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1 Introduction

Let (M,g) be an (n≥3)−dimensional Riemannian manifold. In this paper, we are inter-
ested in studying on (M,g) the asymptotic behaviour of a sequence of solutions uα, when
α→∞, of the following singular elliptic equation:

∆gu−
hα

ρ2
p(x)

u= f (x)|u|2
∗−2u, (Eα)

where 2∗= 2n
n−2 , hα and f are functions on M, p is a fixed point of M and ρp(x)=distg(p,x)

is the distance function on M based at p (see Definition 2.2).
Certainly, if the singular term hα

ρ2
p(x)

is replaced by n−2
4(n−1)Scalg, then equation Eα be-

comes the prescribed scalar curvature equation which is very known in the literature.
When f is constant and the function ρp is of power 0<γ<2, Eq. (Eα) can be seen as a case
of equations that arise in the study of conformal deformation to constant scalar curvature
of metrics which are smooth only in some ball Bp(δ) (see [5]).
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Equations of type (Eα) have been the subject of interest especially on the Euclidean
space IRn. Let D1,2(IRn) be the Sobolev space defined as the completion of C∞

o (IRn), the
space of smooth functions with compact support in IRn, with respect to the norm

||u||2D1,2(IRn)=
∫

IRn
|∇u|2dx.

A famous result has been obtained in [8] and it consists of the classification of positive
solutions u∈D1,2(IRn) of the equation

∆u−
λ

|x|2
u=u

n+2
n−2 , (E)

where 0<λ<
(n−4)2

4 , into the family of functions

uλ(x)=Cλ

(

|x|a−1

1+|x|2a

)
n
2 −1

,

where Cλ is some constant and a=
√

1− 4λ
(n−2)2 .

In terms of decomposition of Palais-Smale sequences of the functional energy, this
family of solutions was employed in [6] to construct singular bubbles,

B
εα,yα

λ = ε
2−n

2
α uλ

( x−yα

εα

)

with
|yα |

εα
→0,

which, together with the classical bubbles caused by the existence of critical exponent

B
εα,yα

0 = ε
2−n

2
α u0

( x−yα

εα

)

with
|yα|

εα
→∞,

where u0 being the solution of the non perturbed equation ∆u=u
n+2
n−2 , give a whole picture

of the decomposition of the Palaise-Smale sequences. This decomposition result has been
proved in [6] and was the key component for the obtention of interesting existence results
for Eq. (E) with a function K get involved in the nonlinear term. Similar decomposition
result has been obtained in [1] for Eq. (E) with small perturbation, the authors described
asymptotically the associated Palais-Smale sequences of bounded energy.

The compactness result obtained in this paper can be seen as an extension to Rieman-
nian context of those obtained in [6] and [1] in the Euclidean context, the difficulties when
working in the Riemannian setting reside mainly in the construction of bubbles.

Historically, a famous compactness result for elliptic value problems on domains of
R

n has been obtained by M. Struwe in [7]. Struwe’s result has been extended later by O.
Druet et al. in [2] to elliptic equations on Riemannian manifolds in the form

∆gu+hαu=u2∗−1.
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Many results have been obtained by the authors describing the asymptotic behaviour of
Palais-Smale sequences. The authors gave a detailed construction of bubbles by means of
a re-scaling process via the exponential map at some points, supposed to be the centers of
bubbles. The author in [3] followed the same procedure to prove a decomposition result
on compact Riemannian manifolds for a Sobolev-Poincaré equation.

In this paper, we follow closely the work in [2] to prove a decomposition theorem
for Eq. (Eα). More explicitly, after determining conditions under which solutions of (Eα)
exist, we prove as in [6] and [1] that, under some conditions on the sequence hα and the
function f , a sequence of solutions of (Eα) of arbitrarily bounded energy decomposes into
the sum of a solution of the the limiting equation

∆gu−
h∞(p)

ρ2
p(x)

u= f (p)|u|2
∗−2u, (E∞)

where h∞ is the uniform limit of hα, and two kinds of bubbles, namely the classical and
the singular ones due to the presence respectively of the critical exponent and the singular
term.

2 Notations and preliminaries

In this section, we introduce some notations and materials necessary in our study. Let
H2

1(M) be the Sobolev space consisting of the completion of C∞(M) with respect to the
norm

||u||2
H2

1 (M)=
∫

M
(|∇u|2+u2)dvg.

M being compact, H2
1(M) is then embedded in Lq(M) compactly for q < 2∗ = 2n

n−2 and
continuously for q=2∗.

Let K(n,2) denote the best constant in Sobolev inequality that asserts that there exists
a constant B>0 such that for any u∈H2

1(M),

||u||2L2∗ (M)≤K2(n,2)||∇u||2L2(M)+B||u||2L2(M). (2.1)

Throughout the paper, we will denote by B(a,r) a ball of center a and radius r > 0, the
point a will be specified either in M or in IRn, and B(r) is a ball in IRn of center 0 and
radius r>0.

Denote by δg the injectivity radius of M. Let p∈M be a fixed point, as in [5] we define
the function ρp on M by

ρp(x)=

{

distg(p,x), distg(p,x)<δg,
δg, distg(p,x)≥δg.

(2.2)

For q≥1, we denote by Lq(M,ρ2
p) the space of functions u such that

∫

M
ρ2

p|u|
qdvg <∞.
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This space is endowed with norm

‖u‖
q

q,ρθ
p
=
∫

M
ρθ

p|u|
qdvg.

