prove the supremum

sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω

e4π(1−α)u2

|x|2α
dx

is finite and is attained for β∈ [0,λ1(Ω)) and α∈ (0,1).
For more generalizations of the classical Moser-Trudinger inequality (1.1), one can see

for instance [12, 14–22] and the reference therein.

In this paper, we want to introduce the equivalent norm (1.5) and the multiple sin-

gular points to the Moser-Trudinger inequality at the same time. The new inequality is

more general than that of ([1,2]). We also show the existence of the extremal functions for

such stronger inequalities. Our main results are stated as following:

Theorem 1.1. Let Ω⊂R
2 be a smooth bounded domain and V(x) be as in (1.3). Let α∈ (−1,0)

be fixed and λ1(Ω) be defined as in (1.4). Then for any β<λ1(Ω), we have

sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
V(x)e4π(1+α)u2

dx<+∞, (1.6)

where ||u||1,β is defined as in (1.5).

Theorem 1.2. Under the assumption of Theorem 1.1, there exists some function u0∈W1,2
0 (Ω)∩

C0(Ω) with ||u0||1,β =1 satisfying
∫

Ω
V(x)e4π(1+α)u2

0dx= sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
V(x)e4π(1+α)u2

dx (1.7)

for any β<λ1(Ω).
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For the proof of our results, we use an important tool in geometric analysis, the blow-

up analysis. Since the problems involve more complicated norm and multiple singular

points, not only we can’t use the symmetrization to deal with a one-dimensional inequal-

ity, but also the steps of the blow-up analysis become more delicate. Because of the pres-

ence of several singularities, it is difficult to identify the number of the blow up point and

to locate the position of the blow up point when the maximizing sequence blows up. Ac-

tually, in the Section 3, we illustrate the processes of identifying the number of the blow

up point and locating the position of the blow up point by combining the classification

results of Chen-Li [23] and that of Prajapat-Tarantello [24]. We should mention that we

finally prove that the only blow up point is the singular point with the least power α and

consequently get the desired bubble.

2 Maximizers for subcritical-Moser-Trudinger functional

In this section, we will show the existence of the maximizers for Moser-Trudinger func-

tional in the subcritical case. Let us start with two useful Lemmas. The first Lemma is an

embedding Lemma of Orlicz type, i.e.

Lemma 2.1. Let V(x) be as in (1.3) and u∈W1,2
0 (Ω). For any p>0, and any γ>0 such that

−1<αγ<0, there holds
∫

Ω
Vγ(x)e4πp(1+αγ)u2

dx<+∞. (2.1)

Proof. For any fixed p>0, we take q>1 such that −2<2αγq<0. By the Hölder inequality,

we have

∫

Ω
Vγ(x)e4πp(1+αγ)u2

dx≤

(

∫

Ω
(V(x))γqdx

)
1
q

·

(

∫

Ω
e4πq∗p(1+αγ)u2

dx

)
1

q∗

<+∞,

where q∗= q
q−1 .

The other useful Lemma is the following, which is obviously obtained from (1.2).

Lemma 2.2. For any β>0 satisfying −1<αβ<0, there holds

sup
u∈W1,2

0 (Ω),||∇u||
L2(Ω)

≤1

∫

Ω
Vβ(x)e4π(1+αβ)u2

dx<+∞. (2.2)

Proposition 2.1. For any ǫ∈(0,1+α), there exist some uǫ∈W1,2
0 (Ω)∩C0(Ω) satisfying ||uǫ||1,β=

1 and
∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx= sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
V(x)e4π(1+α−ǫ)u2

dx.
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In particular, uǫ satisfies the following Dirichlet problem











−∆uǫ−βuǫ =
uǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫ in Ω,

uǫ=0 on ∂Ω,

uǫ≥0 on Ω

(2.3)

in the distributional sense, where λǫ =
∫

Ω
u2

ǫV(x)e4π(1+α−ǫ)u2
ǫdx.

Proof. For any fixed ǫ∈ (0,1+α), we let uǫ,j be a maximizing sequence in W1,2
0 (Ω) with

||uǫ,j||1,β ≤1. Since β<λ1(Ω), we have

(

1−
β

λ1(Ω)

)

∫

Ω
|∇uǫ,j|

2dx≤
∫

Ω
|∇uǫ,j|

2dx−β
∫

Ω
u2

ǫ,jdx≤1,

which implies that uǫ,j is bounded in W1,2
0 (Ω). Hence their exists some uǫ,j ∈W1,2

0 (Ω)
such that up to a subsequence,

uǫ,j ⇀ uǫ weakly in W1,2
0 (Ω),

uǫ,j → uǫ strongly in Lp(Ω), for any p≥1,

uǫ,j → uǫ a.e. Ω.

For any 1<p<− 1
α , δ>0, s>1, and s∗= s

s−1 , by the Hölder inequality and the inequality

u2
ǫ,j≤ (1+δ)(uǫ,j−uǫ)

2+

(

1+
1

4δ

)

u2
ǫ,

we have
∫

Ω
V p(x)e4π(1+α−ǫ)pu2

ǫ,jdx

≤
∫

Ω
V p(x)e4π(1+α−ǫ)(1+δ)p(uǫ,j−uǫ)2+4π(1+α−ǫ)p(1+ 1

4δ )u
2
ǫdx

≤

(

∫

Ω
V p(x)e4π(1+α−ǫ)(1+δ)ps(uǫ,j−uǫ)2

)
1
s
(

∫

Ω
V p(x)e4π(1+α−ǫ)ps∗(1+ 1

4δ )u
2
ǫdx

)
1
s∗

. (2.4)

Choose p, 1+δ, s sufficiently close to 1 such that

(−αp)+(1+α−ǫ)ps(1+δ)≤1. (2.5)

Clearly we have that

0≤
∫

Ω
|∇uǫ|

2dx−β
∫

Ω
u2

ǫdx≤ liminf
j→+∞

(

∫

Ω
|∇uǫ,j|

2dx−β
∫

Ω
u2

ǫ,jdx

)

≤1, (2.6)
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and that
∫

Ω
|∇uǫ,j−∇uǫ|

2dx=
∫

Ω
|∇uǫ,j|

2dx−
∫

Ω
|∇uǫ|

2dx+oj(1)

≤1−
∫

Ω
|∇uǫ|

2dx+β
∫

Ω
u2

ǫdx+oj(1). (2.7)

Combining (2.6) and (2.7), we conclude limsupj→+∞

∫

Ω
|∇uǫ,j−∇uǫ|2dx ≤ 1. Inserting

(2.6) and (2.7) into (2.4), by Lemma 2.2 and Lemma 2.1, we have V(x)e4π(1+α−ǫ)u2
ǫ,j is

uniformly bounded in Lq(Ω) for some q>1.

