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Abstract

In this paper, we propose an algorithm for solving inequality constrained mini-max
optimization problem. In this algorithm, an active set strategy is used together with mul-
tiplier method to convert the inequality constrained mini-max optimization problem into
unconstrained optimization problem. A trust-region method is a well-accepted technique
in constrained optimization to assure global convergence and is more robust when they
deal with rounding errors. One of the advantages of trust-region method is that it does
not require the objective function of the model to be convex.

A global convergence analysis for the proposed algorithm is presented under some
conditions. To show the efficiency of the algorithm numerical results for a number of test
problems are reported.
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1. Introduction

Many real world applications can be modeled as a mini-max optimization problem. This

problem arises in engineering design, computer-aided design, circuit design, chemical design,

systems of nonlinear equations, problems of finding feasible points of systems of inequalities,

nonlinear programming problems, multi objective problems, optimal control and others. The-

oretical study for the mini-max optimization problem can be found in [1, 2].

In this paper, we introduce an active-set trust-region algorithm to solve the following mini-

max problem

minx∈ℜn Ψ(x),

subject to h(x) ≤ 0,
(1.1)

where Ψ(x) = max1≤i≤m fi(x). The functions fi : ℜ
n → ℜ, i = 1, ...,m, and h(x) : ℜn → ℜp,

are twice continuously differentiable. The objective function Ψ(x) is not necessarily differen-

tiable even though the functions fi(x), i = 1, ...,m, are all differentiable. So, the classical

algorithms which are using for solving smooth nonlinear programming problems can not be

applied directly on Problem (1.1). There are several types of algorithms suggested to solve

min-max problems, see [3–13]. The first type of algorithms shows the Problem (1.1) as a con-

strained non-smooth optimization problem. Therefore, general methods is used to solve it,

see [14, 15]. The second type of algorithms solves the Problem (1.1) by considering the special

structure of its non-differentiability so as to make use of certain smooth optimization meth-

ods, see [4, 16]. The third type of algorithms solves the Problem (1.1) by converting it into
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an equivalent smooth inequality constrained optimization problem by inserting a new variable

z ∈ ℜ.
min(xT ,z) z

subject to h(x) ≤ 0,

fi(x)− z ≤ 0, i = 1, ...,m.

It is obviously implies that solving the finite min-max inequality constrained Problem (1.1) is

equivalent to solve the above problem, see [1, 2]. In this paper, the proposed approach belongs

to the third type.

The above problem can be summarized as follows

minx̃ F (x̃)

subject to G(x̃) ≤ 0,
(1.2)

where x̃ represent the vector (xT , z) ∈ ℜn+1, F (x̃) = z, and G(x̃) ∈ ℜm+p is a vector whose

elements are (h(x), fi(x) − z)T , i = 1, ...,m.

The Lagrangian function associated with Problem (1.2) is the function

ℓ(x̃, λ) = F (x̃) + λTG(x̃), (1.3)

where λ ∈ ℜm+p is the Lagrange multiplier vector associated with inequality constraints G(x̃).

Let J(x̃) be the set of indices of violated or binding inequality constraints at a point x. i.e.,

J(x̃) = {j : Gj(x̃) ≥ 0}. If the vectors in the set {∇Gj(x̃), j ∈ J(x̃∗)} are linearly independent,

then the point x̃∗ is called a regular point for Problem (1.2).

The first-order necessary conditions for the regular point x̃∗ to be a local minimizer of

Problem (1.2) are the existence of the multiplier vector λ∗ ∈ ℜm+p such that (x̃∗, λ∗) satisfies

∇x̃F (x̃∗) +∇x̃G(x̃∗)λ∗ = 0, (1.4)

G(x̃∗) ≤ 0, (1.5)

(λ∗)iGi(x̃∗) = 0, i = 1, ...,m+ p, (1.6)

(λ∗)i ≥ 0, i = 1, ...,m+ p. (1.7)

Conditions (1.4)-(1.7) are also known as the Karush-Kuhn-Tucker conditions or the KKT con-

ditions. A point (x̃∗, λ∗) that satisfies the KKT conditions is called a KKT point. For more

details, see [17].