In [5], the following Hardy inequality has been proven on any compact manifold M,
for every ε>0 there exists a positive constant A(ε) such that for any u∈H2

1(M),

∫

M

u2

ρ2
p

dvg ≤ (K2(n,2,−2)+ε)
∫

M
|∇u|2dvg+A(ε)

∫

M
u2dvg, (2.3)

with K(n,2,−2) being the best constant in the Euclidean Hardy inequality

∫

Rn

u2

|x|2
dx≤K(n,2,−2)2

∫

Rn
|∇u|2dx,u∈C

∞
o (R

n).

If u is supported in a ball B(p,δ), 0<2δ<δg, then

∫

B(p,δ)

u2

ρ2
p

dvg ≤Kδ(n,2,−2)
∫

B(p,δ)
|∇u|2dvg,

with Kδ(n,2,−2) goes to K(n,2,−2) when δ goes to 0.

Concerning the existence of solutions of Eqs. (Eα), the author in [5] proved through
the classical variational techniques an existence result with f a constant function. Fol-
lowing closely the strategy in [5], we obtain the existence of a weak solution uα of the
Eq. (Eα). This existence result is formulated in the following theorem and due to the very
familiarity of the techniques used, in order to avoid heaviness in the paper, we omit the
proof (for a good presentation of these techniques, see for example [4]). For u∈ H2

1(M),
set

µ= inf
u∈H2

1(M),u 6=0

∫

M
(|∇u|2− h

ρ2
p
u2)dvg

(
∫

M f |u|2∗dvg)
2

2∗
.

The following theorem ensures conditions under which a weak solution uα of (Eα) exists.

Theorem 2.1. Let (M,g) be a compact n (n≥3)−dimensional Riemannian manifold and f , hα

(α∈ [0,∞]) be continuous functions on M. Under the following conditions:

1. 0<hα(p)< 1
K2(n,2,−2)

,

2. f (x)>0, ∀x∈M and µ<
1−hα(p)K2(n,2,−2)

(supM f )
n−2

n K2(n,2)
,

Eq. (Eα) admits a nontrivial weak solution uα∈H2
1(M).
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3 Decomposition theorem

Let Jα be the functional defined on H2
1(M) by

Jα(u)=
1

2

∫

M

(

|∇u|2−
hα

ρ2
u2
)

dvg−
1

2∗

∫

M
f |u|2

∗
dvg.

Traditionally, we define a Palais-Smale sequence vα of Jα at a level β as to be the sequence
that satisfies Jα(vα)→β and DJα(vα)ϕ→0, ∀ϕ∈H2

1(M).
Define the following limiting functionals

J∞(u)=
1

2

(

∫

M
(|∇u|2)−

h∞

ρ2
u2
)

dvg−
1

2∗

∫

M
f |u|2

∗
dvg, u∈H2

1(M),

G(u)=
1

2

∫

IRn
|∇u|2dx−

1

2∗

∫

IRn
|u|2

∗
dx, u∈D1,2(IRn),

G∞(u)=
1

2

∫

IRn
|∇u|2dx−

h∞(p)

2

∫

IRn

u2

|x|2
dx−

f (p)

2∗

∫

IRn
|u|2

∗
dx, u∈D1,2(IRn).

For α∈ [0,∞], let hα be a sequence of continuous functions on M such that

(H)











a- |hα(x)|≤C, for some constant C>0,∀x∈M and ∀α∈ [0,∞],

b- There exists a function h∞ such that supM |hα−h∞|→0, as α→∞,

c- 0<hα(p)< 1
K2(n,2,−2)

for all α, 0≤α≤∞.

Now, we state our main result

Theorem 3.1. Let (M,g) be a compact Riemannian manifold with dim(M) = n ≥ 3, hα be a
sequence of continuous functions on M satisfying (H), f be a positive continuous function on
M that satisfies with hα the conditions of Theorem 2.1. Let uα be a sequence of weak solutions of
(Eα) such that

∫

M f |uα|2
∗
dvg ≤C, ∀α>0. Then, there exist k∈ IN, sequences Ri

α >0, Ri
α →

α→∞
0,

l∈ IN sequences r
j
α>0, r

j
α →

α→∞
0, converging sequences x

j
α→x

j
o 6= p in M, a solution uo∈H2

1(M)

of (E∞), solutions vi ∈D1,2(IRn) of (3.9) and nontrivial solutions νj ∈D1,2(IRn) of (3.14) such
that up to a subsequence

uα=uo+
k

∑
i=1

(Ri
α)

2−n
n ηδ(exp−1

p (x))vi((Ri
α)

−1exp−1
p (x))

+
l

∑
j=1

(r
j
α)

2−n
n f (xo)

2−n
4 ηδ(exp−1

x
j
α

(x))νj((r
j
α)

−1exp−1

x
j
α

(x))+Wα,

with Wα→0 in H2
1(M),

and

Jα(uα)= J∞(uo)+
k

∑
i=1

G∞(vi)+
l

∑
j=1

f (x
j
o)

2−n
2 G(νj)+o(1).



22 Y. Maliki and F. Terki / Anal. Theory Appl., 34 (2018), pp. 17-35

In order to prove this theorem, we prove some useful lemmas. In all what follows, hα

is supposed to satisfy conditions (H).

Lemma 3.1. Let uα be a Palais-Smale sequence for Jα at level β that converges to a function u
weakly in H2

1(M) and L2(M,ρ2
p), strongly in Lq(M), 1≤ q< 2∗ and almost everywhere in M.

Then, the sequence vα =uα−u is sequence of Palais-Smale for Jα and

Jα(vα)=β− J∞(u)+o(1).