Since
∣

∣

∣
e

4π(1+α−ǫ)u2
ǫ,j−e4π(1+α−ǫ)u2

ǫ

∣

∣

∣

≤4π(1+α−ǫ)(e4π(1+α−ǫ)u2
ǫ,j+e4π(1+α−ǫ)u2

ǫ)|u2
ǫ,j−u2

ǫ|,

and uǫ,j→uǫ strongly in Lp(Ω) for any p≥1 as j→+∞, we conclude that

limsup
j→+∞

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫ,jdx=
∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx.

Thus we have that uǫ attains the supremum. Clearly uǫ 6≡0. If we suppose that ||uǫ||1,β<

1. It follows that

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx<
∫

Ω
V(x)e

4π(1+α−ǫ)( uǫ
||uǫ||1,β

)2

dx,

which is a contradiction. Hence we have ||uǫ||1,β = 1. A straightforward calculation

shows that uǫ satisfies the Euler-Lagrange equation (2.3) in the distributional sense.

Moreover, using the Hölder inequality and Lemma 2.1, for p>1, r>1, q>1 such that

−1< pqα<0 and pr(1+α)≤1+αp, we can have that

∫

Ω
(V(x))p(uǫ)

pe4πp(1+α−ǫ)u2
ǫdx

≤

(

∫

Ω
(V(x))p(uǫ)

r∗pdx

)
1

r∗
(

∫

Ω
(V(x))pe4πpr(1+α−ǫ)u2

ǫdx

)
1
r

≤

(

∫

Ω
(V(x))pqdx

)
1

qr∗
(

∫

Ω
u

r∗pq∗

ǫ dx

)
1

r∗q∗
(

∫

Ω
(V(x))pe4πpr(1+α−ǫ)u2

ǫdx

)
1
r

<+∞.

So 1
λǫ

V(x)uǫe4π(1+α−ǫ)u2
ǫ is bounded in Lp(Ω) for some p > 1. By the standard elliptic

estimation, we have that uǫ ∈C0(Ω).

We also have the following crucial observation.
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Lemma 2.3.

limsup
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx= sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
V(x)e4π(1+α)u2

dx.

Proof. Obviously,

limsup
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx≤ sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
V(x)e4π(1+α)u2

dx.

On the other hand, ∀u∈W1,2
0 (Ω) with ||u||1,β ≤1, we have by Proposition 2.1,

∫

Ω
V(x)e4π(1+α)u2

dx≤ liminf
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

dx≤ liminf
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx.

Which implies

sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
V(x)e4π(1+α)u2

dx≤ liminf
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx.

Hence the result holds.

3 Blow-up analysis

In this section, we will develop the blow-up analysis when the sequence uǫ blows up

when ǫ → 0. Since uǫ is bounded in W1,2
0 (Ω) from the before section, we can assume

without loss of the generality

uǫ ⇀u0 weakly in W1,2
0 (Ω),

uǫ →u0 strongly in Lq(Ω), ∀q≥1,

uǫ →u0 a.e. in Ω.

Now denote Mǫ =maxΩuǫ = uǫ(xǫ), where xǫ ∈Ω. If Mǫ is bounded, then for any

u∈W1,2
0 (Ω) with ||u||1,β ≤1, by the Lebesgue dominated convergence theorem we have

∫

Ω
V(x)e4π(1+α)u2

dx= lim
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

dx

≤ lim
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx=
∫

Ω
V(x)e4π(1+α)u2

0dx.

Hence u0 is the desired maximizer.

In the following, we can assume Mǫ→+∞ as ǫ→0. We may also assume xǫ→P∈Ω.

Here and in the sequel, we do not distinguish sequence and subsequence, the reader can

recognize it from the context.
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In the following, we distinguish two cases (the concentration point P lies in the inte-

rior of Ω or on the boundary of Ω) to analyze the asymptotic behavior of uǫ.

Firstly, by an inequality et ≤1+tet,

∫

Ω
V(x)dx<

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx≤
∫

Ω
V(x)dx+4π(1+α)λǫ.

This leads to liminfǫ→0λǫ >0.

case 1. P lies in the interior of Ω.

we can prove the concentration-compactness Theorem for uǫ near the blow-up point.

Theorem 3.1. u0≡0, and |∇uǫ|2dx⇀δP, where δP denotes the Dirac measure centered at the

point P.

Proof. Suppose u0 6≡0, then we have

∫

Ω
|∇uǫ−∇u0|

2dx=1−||u0||
2
1,β+oǫ(1).

For p>1, δ>0, s>1, t>1 such that −1< ptα<0 and
(1+α)(1+δ)ps

1+pα <1/(1−||u0||21,β), by

using Hölder inequality again, it follow from Lemma 2.1 and Lemma 2.2 to get

∫

Ω
V p(x)u

p
ǫ e4π(1+α−ǫ)pu2

ǫdx

≤
∫

Ω
V p(x)u

p
ǫ e4π(1+α−ǫ)(1+δ)p(uǫ−u0)

2+4π(1+α−ǫ)p(1+ 1
4δ )u

2
0dx

≤

(

∫

Ω
V p(x)e4π(1+α−ǫ)(1+δ)ps(uǫ−u0)

2

)
1
s

×

(

∫

Ω
V p(x)u

ps∗

ǫ e4π(1+α−ǫ)ps∗(1+ 1
4δ )u

2
0dx

)
1

s∗

≤C

(

∫

Ω
V pt(x)e4π(1+α−ǫ)pts∗(1+ 1

4δ )u
2
0dx

)
1

s∗ t
(

∫

Ω
u

ps∗t∗

ǫ dx

)
1

s∗ t∗

<C, (3.1)

i.e. 1
λǫ

V(x)uǫe4π(1+α−ǫ)u2
ǫ is uniformly bounded in Lp(Ω) for some p>1. By the standard

elliptic estimation, we have uǫ uniformly bounded in W
2,p
0 (Ω), and then uǫ uniformly

bounded in C(Ω), which contradicts Mǫ →+∞ as ǫ→0. Hence u0≡0.

Since
∫

Ω
|∇uǫ|2dx = 1+oǫ(1) and uǫ → 0 strongly in Lq(Ω) for any q > 1. Assume

|∇uǫ|2dx⇀µ in the sense of measure. If µ 6= δP, we can choose a cut-off function ψ(x)∈
C1

0(Ω), which is supported in Br0(P)⊂Ω and equal to 1 in Br0/2(P) for some small r0 >0

such that ∫

Br0
(P)

|∇(ψuǫ)|
2dx≤1−η
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for some η > 0 provided that ǫ is sufficiently small. Then by Lemma 2.1, Lemma 2.2

and Hölder inequality, V(x)e4π(1+α)(ψuǫ)2
is uniformly bounded in Ls(Br0(P)) for some

s>1. Then the standard elliptic estimate on the Euler-Lagrange equation (2.3) implies uǫ

is uniformly bounded in Br0/2(P), which contradicts Mǫ →+∞. Therefore, |∇uǫ|2dx⇀

δP.