In this paper an active set strategy is used together with a multiplier method to convert

Problem (1.2) into unconstrained optimization problem. The general idea behind the active-

set strategy is to identify at every iteration, the active inequality constraints and treat them

as equalities. This allows the use of the well-developed techniques for solving the equality

constrained optimization problems. Many authors have proposed active-set algorithms for

solving general nonlinear programming problems, see, e.g., [18–21].

Following the active set strategy in [18], we define a 0-1 diagonal indicator matrix D(x) ∈

ℜm+p×m+p, whose diagonal entries are

di(x̃) =

{

1 if Gi(x̃) ≥ 0,

0 if Gi(x̃) < 0.
(1.8)

Using the above matrix, Problem (1.2) is converted to the following problem

min F (x̃),

subject to G(x̃)TD(x̃)G(x̃) = 0.
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In this algorithm, the multiplier method is used to replace the above equality constrained

optimization problem to the following unconstrained optimization problem and at the same

time the penalty parameter needs not to go to infinity,

min ℓ(x̃, λ) + ρ
2‖D(x̃)G(x̃)‖22,

subject to x̃ ∈ ℜn+1,
(1.9)

where ρ is positive parameter. For more details about the multiplier methods see [22].

The first-order necessary condition for the point x̃∗ to be a local minimizer of Problem (1.9)

is the existence of the multiplier vector λ∗ ∈ ℜm+p such that (x̃∗, λ∗) satisfies

∇x̃ℓ(x̃∗, λ∗) + ρ∇G(x̃∗)D(x̃∗)G(x̃∗) = 0, (1.10)

where ∇x̃ℓ(x̃∗, λ∗) = ∇F (x̃∗) +∇G(x̃∗)λ∗.

We note that if the point (x̃∗, λ∗) satisfies the KKT conditions of Problem (1.1), then it

also satisfies the first-order necessary optimal conditions of Problem (1.9) but the converse is

not necessarily true. We design our algorithm in such a way that, if the point (x̃∗, λ∗) satisfies

the first-order necessary optimal condition of Problem (1.9), then it also satisfies the first-order

necessary optimal conditions of Problem (1.1).

As we know a trust-region method is a well-accepted technique in nonlinear optimization

to assure global convergence and is more robust when they deal with rounding errors, so we

used it in this paper. One of the advantages of trust-region method is that it does not require

the objective function of the model to be convex. However, in traditional trust-region method,

after solving a trust-region subproblem, we need to use some criterion to check if the trial step

is acceptable. If not, the subproblem must be resolved with a reduced trust-region radius. For

more details see [20, 23–28].

In this paper, a global convergence theory for the proposed algorithm is introduced under

some assumptions.

Subscripted functions denote function values at particular points; for example, Gk = G(x̃k),

∇Gk = ∇G(x̃k), Dk = D(x̃k), ℓk = ℓ(x̃k, λk), ∇x̃ℓk = ∇x̃ℓ(x̃k, λk), and so on. Finally, all

norms are l2-norms.

The rest of this section introduces some notations. In Section 2, we present an outline of

the proposed trust-region algorithm. Section 3 is devoted to analysis of the global convergence

of the proposed algorithm. Section 4 contains implementation of the proposed algorithm and

the results of test problems. Section 5 contains concluding remarks.

2. Algorithm Outline

This section is devoted to presenting the detailed description of the proposed trust-region

algorithm for solving Problem (1.1).

2.1. Compute a step sk

In this section, a trial step sk is evaluated by solving the following trust-region subproblem

(2.1).

min qk(sk) = ℓk +∇x̃ℓ
T
k s+

1
2s

THks+
ρk

2 ‖Dk(Gk +∇GT
k s)‖

2

subject to ‖s‖ ≤ δk,
(2.1)
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where Hk is the Hessian of the Lagrangian function (1.3) or an approximation to it and δk > 0

is a trust-region radius. We represent the quadratic form of the objective function of Problem

(1.9) by qk(sk). For complete survey see [29, 30].