Proof. First, in view of the fact that uα is a Palais-Smale sequence for Jα, uα is bounded in
H2

1(M). In fact, DJα(uα)uα= o(||u||H2
1 (M)) implies that

Jα(uα)=
1

n

∫

M
f |uα|

2∗dvg =β+o(1)+o(||u||H2
1 (M)).

Since f >0, this implies in turn that uα is bounded in L2∗(M) and then in L2(M). Further-
more, we have

∫

M
|∇uα|

2dvg =nJα(uα)+
∫

hα

ρ2
p

u2
αdvg+o(||u||H2

1 (M)).

By continuity of hα on p, we have that for all ǫ>0 there exists δ>0 such that

∫

M
|∇uα|

2dvg ≤nβ+(ε+hα(p))
∫

B(p,δ)

u2
α

ρ2
p

dvg+δ−2
∫

M\B(p,δ)
hαu2

αdvg+o(||u||H2
1 (M))+o(1),

then, by applying Hardy inequality (2.3) that for every ε>0 small there exists a constant
A(ε) such that

∫

M
|∇uα|

2dvg ≤nβ+(ε+hα(p))(ε+K2(n,2,−2))
∫

M
|∇uα|

2dvg

+A(ε)
∫

M
u2

αdvg+o(||u||H2
1 (M))+o(1),

since 0<hα(p)< 1
K2(n,2,−2)

, we can find ε>0 small such that 1−(ε+hα(p))(ε+K2(n,2,−2))>

0, which implies that
∫

M |∇uα|2dvg is bounded. Thus, uα bounded in H2
1(M).

Now, for two functions ϕ,φ∈H2
1(M), Hölder and Hardy inequalities give

∫

M
|
hα−h∞

ρ2
p

φϕ|dvg ≤C||ϕ||H2
1 (M)||φ||H2

1 (M)sup
M

|hα−h∞|, (3.1)

writing
∫

M

hα

ρ2
p

φϕdvg =
∫

M

hα−h∞

ρ2
p

φϕdvg+
∫

M

h∞

ρ2
p

φϕdvg,
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we get by the assumption made on the sequence hα that

∫

M

hα

ρ2
p

φϕdvg =
∫

M

h∞

ρ2
p

φϕdvg+o(1). (3.2)

Then, since the sequence uα is bounded in H2
1(M), by taking φ = uα, we get from (3.1)

together with the weak convergence of uα to u in L2(M,ρ−2) that

∫

M

hα

ρ2
p

uα ϕdvg =
∫

M

h∞

ρ2
p

uϕdvg+o(1), (3.3)

thus, applying the last identity to ϕ=u, we get by the weak convergence in H2
1(M) that

Jα(vα)= Jα(uα)− J∞(u)+Φ(uα)+o(1),

with

Φα(uα)=
1

2∗

∫

M
f (|uα|

2∗−|u|2
∗
−|vα|

2∗)dvg,

which by the Brezis-Lieb convergence Lemma equals to o(1), hence we obtain

Jα(vα)=β− J∞(u)+o(1).

Moreover, for ϕ∈H2
1(M), by taking φ=u in (3.2), we can write

DJα(vα)ϕ=DJα(uα)ϕ−DJ∞(u)ϕ+Φ(vα)ϕ+o(1),

with

Φ(vα)ϕ=
∫

M
f
(

|vα+u|2
∗−2(vα+u)−|vα|

2∗−2vα−|u|2
∗−2u

)

ϕdvg.

Knowing that there exists a positive constant C independent of α such that

||vα+u|2
∗−2(vα+u)−|vα|

2∗−2vα−|u|2
∗−2u|≤C(|vα|

2∗−2|u|+|u|2
∗−2|vα |),

we get, after applying Hölder inequality, that there exists a positive constant C such that

|Φ(vα)ϕ|≤C

(

‖|vα |
2∗−2|u|‖L 2∗

2∗−1

(M)+‖|u|2
∗−2|vα|‖L 2∗

2∗−1

(M)

)

‖ϕ‖L2∗ (M),

which gives that Φ(vα)ϕ=o(1),∀ϕ∈H2
1(M), since both

2∗(2∗−2)
2∗−1 and 2∗

2∗−1 are smaller than

2∗ and the inclusion of H2
1(M) in Lq(M) is compact for q<2∗.

On the other hand, since the sequence u2∗−2
α uα is bounded in L 2∗

2∗−1
(M) and con-

verges almost everywhere to u2∗−2u, we get that u2∗−2
α uα converges weakly in L 2∗

2∗−1
(M)

to u2∗−2u. This, together with the weak convergence in H2
1(M) of uα to u and relation

(3.3), imply that DJ∞(u)ϕ=0, ∀ϕ∈H2
1(M). Hence, DJα(vα)ϕ→0, ∀ϕ∈H2

1(M).
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Lemma 3.2. Let vα be a Palais-Smale sequence of Jα at level β that converges weakly to 0 in
H2

1(M). If

β<β∗=

(

1−h∞(p)K2(n,2,−2)
)

n
2

n(supM f )
n−2

2 K(n,2)n
,

then vα converges strongly to 0 in H2
1(M).

Proof. If vα is a Palais-Smale sequence of Jα at level β that converges to 0 weakly in H2
1(M),

then
∫

M v2
αdvg = o(1) and

β=
1

n

∫

M

(

|∇vα|
2−

hα

ρ2
p

v2
α

)

dvg =
1

n

∫

M
f |vα |

2∗dvg+o(1).