Next we will locate the position of the point P

Subcase 1. P∈Ω\{p1,p2,··· ,pm}
Let

r2
ǫ =

λǫ

M2
ǫ

e−4π(1+α−ǫ)M2
ǫ. (3.2)

Since uǫ→0 in Lq(Ω) for any q≥1, then we have

r2
ǫ M2

ǫ →0 as ǫ→0.

Choose a ball Bδ(P) such that pi 6∈Bδ(p) for all 1≤ i≤m.

Denote

B0,ǫ=
{

x∈R
2 : xǫ+rǫx∈Bδ(P)

}

.

Define the blowing up functions

ψǫ(x)=M−1
ǫ uǫ(xǫ+rǫx), ϕǫ(x)=Mǫ(uǫ(xǫ+rǫx)−Mǫ).

A direct computation gives

−∆ψǫ(x)=M−3
ǫ uǫ(xǫ+rǫx)V(xǫ+rǫx)e4π(1+α−ǫ)(u2

ǫ(xǫ+rǫx)−M2
ǫ)+βM−1

ǫ r2
ǫu2

ǫ(xǫ+rǫr),

−∆ϕǫ =M−1
ǫ uǫ(xǫ+rǫx)V(xǫ+rǫx)e4π(1+α−ǫ)(u2

ǫ(xǫ+rǫx)−M2
ǫ)+βMǫr2

ǫu2
ǫ(xǫ+rǫr),

in B0,ǫ. Note that |ψǫ(x)|≤1, applying the standard elliptic estimates to above equations,

we have ψǫ(x)→ψ0 in C1
loc(R

2). In particular

−∆ψ0(x)=0 in R
2.

Liouville-type theorem implies ψ0≡1 in R
2.

On the other hand, we have in any ball BR(0)

u2
ǫ(xǫ+rǫx)−M2

ǫ =2ϕǫ(x)(1+O(ψǫ(x)−1)).

Applying the standard elliptic estimates to the equation of ϕǫ, we also have ϕǫ → ϕ in

C1
loc(R

2). In particular,

{

−∆ϕ=V(p)e8π(1+α)ϕ in R
2,

ϕ(0)=0=supϕ.
(3.3)
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On one hand, we have for any R>0,
∫

BR(P)
V(p)e8π(1+α)ϕdx= lim

ǫ→0

∫

BR(xǫ)
V(xǫ+rǫx)e4π(1+α−ǫ)(u2

ǫ(xǫ+rǫx)−M2
ǫ)dx

= lim
ǫ→0

λ−1
ǫ

∫

BRrǫ (xǫ)
V(y)M2

ǫe4π(1+α−ǫ)u2
ǫ(y)dy

= lim
ǫ→0

λ−1
ǫ

∫

BRrǫ (xǫ)
V(y)u2

ǫe4π(1+α−ǫ)u2
ǫ(y)dy≤1.

This leads to ∫

R2
V(P)e4π(1+α)ϕdx≤1. (3.4)

On the other hand, in view of (3.3) and (3.4), a result of Chen and Li [23] implies that ϕ is

radially symmetric

ϕ(x)=−
1

4π(1+α)
log(1+V(p)(1+α)|x|2),

and we get
∫

R2
V(P)e8π(1+α)ϕdx=

1

1+α
>1. (3.5)

The contradiction between (3.4) and (3.5) indicates that Subcase 1 can not occur. This

implies P∈{p1,p2,··· ,pm}.

Subcase 2. P∈{p1,p2,··· ,pm}. Set P= pi (i=1,2,··· ,m).
Let

ρ2+2αi
ǫ =

λǫ

M2
ǫ

e−4π(1+α−ǫ)M2
ǫ.

Note that uǫ→0 strongly in Lq(Ω) for any q>1. Fix τ<1+α and choose s close to 1 such

that −α+τs<1, then

ρ2+2αi
ǫ e4πτM2

ǫ ≤
1

M2
ǫ

∫

Ω
u2

ǫV(x)e4πτu2
ǫ dx

≤

(

∫

Ω
u2s∗

ǫ V(x)dx

)
1

s∗
(

∫

Ω
V(x)e4πτsu2

ǫdx

)
1
s

→0.

We obtain

ρ2+2αi
ǫ e4πτM2

ǫ →0, ∀τ<1+α.

We now distinguish two steps to proceed.

Step 1.
|xǫ−pi|

ρǫ
→+∞ as ǫ→0.

Set tǫ=ρ1+αi
ǫ |xǫ−pi|

−αi and define Bi,ǫ={x∈R
2 : xǫ+tǫx∈Bδi

(pi)}, where Bδi
(pi)⊂Ω,

some δi > 0 and pj 6∈ Bδi
(pi) for all j 6= i. It is clear that tǫ → 0. We also assume that

V(x)= gi(x)|x−pi|
2αi such that gi(pi)>0. Denote the blowing up functions as

wǫ(x)=M−1
ǫ uǫ(xǫ+tǫx), vǫ(x)=Mǫ(uǫ(xǫ+tǫx)−Mǫ).
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A straightforward calculation shows

−∆wǫ(x)=
uǫ(y)

M3
ǫ

gi(y)|xǫ−pi|
−2αi |xǫ−pi+tǫx|2αi e4π(1+α−ǫ)(u2

ǫ−M2
ǫ)+βM−1

ǫ t2
ǫu2

ǫ(y) (3.6)

in Bi,ǫ, where y=xǫ+tǫx. Since 0≤wǫ≤1 and |xǫ−pi|
−2αi |xǫ−pi+tǫx|−αi−pi|

2αi=1+oǫ(1)
and βM−1

ǫ t2
ǫu2

ǫ(y)=oǫ(1), where oǫ(1)→0 in BR for any R>0, we have by applying elliptic

estimates to (3.6) that wǫ→w in C1
loc(R

2), where w satisfies

−∆w(x)=0 in R
2.

Since w≤1 and w(0)=1, the Liouville theorem leads to w=1. Also we have

−∆vǫ(x)=
uǫ(y)

Mǫ
gi(y)|xǫ−pi|

−2αi |xǫ−pi+tǫx|2αi e4π(1+α−ǫ)(u2
ǫ−M2

ǫ)+βMǫt2
ǫu2

ǫ(y). (3.7)

Clearly

uǫ(y)

Mǫ
gi(y)|xǫ−pi|

−2αi |xǫ−pi+tǫx|2αi e4π(1+α−ǫ)(u2
ǫ−M2

ǫ)∈L∞
loc(Bi,ǫ),

and βMǫt2
ǫu2

ǫ(y)= oǫ(1).
Applying the elliptic estimates to (3.7), we have that vǫ→v in C1

loc(R
2), where v satis-

fies















−∆v= gi(pi)e
8π(1+α)v in R

2,

v(0)=0=sup
R2 v,

∫

R2
gi(pi)e

8π(1+α)vdx≤1.