It is not necessary to obtain a very accurate approximation to the solution of the subproblem

(2.1). Instead any approximation to the solution of the subproblem (2.1) can be used as long

as the predicted decrease obtained by the step sk is greater than or equal to a fraction of the

predicted decrease obtained by the Cauchy step scpk . This means that the following condition

must be achieved

qk(0)− qk(sk) ≥ ϕ[qk(0)− qk(s
cp
k )], (2.2)

for some ϕ ∈ (0, 1]. The Cauchy step scpk is defined as

scpk = −αcp
k (∇x̃ℓk + ρk∇GkDkGk), (2.3)

where αcp
k is given by

αcp
k =







































‖ ∇x̃ℓk + ρk∇GkDkGk ‖2

(∇x̃ℓk + ρk∇GkDkGk)TBk(∇x̃ℓk + ρk∇GkDkGk)

if
‖ ∇x̃ℓk + ρk∇GkDkGk ‖3

(∇x̃ℓk + ρk∇GkDkGk)TBk(∇x̃ℓk + ρk∇GkDkGk)
≤ δk

and (∇x̃ℓk + ρk∇GkDkGk)
TBk(∇x̃ℓk + ρk∇GkDkGk) > 0,

δk
‖ ∇x̃ℓk + ρk∇GkDkGk ‖

Otherwise,

and Bk = Hk +∇GkDk∇GT
k .

Therefore, we use a generalized dogleg algorithm introduced by [31] to compute sk.

2.2. Testing sk and Updating δk

Once sk is evaluated, it needs to be tested to determine whether it will be accepted. To

do that, a merit function is needed. We use the following augmented Lagrangian function as a

merit function

Φ(x̃, λ; ρ) = ℓ(x̃, λ) +
ρ

2
‖D(x̃)G(x̃)‖2. (2.4)

To test the step, we need to estimate the Lagrange multiplier λk+1. Our way of estimating λk+1

is presented in Step 5 of Algorithm (2.1) below. To test whether the point (x̃k + sk, λk+1) will

be taken as a next iterate, an actual reduction and predicted reduction in the merit function

must be defined.

The actual reduction in the merit function in moving from (x̃k, λk) to (x̃k + sk, λk+1) is

defined as

Aredk = Φ(x̃k, λk; ρk)− Φ(x̃k + sk, λk+1; ρk).

Note that Aredk can be written as

Aredk = ℓ(x̃k, λk)− ℓ(x̃k+1, λk)−∆λT
k Gk+1 +

ρk
2
[GT

k DkGk −GT
k+1Dk+1Gk+1], (2.5)

where ∆λk = (λk+1 − λk).

The predicted reduction in the merit function is defined as

Predk = −∇x̃ℓ(x̃k, λk)
T sk −

1

2
sTk Hksk −∆λT

k (Gk +∇GT
k sk)

+
ρk
2
[‖DkGk‖

2 − ‖Dk(Gk +∇GT
k sk)‖

2]. (2.6)
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After evaluating sk and estimating λk+1, the step is tested to know whether it is accepted by

comparing Predk against Aredk. It is presented in Step 6 of Algorithm (2.1) below.

After accepting the step, we update the parameter ρk by using a scheme suggested by [32].

Our way of updating ρk is presented in Step 7 of Algorithm (2.1) below.

Finally, the algorithm is terminated when either ‖∇x̃ℓk‖+ ‖∇GkDkGk‖ ≤ ε1, or ‖sk‖ ≤ ε2
for some ε1, ε2 > 0.

2.3. The main algorithm

Master steps of our method is presented in the following algorithm.

Algorithm 2.1. (The trust-region algorithm)
Step 0. (Initialization)

Given x̃0 ∈ ℜn+1. Compute D0. Evaluate λ0. Set ρ0 = 1. Choose ε1, ε2, α1, α2,
η1, and η2 such that ε1 > 0, ε2 > 0, 0 < α1 < 1 < α2, and 0 < η1 < η2 < 1.
Choose δmin, δmax, and δ0 such that δmin ≤ δ0 ≤ δmax. Set k = 0.

Step 1. If ‖∇x̃ℓk‖+ ‖∇GkDkGk‖ ≤ ε1, then stop.
Step 2. a)Compute the step sk by solving subproblem (2.1).

b) Set x̃k+1 = x̃k + sk.

Step 3. If ‖sk‖ ≤ ε2, then stop.
Step 4. Compute Dk+1 given by (1.8).
Step 5. Compute λk+1 by solving

min ‖∇Fk+1 +∇Gk+1λ‖
2

subject to λ ≥ 0,
(2.7)

Step 6. If Aredk < η1Predk.