This implies that β≥ 0. Hence, on the one hand, by Hardy inequality (2.3) we get as in
Lemma 3.1, that for small enough ε>0,

∫

M
|∇vα|

2dvg ≤
nβ

1−[(hα(p)+ε)(ε+K2(n,2,−2))]
+o(1), (3.4)

and on the other hand, by Sobolev inequality (2.1), we also get

∫

M
|∇vα|

2dvg ≥

(

nβ

(supM f )K2∗(n,2)

)
2

2∗

+o(1). (3.5)

Now, suppose that β>0, then the above inequalities (3.4) and (3.5), for α big enough, give

β≥

(

1−(h∞(p)+2ε)(K2(n,2,−2)+ε)
)

)
n
2

n(supM f )
n−2

2 K(n,2)n
,

that is

β
2
n ≥β∗ 2

n −
2ε2+ε(h∞(p)+2εK2(n,2,−2))

n
2
n (supM f )

n−2
n K(n,2)2

.

By assumption β∗
>β, by taking ε>0 small enough so that

−2ε2−ε(h∞(p)−2εK2(n,2,−2))+n
2
n (sup

M

f )
n−2

n K(n,2)2(β∗ 2
n −β

2
n )>0,

we get a contradiction. Thus β=0 and (3.4) assures that

∫

M
|∇vα|

2dvg = o(1),

that is vα →0 strongly in H2
1(M).

In the following, for a given positive constant R, define a cut-off function ηR∈C∞
o (IRn)

such that ηR(x)=1, x∈B(R) and ηR(x)=0, x∈ IRn\B(2R), 0≤ηR ≤1 and |∇ηR|≤
C
R .
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Lemma 3.3. Let vα be Palais-Smale sequence for Jα at level β that weakly, but not strongly,
converges to 0 in H2

1(M). Then, there exists a sequence of positive reals Rα →0 such that, up to
a subsequence, η̂α v̂α with

v̂α(x)=R
n−2

2
α vα(expp(Rαx)),

and η̂α(x)=ηδ(Rαx)) (δ is some positive constant), converges weakly in D1,2(Rn) to a function
v∈D2

1(R
n) such that, if v 6=0,v is a weak solution of the Euclidean equation

∆v−
h∞(p)

|x|2
v= f (p)|v|2

∗−2v. (3.6)

Proof. Since the Palais-Smale sequence vα of Jα at level β converges weakly and not
strongly in H2

1(M) to 0, we get by Lemma 3.2 that β≥β∗ . Write

∫

M

(

|∇vα |
2−

hα

ρ2
p

v2
α

)

dvg =
∫

M
f |vα|

2∗dvg+o(1)=nβ+o(1),

since, up to a subsequence, vα converges strongly to 0 in L2(M), we get by Hardy in-
equality (2.3) that for all ε>0 small

nβ∗+o(1)≤
∫

M
|∇vα |

2dvg ≤
nβ

1−(hα(p)+ε)(K2(n,2,−2)+ε)
+o(1).

In other words,

c1≤
∫

M
|∇vα |

2dvg ≤ c2, (3.7)

for some positive constants c1 and c2.
Let γ a small positive constant such that

limsup
α→∞

∫

M
|∇vα|

2
>γ. (3.8)

Up to a subsequence, for each α>0, we can find the smallest constant rα >0 such that
∫

B(p,rα)
|∇vα|

2dvg =γ.

For a sequence of positive constants Rα and x∈B(R−1
α δg)⊂R

n, define

v̂α(x)=R
n−2

2
α vα(expp(Rαx)),

ĝα(x)=(exp∗
p g)(Rαx)).

We follow the same arguments as in [2]. Let r> 0 be a constant and z∈R
n be such that

|z|+r<δg R−1
α , then we have

∫

B(z,r)
|∇v̂α|

2dvĝ =
∫

expp(RαB(z,r))
|∇vα|

2dvg.
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Let 0< ro <
δg

2 be such that for any x,y∈B(ro)⊂R
n, the following inequality holds

distg(expp(x),expp(y))≤Co|x−y| (3.9)

for some positive constant Co. Also, for r∈(0,ro), take Rα be such that corRα=rα, then we
get

expp(RαB(Cor)))=B(p,CorRα)

and then
∫

B(Cor)
|∇v̂α|

2dvĝ =
∫

B(p,rα)
|∇vα |

2dvg =γ. (3.10)

Take δ such that 0 < δ ≤ min(Cor,
δg

2 ), there exists a positive constant such that, for all
u∈D1,2(Rn) with Supp(u)∈B(δR−1

α ), the following inequalities hold

1

C1

∫

Rn
|∇u|2dx≤

∫

Rn
|∇u|2dvĝ ≤C1

∫

Rn
|∇u|2dx, (3.11a)

1

C1

∫

Rn
|u|dx≤

∫

Rn
|u|dvĝ ≤C1

∫

Rn
|u|dx. (3.11b)

Define a sequence of cut-off functions η̂α by η̂α(x)=ηδ(Rαx). Then, it follows from (3.10),
(3.11a) and (3.11b) that the sequence ṽα= η̂α v̂α is bounded in D1,2(IRn). Consequently, up
to a subsequence, ṽα converges weakly to some function v∈D1,2(IRn).

Suppose that v 6=0, since vα converges weakly to 0, it follows that Rα→0.

Let us first prove that v is a weak solution on D1,2(IRn) to (3.6). For this task, we let
ϕ∈ C∞

o (R
n) be a function with compact support included in the ball B(δ). For α large,

define on M the sequence ϕα as

ϕα(x)=R
2−n

2
α ϕ(R−1

α (exp−1
p (x))).