A result of Chen and Li [23] implies that v is radially symmetric and

∫

R2
gi(pi)e

8π(1+α)vdx=
1

1+α
>1.

So we get contradiction, which indicates that the step 1 can not occur.

Step 2.
|xǫ−pi|

ρǫ
≤C for some constant C. Define

ξǫ(x)=M−1
ǫ uǫ(xǫ+ρǫx), φǫ(x)=Mǫ

(

uǫ(xǫ+ρǫx)−Mǫ

)

.

It follows that ξǫ(x) is a distributional solution to the equation

−∆ξǫ(x)=
uǫ(y)

M3
ǫ

gi(y)|
xǫ−pi

ρǫ
+x|2αi e4π(1+α−ǫ)(u2

ǫ−M2
ǫ)+βM−1

ǫ ρ2
ǫu2

ǫ (3.8)
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in Bi,ǫ.

Since ρǫ → 0 and B2,ǫ →R
2, we can assume

xǫ−pi

ρǫ
→ x∗ for some x∗ ∈ R

2. Applying

elliptic estimates to (3.8), we have that ξǫ(x)→ ξ(x) in C1
loc(R

2\{−x∗})∩C0
loc(R

2), where

ξ(x) is a distributional harmonic function on R
2. Since ξ(x)≤ limsupǫ→0ξǫ(x)≤ 1 for

all x∈R
2 and ξ(0)= limǫ→0ξǫ(0)=1, the Liouville theorem implies that ξ(x)=1 on R

2.

Hence we conclude

ξǫ(x)→1 in C1
loc(R

2\{−x∗})∩C0
loc(R

2). (3.9)

Clearly, φǫ is a distributional solution to

−∆φǫ(x)=
uǫ(xǫ+ρǫx)

Mǫ
gi(xǫ+ρǫx)|x+x∗|2αi e4π(1+α−ǫ)(u2

ǫ−M2
ǫ)+βMǫρ2

ǫu2
ǫ (3.10)

in Bi,ǫ. Since ξǫ(x)→1 in C1
loc(R

2\{−x∗})∩C0
loc(R

2) and φǫ(0)=0=maxR2 φǫ(x), applying

elliptic estimates to (3.10), we have that φǫ(x)→φ(x) in C1
loc(R

2\{−x∗})∩C0
loc(R

2), where

φ(x) is a solution to

−∆φ(x)= gi(pi)|x+x∗|2αi e8π(1+α)φ in R
2\{−x∗}. (3.11)

If we let y=xǫ+ρǫx with |x+x∗|≤R, then for any fixed R> |x∗|+1, there holds |y−pi |≤
2Rρǫ. Combining (3.9) and Fatou’s lemma, we have

∫

BR(−x∗)
gi(pi)|x+x∗|2αi e8π(1+α)φdx

≤limsup
ǫ→0

∫

BR(−x∗)
gi(xǫ+ρǫx)|x+ρ−1

ǫ (xǫ−pi)|
2αi e4π(1+α−ǫ)(1+ξǫ)φǫdx

≤limsup
ǫ→0

λ−1
ǫ

∫

B2Rρǫ (pi)
V(y)u2

ǫe4π(1+α−ǫ)u2
ǫ(y)dy≤1.

Hence ∫

R2
gi(pi)|x+x∗|2αi e8π(1+α)φdx≤1. (3.12)

By the classification result of J.Prajapat, G.Tarantello [24], we have

φ(x)=−
1

4π(1+α)
log

(

1+gi(pi)
π(1+α)

(1+αi)2
|x+x∗|2+2αi

)

. (3.13)

Noticing that

φ(0)= lim
ǫ→0

φǫ(0)=0, (3.14)

and combining (3.13) and (3.14), we have that x∗=0 and thus

φ(x)=
1

4π(1+α)
log

(

1+gi(pi)
π(1+α)

(1+αi)2
|x|2+2αi

)

. (3.15)
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It follows that
∫

R2
gi(pi)|x|

2αi e8π(1+α)φdx=
1+αi

1+α
≥1. (3.16)

The equality holds if and only if αi =α. So we have that the blow up point P is the only

one point in {pj} with αj=α. Without loss of generality, we can assume that the blow up

point P=0 and V(x)= g(x)|x|2α . Then we have

∫

R2
g(0)|x|2αe8π(1+α)φ(x)dx=1. (3.17)

Define uǫ,L=min{uǫ,Mǫ/L}. Similar to [21], we have the following:

Lemma 3.1. For any L>1, there holds

lim
ǫ→0

∫

Ω
|∇uǫ,L|

2dx≤
1

L
.

Proof. In view of the equation (2.3) and by Theorem 3.1, we choose (uǫ−
Mǫ
L )+ a test

function and then obtain

∫

Ω
|∇

(

uǫ−
Mǫ

L

)+

|2dx=
∫

Ω
∇uǫ∇

(

uǫ−
Mǫ

L

)+

dx=−
∫

Ω

(

uǫ−
Mǫ

L

)+

∆uǫdx

=
∫

Ω

(

uǫ−
Mǫ

L

)+
uǫ(x)

λǫ
V(x)e4π(1+α−ǫ)u2

ǫ(x)dx+β
∫

Ω

(

uǫ−
Mǫ

L

)+

uǫdx

≥
∫

BRρǫ(xǫ)

(

uǫ−
Mǫ

L

)+
uǫ(x)

λǫ
V(x)e4π(1+α−ǫ)u2

ǫ(x)dx+oǫ(1)

=
∫

BR(0)

(

uǫ

Mǫ
−

1

L

)+
uǫ(xǫ+ρǫy)

Mǫ
|
xǫ

ρǫ
+x|2αg(xǫ+ρǫy)e4π(1+α−ǫ)(u2

ǫ(xǫ+ρǫy)−M2
ǫ)dy+oǫ(1)

→

(

1−
1

L

)

∫

BR(0)
g(0)|x|2αe8π(1+α)φ(y)dy.

Taking R→+∞, we have form (3.17) that

liminf
ǫ→0

∫

Ω
|∇

(

uǫ−
Mǫ

L

)+

|2dx≥1−
1

L
.