Set δk = α1‖sk‖ and go to step 2.
Else, if η1Predk ≤ Aredk < η2Predk.
Then accept the step: x̃k+1 = x̃k + sk.
Set δk+1 = max(δk, δmin).
Else, accept the step: x̃k+1 = x̃k + sk.
Set δk+1 = min{δmax,max{δmin, α2δk}}.
End if.

Step 7. Set ρk+1 = ρk.

If

1

2
(qk(0)− qk(sk))−∆λT

k (Gk +∇GT
k sk) < σ‖∇GkDkGk‖min{‖∇GkDkGk‖, δk}, (2.8)

then set ρk+1 = 2ρk.
End if.

Step 8. Set k = k + 1 and go to Step 1.
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In the following section, we present a global convergence theory for the proposed trust-region

algorithm.

3. Global Convergence Analysis

Let {(x̃k, λk)} be the sequence of points generated by Algorithm (2.1) and let Ω be a convex

subset of ℜn+1 that contains all iterates x̃k and x̃k+sk. On the set Ω, the following assumptions

under which our global convergence theory is proved are imposed.

Assumptions:

A1. The functions fi(x), i = 1, 2, ...,m and h(x) are twice continuously differen-

tiable for all x ∈ Ω.

A2. All of fi(x), ∇fi(x), ∇
2fi(x), h(x), ∇h(x) for i = 1, 2, ...,m, are uniformly

bounded in Ω.

A3. The sequence {λk} is bounded.

A4. The sequence of Hessian matrices {Hk} is bounded.

In the above assumptions, we do not presume ∇Gi(x̃), i = {1, ...,m + p} has inverse for all

x̃ ∈ Ω. So, we may have other kinds of stationary points. They are presented in the following

three definitions.

Definition 3.1 (Fritz John Point). A point x̃∗ is called a Fritz John point if there exist γ∗
and λ∗ not all zeros, such that

γ∗∇F (x̃∗) +∇G(x̃∗)λ∗ = 0,

D∗G(x̃∗) = 0,

(λ∗)iGi(x̃∗) = 0, i = 1, ...,m+ p,

γ∗, (λ∗)i ≥ 0, i = 1, ...,m+ p.

The above conditions are called Fritz John conditions, see [33].

If γ∗ 6= 0, then the Fritz John conditions correspond with the KKT conditions (1.4)-(1.7)

and the point (x̃∗,
λ∗

γ∗

) is called a KKT point.

Definition 3.2 (Infeasible Fritz John Point). A point x̃∗ is called an infeasible Fritz John
point if there exist γ∗ and λ∗, not all zeros, such that

γ∗∇F (x̃∗) +∇G(x̃∗)λ∗ = 0,

∇G(x̃∗)D(x̃∗)G(x̃∗) = 0 but ‖D(x̃∗)G(x̃∗)‖ > 0,

(λ∗)iGi(x̃∗) ≥ 0, i = 1, ...,m+ p,

γ∗, (λ∗)i ≥ 0, i = 1, ...,m+ p.

The above conditions are called the infeasible Fritz John conditions, see [33].

If γ∗ 6= 0, then the point (x̃∗,
λ∗

γ∗

) is called an infeasible KKT point and the infeasible Fritz

John conditions are called the infeasible KKT conditions.

Definition 3.3 (Infeasible Mayer-Bliss Point). A point x̃∗ is called an infeasible Mayer-
Bliss if

∇G(x̃∗)D(x̃∗)G(x̃∗) = 0,

‖D(x̃∗)G(x̃∗)‖ > 0.
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The above conditions are called the infeasible Mayer-Bliss conditions, see [34].

The conditions stated in Definitions (3.1)-(3.3) are called stationary conditions of problem

(1.1) and the point that satisfies any of these stationary conditions is called a stationary point.

The following three lemmas provide conditions equivalent to the conditions given in Defini-

tions (3.1)-(3.3).

Lemma 3.1. Suppose that assumptions A1-A4 hold. A subsequence {x̃ki
} of the iteration se-

quence asymptotically satisfies the infeasible Fritz John conditions if it satisfies:

1) lim
ki→∞

‖Dki
G(x̃ki

)‖ > 0;

2) lim
ki→∞

(∇G(x̃ki
)Dki

G(x̃ki
) = 0.