Then, we have

∫

M
∇vα∇ϕαdvg =

∫

Rn
∇ṽα∇ϕdvĝα ,

∫

M

hα

ρ2
p

vα ϕαdvg =R2
α

∫

Rn

hα(expp(Rαx))

dist2
ĝα
(0,Rαx)

ṽα ϕdvĝα ,

∫

M
f |vα |

2∗−2vα ϕαdvg

∫

Rn
f (expp(Rαx))|ṽα |

2∗−2ṽα ϕdvĝα .

When tending α to ∞, ĝα tends smoothly to the Euclidean metric on IRn, then by passing
to the limit when α →∞ and since vα is a Palais-Smale sequence of Jα, we get that v is
weak solution of (3.6).
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Lemma 3.4. Let v be the solution of (3.6) given by Lemma 3.3, then up to a subsequence,

wα=vα−R
2−n

2
α ηδ(exp−1(x))v(R−1

α exp−1
p (x)),

where 0< δ <
δg

2 , is a Palais-Sequence for Jα at level β−G∞(v) that weakly converges to 0 in
H2

1(M).

Proof. For 0<δ<
δg

2 , define

Bα(x)=R
2−n

2
α ηδ(exp−1

p (x))v(R−1
α exp−1

p (x)), x∈M,

and put

wα=vα−Bα.

We begin proving that wα converges weakly to 0 in H2
1(M), it suffices to prove that Bα

does. Take a function ϕ∈C∞(M), then we have

∫

B(p,2δ)
(∇Bα∇ϕ+Bα ϕ)dvg

=R
n
2
α

∫

B(2δR−1
α )

[Rαv(x)(∇ηδ)(Rαx)+ηδ(Rαx)∇v]∇ϕ(expp(Rαx))dvĝα

+R
n+2

2
α

∫

B(2δR−1
α )

vηδ(Rαx)ϕ(expp(Rαx))dvĝα ,

then, for a positive constant C′ such that dvĝα ≤C′dx, it follows that

∫

B(p,2δ)
(∇Bα∇ϕ+Bα ϕ)dvg

≤C′R
n
2
α

[

sup
M

|∇ϕ|
∫

IRn
(|∇v|+|v|Cδ−1)dx+Rα sup

M

|ϕ|
∫

IRn
|v|)dx

]

.

Thus, when tending α→∞, we ge that Bα→0 weakly in H2
1(M).

Now, let us evaluate Jα(wα). First, we have

∫

M
|∇wα|

2dvg =
∫

M\B(p,2δ)
|∇vα |

2dvg+
∫

B(p,2δ)
|∇(vα−Bα)|

2dvg,

and of course
∫

B(p,2δ)
|∇(vα−Bα)|

2dvg

=
∫

B(p,2δ)
|∇vα|

2dvg−2
∫

B(p,2δ)
∇vα∇Bαdvg+

∫

B(p,2δ)
|∇Bα|

2dvg.
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Direct calculation gives

∫

B(p,2δ)
|∇Bα|

2dvg =
∫

B(2δR−1
α )

η2
δ (Rαx)|∇v|2dvĝα

+R2
α

∫

B(2δR−1
α )

v2|∇ηδ|
2(Rαx)dvĝα +2Rα∇ηδ(Rαx)∇vdvĝα .

It can be easily seen that the second term of right-hand side member of the above equality
tends to 0 as α→∞. Furthermore, for R>0, a positive constant, we write

∫

B(2δR−1
α )

η2
δ(Rαx)|∇v|2dvĝα =

∫

B(R)
η2

δ (Rαx)|∇v|2dvĝα +
∫

Rn\B(R)
η2

δ (Rαx)|∇v|2dvĝα

with
∫

Rn\B(R)
η2

δ (Rαx)|∇v|2dvĝα ≤C
∫

Rn\B(R)
|∇v|2dx= εR,

where εR is a function in R such that εR →0 as R→∞.

Noting that ĝα goes locally in C1 to the Euclidean metric ξ, we get then

∫

B(p,2δ)
|∇Bα|

2dvg =
∫

Rn
|∇v|2dx+o(1)+εR . (3.12)

Moreover, we have

∫

B(p,2δ)
∇vα∇Bαdvg

=
∫

B(2δR−1
α )

∇(ηδ(Rαx)v̂α)∇vdvĝα +Rα

∫

B(2δR−1
α )

(v∇v̂α− v̂α∇v)∇ηδ(Rαx)dvĝα (3.13)

with

∣

∣

∣

∫

B(2δR−1
α )

∇ηδ(Rαx)(v∇v̂α− v̂α∇v)dvĝα

∣

∣

∣

≤cδ−1
[(

∫

B(2δR−1
α )

∣

∣

∣
∇v̂α|

2dvĝα

)
1
2
(

∫

B(2δR−1
α )

v2dx
)

1
2

+
(

∫

B(2δR−1
α )

v̂2
αdvĝα

)
1
2
(

∫

B(2δR−1
α ))

|∇v|2dx
)

1
2
]

.

Since vα is bounded in H2
1(M), the quantities

∫

B(2δR−1
α ) |∇v̂α |2dvĝα and

∫

B(2δR−1
α ) |v̂α|2dvĝα

are bounded and hence the second term of the right-hand side member of (3.13) is o(1).
Thus, by using the weak convergence of η̂α v̂α to v in D1,2(IRn) that

∫

B(p,δ)
∇vα∇Bαdvg =

∫

Rn
|∇v|2dx+o(1),
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so that
∫

M
|∇wα|

2dvg =
∫

M
|∇vα|

2dvg−
∫

Rn
|∇v|2dx+o(1)+εR .