Noticing that

∫

Ω
|∇uǫ,L|

2dx+
∫

Ω
|∇

(

uǫ−
Mǫ

L

)+

|2dx= ||uǫ||1,β+β
∫

Ω
u2

ǫdx=1+oǫ(1),

we get the conclusion.

As a consequence of Lemma 3.1, we also have the following:
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Lemma 3.2. There holds

lim
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx≤
∫

Ω
V(x)dx+limsup

ǫ→0

λǫ

M2
ǫ

.

Proof. For any L>1, there holds

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx

=
∫

Luǫ≤Mǫ

V(x)e4π(1+α−ǫ)u2
ǫdx+

∫

Luǫ>Mǫ

V(x)e4π(1+α−ǫ)u2
ǫdx

≤
∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫ,Ldx+
λǫL2

M2
ǫ

. (3.18)

By Lemmas 3.1 and 2.2, V(x)e4π(1+α−ǫ)u2
ǫ,L is bounded in Lq(Ω) for some q>1. Noticing

also that uǫ,L convergence to 0 almost everywhere, V(x)e4π(1+α−ǫ)u2
ǫ converges to V(x) in

L1(Ω). Taking ǫ→0 in (3.18), we obtain

lim
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx≤
∫

Ω
V(x)dx+L2 limsup

ǫ→0

λǫ

M2
ǫ

.

Let L→1, we conclude the Lemma.

It follows Lemma 3.2 that

limsup
ǫ→0

λǫ

Mθ
ǫ

=+∞, ∀θ<2. (3.19)

For otherwise, we have λǫ/M2
ǫ →0 as ǫ→0. Let v∈W1,2

0 (Ω) be such that ||v||1,β=1. Then

we have by Lemma 3.2 that

∫

Ω
V(x)e4π(1+α)v2

dx≤ sup
u∈W1,2

0 (Ω),||∇u||L2(Ω)≤1

∫

Ω
V(x)e4π(1+α)u2

dx

= lim
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx=
∫

Ω
V(x)dx.

This is impossible since v 6≡0. Thus (3.19) holds.

The following Lemma will be used in Section 5.

Lemma 3.3.

lim
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx=
∫

Ω
V(x)dx+ lim

R→+∞
limsup

ǫ→0

∫

BRρǫ(xǫ)
V(x)e4π(1+α−ǫ)u2

ǫdx.
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Proof. On the one hand,

limsup
ǫ→0

∫

BRρǫ(xǫ)
V(x)e4π(1+α−ǫ)u2

ǫdx

≤limsup
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx−liminf
ǫ→0

∫

Ω\BRρǫ(xǫ)
V(x)e4π(1+α−ǫ)u2

ǫdx

≤limsup
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫdx−
∫

Ω
V(x)dx. (3.20)

On the other hand,

∫

BRρǫ (xǫ)
V(x)e4π(1+α−ǫ)u2

ǫdx=
λǫ

M2
ǫ

(

∫

BR(0)
g(0)|x|2αe8π(1+α)φ(x)dx+oǫ(1)

)

,

which gives

lim
R→+∞

limsup
ǫ→0

∫

BRρǫ(xǫ)
V(x)e4π(1+α−ǫ)u2

ǫdx= limsup
ǫ→0

λǫ

M2
ǫ

. (3.21)

Combining (3.20), (3.21), Lemma 3.2 and Lemma 2.3, we get the result.

In order to investigate the convergence behavior of uǫ away from P=0, we need the

following Lemma.

Lemma 3.4. We have

lim
ǫ→0

∫

Ω

Mǫuǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫdx=1. (3.22)

Proof. We divide Ω into three parts

Ω=

({

uǫ >
Mǫ

L

}

\BRρǫ(xǫ)

)

∪

{

uǫ≤
Mǫ

L

}

∪BRρǫ(xǫ)

for some L>1 and any R>0. Denote the integral on the above domains by I1, I2 and I3

respectively. Since

I1≤L
∫

{uǫ>
Mǫ
L }\BRρǫ(xǫ)

u2
ǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫdx

≤L
∫

Ω\BRρǫ(xǫ)

u2
ǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫdx

=L−L
∫

BRρǫ(xǫ)

u2
ǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫdx

→L

(

1−
∫

BR(0)
g(0)|x|2αe8π(1+α−ǫ)φ(x)dx

)

,

then we have

lim
R→+∞

lim
ǫ→0

I1=0. (3.23)
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For I2, it is easy to get

I2=
Mǫ

λǫ

∫

Ω
uǫ,Le4π(1+α−ǫ)u2

ǫ,Ldx→0. (3.24)

For I3, since

I3=
∫

BR

uǫ(xǫ+ρǫx)

Mǫ
g(xǫ+ρǫx)|

xǫ

ρǫ
+x|2αe4π(1+α−ǫ)(u2

ǫ(xǫ+ρǫx)−M2
ǫ)dx

→
∫

BR

g(0)|x|2αe8π(1+α)φ(x)dx,

then we have

lim
R→+∞

lim
ǫ→0

I3=1. (3.25)

Putting (3.23)–(3.25) together, the result holds.

Let gǫ =Mǫuǫ. It is clear that gǫ satisfies the following equation

−∆gǫ+βgǫ =
gǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫ in D′(Ω). (3.26)

Eq. (3.22) and its proof show that
gǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫ converges to the Dirac operator δ0

in D′(Ω). This suggests that gǫ should tend to the corresponding Green’s function G.

That is confirmed as follows.

Lemma 3.5. gǫ is uniformly bounded in W
1,q
0 (Ω) for any 1<q<2. Furthermore, gǫ⇀G weakly

in W
1,q
0 (Ω) for any 1<q<2 and gǫ →G uniformly in C0

loc(Ω\{0}), where G satisfies

{

−∆G+βG=δ0 x∈Ω,

G=0 x∈∂Ω,
(3.27)

in the distributional sense.

Proof. It follows from (3.22) that Mǫuǫ
λǫ

V(x)e4π(1+α−ǫ)u2
ǫ is uniformly bounded in L1(Ω).

We claim that gǫ is uniformly bounded in L1(Ω). To see this, we suppose on the contrary

that ||gǫ||L1(Ω)→+∞ as ǫ→0. Set fǫ=
gǫ

||gǫ ||L1(Ω)
, and we have || fǫ||L1(Ω)=1. Then applying

a result of Struwe ([26, Theorem 2.2]), we have that fǫ is uniformly bounded in W
1,q
0 (Ω)

for any 1<q<2, in particular fǫ → f strongly in L1(Ω). Since

1

||gǫ||L1(Ω)

Mǫuǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫ →0

in L1(Ω), f is a distributional solution to −∆ f +β f = 0 in Ω, which leads to f ≡ 0. This

contradicts

|| f ||L1(Ω)= lim
ǫ→0

|| fǫ ||L1(Ω)=1
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and confirms our claim. Now since Mǫuǫ
λǫ

V(x)e4π(1+α−ǫ)u2
ǫ−βgǫ is uniformly bounded in

L1(Ω), applying Struwe ([26, Theorem 2.2]) again, we have that gǫ is uniformly bounded

in W
1,q
0 (Ω) for any 1<q<2. Hence there exist G∈∩1<q<2W

1,q
0 (Ω) such that gǫ⇀G weakly

in W
1,q
0 (Ω) for any 1<q<2. Since (3.22) implies that Mǫuǫ

λǫ
V(x)e4π(1+α−ǫ)u2

ǫ⇀δ0 in sense of

measure. Then G is a distributional solution to (3.27). Sobolev embeding implies gǫ →G

in Lt(Ω) for any t>1.