In the same fashion, for R a positive constant and α large, we write

∫

B(p,2δ)

hα

ρ2
p

B
2
αdvg =

∫

B(p,RRα)

hα

ρ2
p

B
2
αdvg+

∫

B(p,2δ)\B(p,RRα)

hα

ρ2
p

B
2
αdvg

with
∫

B(p,2δ)\B(p,RRα)

hα

ρ2
p

B
2
αdvg ≤C(RRα)

−2
∫

B(p,2δ)\B(p,RRα)
B

2
αdvg,

then, by a direct calculations, we get

∫

B(p,2δ)\B(p,RRα)

hα

ρ2
p

B
2
αdvg ≤CR−2

∫

IRn\B(R)
v2dx= εR.

Hence,

∫

B(p,2δ)

hα

ρ2
p

B
2
α=R2

α

∫

B(R)

hα(expp(Rαx))

(distĝα (0,Rαx)2
η2

α(Rαx)v2dvĝα +εR

=h∞(p)
∫

Rn

v2

|x|2
dx+o(1)+εR .

Also, in similar way, since vα is bounded in H2
1(M), after using Hölder and Hardy in-

equalities, we can easily have

∫

B(p,2δ)\B(p,RRα)

hα

ρ2
p

vαBαdvg ≤CR−2
∫

IRn\B(R)
v2dvg = εR,

which yields

∫

B(p,δ)

hα

ρ2
p

vαBαdvg =R2
α

∫

B(R)

hα(expp(Rαx))

(distĝα (0,Rαx))2
(η(Rαx)v̂α)vdvĝα +εR

=h∞(p)
∫

Rn

v2

|x|2
dx+o(1)+εR .

so that in the end we obtain

∫

M

hα

ρ2
p

w2
αdvg =

∫

M

hα

ρ2
p

v2
αdvg−h∞(p)

∫

Rn

v2

|x|2
dx+o(1)+εR .

In similar way, we can prove that

∫

M
|wα|

2∗dvg =
∫

M
|vα|

2∗dvg− f (p)
∫

M
|v|2

∗
dvg+o(1)+εR.



30 Y. Maliki and F. Terki / Anal. Theory Appl., 34 (2018), pp. 17-35

Finally, since R is arbitrary, when summing up we obtain

Jα(wα)= Jα(uα)−G∞(v)+o(1)=β−G∞(v)+o(1).

It remains to prove that DJα(Bα)→ 0 in H2
1(M)′. Let ϕ ∈ H2

1(M), for x ∈ B(δR−1
α ) put

ϕα(x)=R
n−2

2
α ϕ(expp(Rαx)) and ϕα(x)=ηδ(Rαx))ϕα(x), then we have

∫

B(p,2δ)
∇Bα∇ϕdvg =

∫

B(2δR−1
α )

∇v∇ϕαdvĝα +Rα

∫

B(2δR−1
α )

∇ηδ(Rαx)(v∇ϕα−ϕα∇v)dvĝα .

Knowing that
∫

B(p,2δ)
|∇ϕ|2dvg =

∫

B(2δR−1
α )

|∇ϕα|
2dvĝα ,

we get that
∫

B(2δR−1
α )

|∇ηδ(Rαx)(v∇ϕα−ϕα∇v)|dvĝα ≤C||ϕ||H2
1 (M),

which gives that
∫

B(p,2δ)
∇Bα∇ϕdvg =

∫

B(2δR−1
α )

∇v∇ϕαdvĝα +o(||ϕ||H2
1 (M)).

Next, for R>0 write
∫

B(2δR−1
α )

∇v∇ϕαdvĝα =
∫

B(R)
∇v∇ϕαdvĝα +

∫

B(2δR−1
α )\B(R)

∇v∇ϕαdvĝα ,

note that

∫

B(2δR−1
α )\B(R)

∇v∇ϕαdvĝα ≤C||ϕ||H2
1 (M)

(

∫

B(2δR−1
α )\B(R)

|∇v|2dx
)

1
2

=O(||ϕ||H2
1 (M))ε(R),

where εR →0 as R→∞. Since the sequence of metrics ĝα tends locally in C1 when α→∞

to the Euclidean metric, we obtain
∫

B(p,2δ)
∇Bα∇ϕdvg =

∫

IRn
∇v∇ϕαdx+o(||ϕ||H2

1 (M))+O(||ϕ||H2
1 (M))ε(R).

Moreover, for a given R>0, we have for α large,

∫

B(p,2δ)

hα

ρ2
p

Bα ϕdvg =
∫

B(p,RRα)

hα

ρ2
p

Bα ϕdvg+
∫

B(p,2δ)\B(p,RRα)

hα

ρ2
p

Bα ϕdvg.

On the one hand, we have
∫

B(p,2δ)\Bp(RRα)

hα

ρ2
p

Bα ϕdvg ≤
C

(RRα)2
||ϕ||H2

1 (M)

∫

B(p,2δ)\B(p,RRα)
B

2
αdvg,
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and a straightforward computation shows that
∫

B(p,2δ)\B(p,RRα)
|Bα|

2dvg ≤CR2
α

∫

B(2δR−1
α )\B(R)

v2dx,

which implies that

∫

B(p,2δ)\B(p,RRα)

hα

ρ2
p

Bα ϕdvg =O(||ϕ||H2
1 (M))εR

with εR →0 as R→∞.
On the other hand, we have

∫

B(p,RRα)

hα

ρ2
p

Bα ϕdvg =R2
α

∫

B(R)

hα(expp Rαx)

(distĝα (0,Rαx))2
vϕdvĝ,

which leads to
∫

Bp(RRα)

hα

ρ2
p

Bα ϕdvg =
∫

B(R)

h∞(p)

|x|2
vϕdx+o(||ϕ||H2

1 (M))

=
∫

Rn

h∞(p)

|x|2
vϕdx−

∫

Rn\B(R)

h∞(p)

|x|2
vϕdx+o(||ϕ||H2

1 (M)),

with
∫

Rn\B(R)

h∞(p)

|x|2
vϕdx≤

C

R2
||ϕ||H2

1 (M)=O(||ϕ||H2
1 (M))εR,

so that
∫

B(p,2δ)

hα

ρ2
p

Bα ϕdvg =
∫

Rn

h∞(p)

|x|2
vϕdx+o(||ϕ||H2

1 (M))+O(||ϕ||H2
1 (M))εR.

In the same way, we can also have
∫

B(p,2δ)
f |Bα|

4
n−2Bα ϕdvg = f (p)

∫

Rn
|v|

4
n−2 vϕαdx+o(||ϕ||H2

1 (M))+O(||ϕ||H2
1 (M))εR.

Summing up, we obtain

∫

B(p,2δ)

(

∇Bα∇ϕdvg+
hα

ρ2
p

Bα ϕ
)

dvg−
∫

B(p,2δ)
f |Bα|

4
n−2Bα ϕdvg

=
∫

IRn

(

∇v∇ϕαdx+
h∞(p)

|x|2
vϕα

)

dx− f (p)
∫

Rn
|v|

4
n−2 vϕαdx

+o(||ϕ||H2
1 (M))+O(||ϕ||H2

1 (M))εR,

and since v is weak solution of (E∞), we get the desired result.
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Keeping the notations adapted above, we prove the following lemma

Lemma 3.5. Let vα a Palais-Smale sequence for Jα at level β. Suppose that the sequence ṽ= η̂αv̂α

of the above lemma converges weakly to 0 in D1,2(IRn). Then, there exist a sequence of positive
numbers {τα}, τα → 0 and a sequence of points xi ∈ M, xi → xo ∈ M\{p} such that up to a
subsequence, the sequence ηδ(ταx)να, with δ is some constant and

να =τ
n−2

2
α vα(expxi

(ταx))

converges weakly to a nontrivial weak solution ν of the Euclidean equation

∆ν= f (xo)|ν|
4

n−2 ν (3.14)

and the sequence

Wα=vα−τ
2−n

2
α ηδ(exp−1

xi
(x))ν(τ−1

α exp−1
xi
(x))

is a Palais-Smale sequence for Jα at level β− f (xo)
4

n−2 G(ν) that converges weakly to 0 in H1
2(M).

Proof. Suppose that the sequence ṽα = η̂α v̂α converges weakly to 0 in D1,2(IRn). Take
a function ϕ ∈ C∞

o (B(Cor)) and put ϕα(x) = ϕ(R−1
α exp−1

p (x)). As in [6] and [1], by the

strong convergence of ṽα to 0 in L2
loc(IRn), we have for α large

∫

IRn
|∇(ṽα ϕ)|2dvĝα =

∫

IRn
∇ṽα∇(ṽα ϕ2)dvĝα +o(1)

=
∫

M
∇vα∇(vα ϕ2

α)dvg+o(1)

=‖DJα‖‖vα ϕ2
α‖+

∫

M

hα

ρ2
p

(vα ϕα)
2dvg+

∫

M
f |vα |

4
n−2 (vα ϕα)

2dvg+o(1) (3.15)

≤(hα(p)+ε)(K2(n,2,−2)+ε)
∫

IRn
|∇(ṽα ϕ)|2dvĝα

+sup
M

f K2∗(n,2)
(

∫

B(Cor)
|∇ṽα |

2dvĝα

)
2

n−2
∫

IRn
|∇(ṽα ϕ)|2dvĝα +o(1).

Thus, for γ chosen small enough, we get that for each t, 0< t<Cor,
∫

B(p,tRα)
|∇vα|

2dvg =
∫

B(t)
|∇ṽα|

2dvĝ →0 as α→∞. (3.16)

Now, for t>0 consider the function

t−→F(t)=max
x∈M

∫

B(x,t)
|∇vα |

2dvg.

Since F is continuous, under (3.7) and (3.8), it follows that for any λ∈ (0,γ), there exist
tα>0 small and xα∈M such that

∫

B(xα,tα)
|∇vα|

2dvg =λ.



Y. Maliki and F. Terki / Anal. Theory Appl., 34 (2018), pp. 17-35 33

Since M is compact, up to a subsequence, we may assume that xα converges to some
point xo ∈M.

Note first that for all α≥ 0, tα < rα =CorRα, otherwise if there exists αo ≥ 0 such that
tαo < rαo , we get a contradiction due to the fact that

λ=
∫

B(xαo ,tαo )
|∇vαo |

2dvg ≥
∫

B(p,tαo)
|∇vαo |

2dvg ≥
∫

B(p,rαo)
|∇vαo |

2dvg =γ.

Now, suppose that for all ε> 0, there exists αε > 0 such that distg(xα,p)≤ ε for all α≥ αε.
Choose r′α such that, tα<r′α<rα and take ε′=r′α−tα, we get that for some αε′>0 and α≥αε′

B(xα,tα)⊂B(p,r′α),

which, by virtue of (3.16), is impossible. We deduce then that xo 6= p.
Now, let 0<τα<1, for x∈B(τ−1

α δg)⊂R
n consider the sequences

να(x)=τ
n−2

2
α vα(expxα

(ταx)),

g̃α(x)=exp∗
xα

g(ταx)).