Moreover, using the Hölder inequality and Lemma 2.1, for p>1, r>1, q>1 such that

−1< pqα<0 and pr(1+α)≤1+αp, we can have that
∫

Ω
(V(x))p(gǫ)

pe4πp(1+α−ǫ)u2
ǫdx

≤

(

∫

Ω
(V(x))p(gǫ)

r∗pdx

)
1

r∗
(

∫

Ω
(V(x))pe4πpr(1+α−ǫ)u2

ǫdx

)
1
r

≤

(

∫

Ω
(V(x))pqdx

)
1

qr∗
(

∫

Ω
g

r∗ pq∗

ǫ dx

)
1

r∗q∗
(

∫

Ω
(V(x))pe4πpr(1+α−ǫ)u2

ǫdx

)
1
r

<+∞.

So 1
λǫ

V(x)gǫe4π(1+α−ǫ)u2
ǫ is uniformly bounded in Lp(Ω) for some p > 1. By using the

standard elliptic estimation to the (3.26), then gǫ is uniformly bounded in W
2,p
0 (Ω). The

Sobolev embeding Theorem implies gǫ →G uniformly in C0
loc(Ω\{0}).

Obviously, G takes the form

G(x)=−
1

2π
log|x|+CG+ψ(x), (3.28)

where CG is a constant and ψ∈C1(Ω).
Up to now, we have described the convergence behavior of uǫ near P and away from

P when the concentration point P is in the interior of Ω.

Case 2. P lies on ∂Ω.

Lemma 3.6. Let dǫ =dist(xǫ,∂Ω), and rǫ be defined in (3.2). There holds rǫ/dǫ →0.

Proof. We suppose on the contrary that there exists R> 0 such that dǫ ≤Rrǫ. Take some

yǫ ∈∂Ω such that dǫ = |xǫ−yǫ|. Set Bδ=Bδ(P)∩Ω with some δ>0 such that pi 6∈Bδ for all

1≤ i≤m and

Bδ,ǫ=
{

x∈R
2|xǫ+rǫx∈Bδ

}

.

Then Bδ,ǫ →R
2
+(t0) := {(x1,x2)∈R

2 : x1 > t0} as ǫ→ 0. Let vǫ = M−1
ǫ uǫ(yǫ+rǫx). In this

case vǫ →v in C1
loc(R̄

2
+(t0)) and v satisfies

{

−∆v=0 x∈R
2
+(t0),

v=0 x∈∂R
2
+(t0).
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By a reflection argument, we have −∆v=0 in R
2. For ||vǫ||L∞(Bδ,ǫ)

=1, we can easily get

that v=1. Then we have vǫ→1 in C1
loc(R

2
+(t0)). This contradicts to the fact vǫ(0)=0.

By Lemma 3.6, we have limǫ→0
dist(xǫ,∂Ω)

rǫ
→+∞, and Bδ,ǫ →R

2 as ǫ → 0. Define the

blowing up functions

ψǫ =M−1
ǫ uǫ(xǫ+rǫx) in Bδ,ǫ

ϕǫ =Mǫ(uǫ(xǫ+rǫx)−Mǫ) in Bδ,ǫ.

Similar to Subcase 1, ψǫ →1 in C1
loc(R

2), and ϕǫ → ϕ in C1
loc(R

2). ϕ satisfy















−∆ϕ(x)=V(P)e8π(1+α)ϕ in R
2

ϕ(0)=0=sup
R2 ϕ

∫

R2
V(0)e8π(1+α)ϕdx≤1.

By the classify of solution, we have

ϕ(x)=−
1

4π(1+α)
log(1+V(p)(1+α)|x|2),

and we get
∫

R2
V(P)e8π(1+α)ϕdx=

1

1+α
>1.

Thus we get a contradiction. So the case don’t occur.

4 Proof of theorem

In this section,we show extremal functions exist. To this purpose, we need to derive the

upper bound first. We also need the following similar result motivated by the arguments

by Carleson and Chang in [6].

Definition 4.1. For n≥2. A sequence {uǫ}⊂W1,2
0 (Ω) is a normalized concentrating sequence

if

(i)
∫

Ω
|∇uǫ|2dx=1,

(ii) uǫ ⇀0 weakly in W1,2
0 (Ω),

(iii) there exist x0∈Ω such that any r>0,
∫

Ω\Br(x0)
|∇uǫ|2dx→0 as ǫ→0.

Then we call uǫ as a normalized concentrating sequences, and x0 is called as a blow up point.
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Theorem 4.1. Assume that {uǫ}⊂W1,2
0 (Bρ(0)) is a normalized concentrating sequence with a

blow up point, the origin. Then for α∈ (−1,0], we have

limsup
ǫ→0

∫

Bρ(0)
|x|nα(e4π(1+α)u2

ǫ−1)dx≤
πρ2+2α

1+α
e. (4.1)

Proof. Let u∗
ǫ is the schwarz symmetry rearrangement of the function uǫ(x). Set ψǫ(x)=

(1+α)
1
2 u∗

ǫ(|x|
1

1+α ) , then we have

∫

Bρ(0)
|∇ψǫ|

2dx=
∫

Bρ(0)
|∇u∗

ǫ |
2dx≤

∫

Bρ(0)
|∇uǫ|

2dx=1.

Moreover, by Hardy-Littlewood inequality,

∫

Bρ(0)
|x|nα(e4π(1+α)|uǫ(x)|2−1)dx≤

∫

Bρ(0)
|x|2α(e4π(1+α)|u∗

ǫ(x)|2−1)dx

=
ρ2α

1+α

∫

Bρ(0)
(e4πψ2

ǫ −1)dx.

Now we use a fact in [6]: For any normalized concentrating sequence {ψǫ}∈W1,2
0 (Bρ(0))

it holds

limsup
ǫ→0

∫

Bρ(0)
(e4πψ2

ǫ −1)dx≤πρ2e.

Hence (4.1) holds.

Set

T0= sup
u∈W1,2

0 (Ω),||u||1,β≤1

∫

Ω
V(x)e4π(1+α)u2

dx.