Take τα such that Corτα = tα. As in the above lemma, we can easily check that there is a
subsequence of ν̂α=ηδ(ταx)να where δ is as in the above lemma, that weakly converges in
D1,2(IRn) to some function ν, a weak solution on D1,2(IRn) to (3.14). Note that this time
the singular term disappears because xo 6= p and because of course tα→0.

It remains to show that ν 6= 0. For this purpose, take a point a∈ IRn and a constant

r> 0 such that |a|+r< ro τ−1
α , where ro ∈ (0,

δg

2 ) is a constant such that inequality (3.9) is
satisfied. Then, we have

expxα
(ταB(a,r))⊂B(expxα(ταa),Corτα),

and

expxα
(ταB(Cor))=B(xα,Corτα)

Co, here, is the constant appearing in inequality (3.9). Since we have

∫

B(a,r)
|∇να|

2dvg̃α =
∫

expxα
(ταB(a,r))

|∇vα |
2dvg,

we get by construction of xα that for such a and r,

∫

B(a,r)
|∇να|

2dvg̃ ≤λ.

Suppose now that ν≡0. Take any function h∈D1,2(IRn) with support included in a ball
B(a,r)⊂ IRn, with a and r as above. Then, by taking λ small enough, we get by the same
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calculation done in (3.15) that
∫

B(a,r)∇ν̂αdvg̃ converges to 0 for all a∈ IRn and r> 0 such

that |a|+r< ro τ−1
α . In particular,

∫

B(xα,tα)
|∇vα|

2dvg =
∫

B(Cor)
|∇να |

2dvg̃ →0,

which makes a contradiction. Thus ν 6=0.
The proof of the remaining statements of the lemma goes in the same way as in lemma

3.4.

Proof of Theorem 3.1. First, it is worthy to mention that the value G∞(v) taken on a non-
trivial weak solution v of the Euclidean equation (3.9) is greater or equal to the constant
β∗. In fact, if v is solution of (3.9),then by Hardy and Sobolev inequalities we have

∫

IRn

(

|∇v|2−h∞(p)
v2

|x|2

)

dx= f (p)
∫

IRn
|v|2

∗
dx≤ f (p)K2∗ (n,2)

(

∫

IRn
|∇v|2dx

)
2∗

2
, (3.17)

and
∫

IRn

(

|∇v|2−h∞(p)
v2

|x|2

)

dx≥ (1−h∞(p)K2(n,−2,2))
∫

IRn
|∇v|2dx, (3.18)

then by (3.17) and (3.18) we get

G∞(v)=
1

n

∫

IRn

(

|∇v|2−h∞(p)
v2

|x|2

)

dx

≥
(1−h∞(p)K2(n,−2,2))

n
2

n f (p)
n−2

2 Kn(n,2)
=β∗. (3.19)

Now, let uα be a sequence of solutions of (Eα) such that
∫

M
f |uα|2

∗
dvg ≤ C, uα is then a

bounded Palais-Smale sequence of Jα at some level β. Up to a subsequence, we may
assume that uα converges weakly in H2

1(M) and almost everywhere in M to a solution
u of (E∞). Set vα = uα−u, then by Lemma 3.1, vα is a Palais sequence of Jα at level β1 =
β− J∞(u)+o(1). If vα→0 strongly in H2

1(M), then the theorem is proved with k= l=0. If
vα→0 only weakly in H2

1(M), then we apply Lemmas 3.3, 3.4 and 3.5 to get a new Palais-
Smale sequence v1

α at level β2 ≤ β1−β∗+o(1). So, either β2 < β∗ and then v1
α converges

strongly to 0, or β2 ≥ β∗ and in this case we repeat the procedure for v1
α to obtain again a

new Palais -Smale sequence at smaller level. By induction, after a number of iterations,
we obtain a Plais-Smale sequence at a level smaller than β∗. �

Corollary 3.1. Suppose that the sequence uα of weak solutions of (Eα) is such that

E(uα)=
∫

M
f |uα|

2∗dvg ≤ c≤

(

1−h∞(p)K2(n,2,−2)
)

n
2

(sup f )
M

n−2
2 Kn(n,2)

.

Then, up to a subsequence, uα converges strongly in H2
1(M) to a nontrivial weak solution

u of (E∞).
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Proof. By Theorem 3.1, there is a weak solution u of (E∞) such that, up to a subsequence
of uα, we have

uα=u+
k

∑
i=1

(Ri
α)

2−n
n ηδ(exp−1

p (x))vi((Ri
α)

−1exp−1
p (x))

+
l

∑
j=1

f (x
j
o)

2−n
4 (r

j
α)

2−n
n ηδ(exp−1

x
j
α

(x))νj((r
j
α)

−1exp−1

x
j
α

(x))+Wα,

with Wα→0 in H1
2(M),

and

c≥E(uα)=nJα(uα)=nJ∞(u)+n
k

∑
i=1

G∞(vi)+n
l

∑
j=1

f (x
j
o)

2−n
2 G(νj)+o(1).

Suppose that u≡0, if there exists i, 1≤ i≤ k such that vi 6=0, then by (3.19) we get

c≥

(

1−h∞(p)K2(n,2,−2)
)

n
2

(sup f )
M

n−2
2 Kn(n,2)

,

thus, vi ≡0, ∀i, 1≤ i≤ k, case in which Lemma 3.4 applies, that is, there exists νj 6=0 such
that

c≥
f (x

j
o)

2−n
2

Kn(n,2)
>

(

1−h∞(p)K2(n,2,−2)
)

n
2

(sup f )
M

n−2
2 Kn(n,2)

.

Hence, u 6= 0. Furthermore, J∞(u)> 0, from which we can conclude that k = l = 0. In
particular, uα converges strongly in H2

1(M) to u.
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