Motivated by the arguments in [6] and [27], we first compute the upper bound of T0 if uǫ

blows up. Our Lemma is the following:

Lemma 4.1. If limsupǫ→0 ||uǫ||∞ =∞, then

T0≤
∫

Ω
V(x)dx+

g(0)π

1+α
e4π(1+α)CG+1. (4.2)

Proof.

∫

Ω\Bδ(0)
|∇G|2dx=−

∫

∂Bδ(0)
G

∂G

∂ν
ds+

∫

∂Ω
G

∂G

∂ν
ds−

∫

Ω\Bδ(0)
∆Gdx

=−
∫

∂Bδ(0)
G

∂G

∂ν
ds+β

∫

Ω\Bδ(0)
G2dx

=−
1

2π
logδ+CG+β||G||2L2(Ω)+oδ(1),
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where oδ(1)→0 as δ→0. Hence we obtain

∫

Ω\Bδ(0)
|∇uǫ|

2dx=
1

M2
ǫ

(

−
1

2π
logδ+CG+β||G||2L2 (Ω)+oδ(1)+oǫ(1)

)

, (4.3)

where oǫ(1)→0 as ǫ→0. Let bǫ = sup∂Bδ(0)
uǫ and uǫ =(uǫ−bǫ)+. Then uǫ ∈W1,2

0 (Bδ(0)),
by (4.3) and the fact that

∫

Bδ(0)
|∇uǫ|

2dx=1−
∫

Ω\Bδ(0)
|∇uǫ|

2dx+β
∫

Ω
u2

ǫdx,

we have
∫

Bδ(0)
|∇uǫ|

2dx :=τǫ ≤1−
1

M2
ǫ

(

−
1

2π
logδ+CG+oδ(1)+oǫ(1)

)

.

By Theorem 4.1,

limsup
ǫ→0

∫

Bδ(0)
|x|2α(e4π(1+α)

u2
ǫ

τǫ −1)dx≤
πδ2+2α

1+α
e.

Then if we set g(ξ)=maxx∈Bδ(0)
{g(x)} with ξ∈Bδ(0), we have

limsup
ǫ→0

∫

Bδ(0)
g(x)|x|2α(e4π(1+α)

u2
ǫ

τǫ −1)dx≤
g(ξ)πδ2+2α

1+α
e. (4.4)

Now we focus the estimate on bubbling domain BRρǫ(xǫ). By Step 2, φǫ → φ in

C1
loc(R

n), and whence uǫ = Mǫ+oǫ(R), where oǫ(R)→ 0 as ǫ → 0 for any fixed R > 0.

Together with the fact Mǫuǫ →G strongly in C0
loc(Ω\{0}), we have

4π(1+α−ǫ)u2
ǫ ≤4π(1+α)(uǫ+bǫ)

2=4π(1+α)u2
ǫ+8π(1+α)uǫbǫ+4π(1+α)b2

ǫ , (4.5)

and

uǫbǫ=−
1

2π
logδ+CG+oδ(1)+oǫ(1). (4.6)

Notice that

4π(1+α)u2
ǫ ≤

4π(1+α)u2
ǫ

τǫ
−4π(1+α)(−

1

2π
logδ+CG+oδ(1)+oǫ(1))

=
4π(1+α)u2

ǫ

τǫ
+2(1+α)logδ−4π(1+α)CG+oδ(1)+oǫ(1). (4.7)

Putting (4.5)-(4.7) together, we obtain on BRρǫ(xǫ)

4π(1+α−ǫ)u2
ǫ ≤

4π(1+α)u2
ǫ

τǫ
−2(1+α)logδ+4π(1+α)CG+oδ(1)+oǫ(1).
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Therefore, we have

limsup
ǫ→0

∫

BRρǫ(xǫ)

V(x)e4π(1+α−ǫ)u2
ǫdx

≤δ−2(1+α)e4π(1+α)CG+oδ(1) limsup
ǫ→0

∫

BRρǫ(xǫ)

g(x)|x|2αe4π(1+α)
u2

ǫ
τǫ dx

≤δ−2(1+α)e4π(1+α)CG+oδ(1) limsup
ǫ→0

∫

BRρǫ(xǫ)
g(x)|x|2α(e4π(1+α)

u2
ǫ

τǫ −1)dx

≤δ−2(1+α)e4π(1+α)CG+oδ(1) limsup
ǫ→0

∫

Bδ(0)
g(x)|x|2α(e4π(1+α)

u2
ǫ

τǫ −1)dx

≤δ−2(1+α)e4π(1+α)CG+oδ(1)
g(ξ)πδ2+2α

1+α
e.

Taking δ→0, by the continuity of g(x) near the origin, we have

limsup
ǫ→0

∫

BRρǫ(xǫ)

V(x)e4π(1+α−ǫ)u2
ǫdx≤

g(0)π

1+α
e4π(1+α)CG+1.

Then by the Lemma 3.3, we have

limsup
ǫ→0

∫

Ω
V(x)e4π(1+α−ǫ)u2

ǫ ≤
∫

Ω
V(x)dx+

g(0)π

1+α
e4π(1+α)CG+1.

The proof is completed by using Lemma 2.3.

The proof of Theorem 1.1 If the sequence ||uǫ||L∞(Ω) is uniformly bounded, by Lemma

2.3, we can easily get T0<+∞. While if ||uǫ||L∞(Ω)→+∞, then by Lemma 4.1 we also get

T0<+∞. �

Next we construct a sequence to get the lower bound estimate, which is an opposite

to T0. Thus we get a contradiction and consequently we complete the proof of Theorem

1.2.

Lemma 4.2. There holds

T0>

∫

Ω
V(x)dx+

g(0)π

1+α
e4π(1+α)CG+1. (4.8)

Proof. Define a sequence of functions on Ω by

φǫ =































C+
1

C

(

−
1

4π(1+α)
log

(

1+g(0)
π

1+α
·
|x|2(1+α)

ǫ2(1+α)

)

+b

)

, x∈BRǫ

G−ηψ

C
, x∈B2Rǫ\BRǫ

G

C
, x∈Ω\B2Rǫ,

(4.9)
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where G is the Green function and ψ is the regular part as (3.28), R=(−logǫ)
1

1+α , η ∈
C1

0(B2Rǫ) satisfying that η=1 on BRǫ and |∇η|≤ 2
Rǫ , b and C are constants depending only

on ǫ to be determined later. Here and in the sequel, Br stands for a ball centered at 0 with

radius r. Clearly B2Rǫ ⊂Ω provided that ǫ is sufficiently small. In order to assure that

φǫ∈W1,2
0 (Ω), we set

C+
1

C

(

−
1

4π(1+α)
log

(

1+
g(0)π

1+α
R2(1+α)

)

+b

)

=
1

C

(

−
1

2π
log(Rǫ)+CG

)

,

which gives

C2=−
1

2π
logǫ+CG−b+

1

4π(1+α)
log

g(0)π

1+α
+O

(

1

R2(1+α)

)

. (4.10)

Noting that ψ(x)=O(|x|) as x→0, we have |∇(ηψ)|=O(1) as ǫ→0. It follows that

∫

B2Rǫ\BRǫ

|∇(ηψ)|2dx=O(R2ǫ2),
∫

B2Rǫ\BRǫ

∇G∇(ηψ)dx=O(Rǫ).

Integration by parts gives

∫

Ω\BRǫ

|∇G|2dx=−
∫

Ω\BRǫ

G∆Gdx−
∫

∂BRǫ

G
∂G

∂ν
ds

=−
1

2π
log(Rǫ)+CG+β

∫

Ω
G2dx+O(Rǫlog(Rǫ)).

This leads to
∫

Ω\BRǫ

|∇φǫ|
2dx=

1

C2

∫

Ω\BRǫ

|∇G|2dx+
1

C2

∫

B2Rǫ\BRǫ

|∇(ηψ)|2dx

−
1

C2

∫

B2Rǫ\BRǫ

∇G∇(ηψ)dx

=
1

C2

(

−
1

2π
log(Rǫ)+CG+β

∫

Ω
G2dx+O(Rǫlog(Rǫ))

)

.

Also we have

∫

BRǫ

|∇φǫ|
2dx=

1

4(1+α)2C2

∫

BRǫ

g2(0) |x|
2+4α

ǫ4+4α

(1+g(0) π
1+α |

x
ǫ |

2(1+α))2
dx

=
1

4(1+α)2C2

∫

BR

g2(0)|y|2+4α

(1+g(0) π
1+α |y|

2(1+α))2
dx

=
π

2(1+α)2C2

∫ R

0

g2(0)r3+4α

(1+g(0) π
1+α r2(1+α))2

dr
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=
1

4π(1+α)C2

∫ g(0) π
1+α R2+2α

0

t

(1+t)2
dt

=
1

4π(1+α)C2

(

log
g(0)π

1+α
−1+logR2+2α+O(

1

R2+2α
)

)

.

Hence

∫

Ω
|∇φǫ|

2dx=
1

C2

(

−
logǫ

2π
+CG+β

∫

Ω
G2dx−

1

4π(1+α)
+

1

4π(1+α)
log

g(0)π

1+α

)

+O

(

1

R2+2α

)

+O(Rǫlog(Rǫ)).

Note that
∫

Ω
φ

2
ǫdx=

1

C2

(

∫

Ω
G2dx+O(Rǫ)

)

and O(Rǫlog(Rǫ))=O( 1
R2+2α ). If we choose the suitable constant C such that

||φǫ||1,β =
∫

Ω
|∇φǫ|

2dx−β
∫

Ω
φ

2
ǫdx=1,

the we must have

C2=−
1

2π
logǫ+CG−

1

4π(1+α)
+

1

4π(1+α)
log

g(0)π

1+α
+O

(

1

R2+2α

)

. (4.11)

Combine (4.10) and (4.11), we obtain

b=
1

4π(1+α)
+O

(

1

R2+2α

)

. (4.12)

In view of (4.11) and (4.12), there holds on BRǫ,

4π(1+α)φ
2
ǫ ≥4π(1+α)C2−2log

(

1+g(0)
π

1+α
·
|x|2(1+α)

ǫ2(1+α)

)

+8π(1+α)b

=−2log

(

1+g(0)
π

1+α
·
|x|2(1+α)

ǫ2(1+α)

)

−2(1+α)logǫ+1

+4π(1+α)CG+log
g(0)π

1+α
+O

(

1

R2+2α

)

,

which together with the estimate

g(0)
∫

BR

|y|2α

(1+g(0) π
1+α |y|

2+2α)2
dy=2πg(0)

∫ R

0

r1+2α

(1+g(0) π
1+α r2+2α)2

dr
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=
∫ g(0) π

1+α R2+2α

0

1

(1+t)2
dt=1−

1

1+g(0) π
1+α R2+2α

leads to
∫

BRǫ

g(x)|x|2αe4π(1+α)φ
2
ǫdx

≥
g(0)π

1+α
ǫ−2(1+α)e

4π(1+α)CG+1+O( 1
R2+2α )

∫

BRǫ

g(x)|x|2α

(1+g(0) π
1+α

|x|2+2α

ǫ2+2α )2
dx

=
g(0)π

1+α
e

4π(1+α)CG+1+O( 1
R2+2α )(g(0)+oǫ(1))

∫

BR

|y|2α

(1+g(0) π
1+α |y|

2+2α)2
dy

=
g(0)π

1+α
e

4π(1+α)CG+1+O( 1
R2+2α )(1+oǫ(1))

(

1−
1

1+g(0) π
1+α R2+2α

)

=
g(0)π

1+α
e

4π(1+α)CG+1+O( 1
R2+2α )+oǫ(1)+O

(

1

R2+2α

)

.

On the other hand, since

∫

B2Rǫ

g(x)|x|2αdx=O

(

1

R2+2α

)

,

∫

B2Rǫ

g(x)|x|2α G2dx=O((Rǫ)2+2α log2(Rǫ))=O

(

1

R2+2α

)

,

we obtain
∫

Ω\BRǫ

g(x)|x|2αe4π(1+α)φ
2
ǫ dx

≥
∫

Ω\B2Rǫ

g(x)|x|2α(1+4π(1+α)φ2
ǫ)dx

=
∫

Ω\B2Rǫ

g(x)|x|2αdx+
4π(1+α)

C2

∫

Ω\B2Rǫ

g(x)|x|2αG2dx

=
∫

Ω
g(x)|x|2αdx+

4π(1+α)

C2

∫

Ω
g(x)|x|2αG2dx+O

(

1

R2+2α

)

.

Therefore
∫

Ω
g(x)|x|2αe4π(1+α)φ

2
ǫdx

≥
∫

Ω
g(x)|x|2αdx+

4π(1+α)

C2

∫

Ω
g(x)|x|2α G2dx

+
g(0)π

1+α
e

4π(1+α)CG+1+O( 1
R2+2α )+O

(

1

R2+2α

)

.
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In view of R=(−logǫ)
1

1+α , we have 1
R2+2α = oǫ(1). And thus we obtain

∫

Ω
V(x)e4π(1+α)φ

2
ǫ dx>

∫

Ω
V(x)dx+

g(0)π

1+α
e4π(1+α)CG+1

provided that ǫ>0 is chosen sufficiently small.
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