Proof. See Lemma 4.1 of [20]. �

Lemma 3.2. Suppose that assumptions A1-A4 hold. A subsequence {x̃ki
} of the iteration se-

quence asymptotically satisfies the feasible Fritz John’s conditions if it satisfies:

1) For all ki, ‖Dki
Gki

‖ > 0 and lim
ki→∞

Dki
Gki

= 0;

2) For ki → ∞, lim
ki→∞

{

min
s∈ℜn+1

‖Dki
(Gki

+∇GT
ki
s)‖2

‖Dki
Gki

‖2

}

= 1.

Proof. See Lemma 4.2 of [20]. �

Lemma 3.3. Suppose that assumptions A1-A4 hold. A subsequence {x̃ki
} of the iteration se-

quence asymptotically satisfies the infeasible Mayer-Bliss conditions if it satisfies:

1) lim
ki→∞

‖Dki
Gki

‖ > 0;

2) lim
ki→∞

{

min
s∈ℜn+1

‖Dki
(Gki

+∇GT
ki
s)‖2

}

= lim
ki→∞

‖Dki
Gki

‖2.

Proof. See Lemma 4.3 of [20]. �

Lemma 3.4. Assume A1 and A2. Then D(x̃)G(x̃) is Lipschitz continuous in Ω.

Proof. See Lemma 4.1 of [18]. �

From the above lemma, we conclude that G(x̃)TD(x̃)G(x̃) is differentiable and ∇G(x̃)D(x̃)

G(x̃) is Lipschitz continuous in Ω.

Lemma 3.5. At any iteration k, let V (xk) ∈ ℜm+p×m+p be a diagonal matrix whose diagonal
entries are

(vk)i =







1 if (Gk)i < 0 and (Gk+1)i ≥ 0,
−1 if (Gk)i ≥ 0 and (Gk+1)i < 0,
0 otherwise,

(3.1)

where i = 1, ...,m+ p. Then
Dk+1 = Dk + Vk. (3.2)

Proof. See Lemma 5.1 of [19]. �

Lemma 3.6. Assume A1 and A2. At any iteration k, there exists a positive constant K1

independent of k, such that
‖VkGk‖ ≤ K1‖sk‖, (3.3)

where Vk ∈ ℜm+p×m+p is the diagonal matrix whose diagonal entries are defined in (3.1).
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Proof. See Lemma 5.2 of [19]. �

The following lemma gives upper bound on the difference between the actual reduction and

the predicted reduction.

Lemma 3.7. Suppose that assumptions A1-A4 hold, then there exists a constant K2 > 0 that
does not depend on k, such that

| Aredk − Predk |≤ K2ρk‖sk‖
2. (3.4)

Proof. From (2.5) and (3.2), we have

Aredk = ℓ(x̃k, λk)− ℓ(x̃k+1, λk)−∆λT
k Gk+1 +

ρk
2
[GT

kDkGk −GT
k+1(Dk + Vk)Gk+1].

From the above equation, (2.6), and using Cauchy-Schwarz inequality, we have

| Aredk − Predk |

≤ | ℓ(x̃k, λk) +∇ℓ(x̃k, λk)
T sk +

1

2
sTkHksk − ℓ(x̃k+1, λk) | + | ∆λT

k [(Gk +∇GT
k sk)−Gk+1] |

+
ρk
2

| (Gk +∇GT
k sk)

TDk(Gk +∇GT
k sk)−GT

k+1(Dk + Vk)Gk+1 | .

Hence,

|Aredk − Predk|

≤ |
1

2
s
T

k (Hk −∇2
ℓ(x̃k + ξ1sk, λk))sk | + | ∆λ

T

k (∇Gk −∇G(x̃k + ξ2sk))
T
sk |

+ ρk | [(∇Gk −∇G(x̃k + ξ2sk))DkGk]
T
sk | +

ρk

2
| sTk∇G(x̃k + ξ2sk)Dk∇G(x̃k + ξ2sk)

T
sk |

+
ρk

2
| sTk∇

2
G(x̃k + ξ2sk)VkG(x̃k + ξ2sk)sk | +ρk | (∇G(x̃k + ξ2sk)VkGk)

T
sk | +

ρk

2
| GT

k VkGk |,

for some ξ1 and ξ2 ∈ (0, 1). Using the assumptions A1 − A4, and Inequality (3.3), the proof

follows. �

Lemma 3.8. Suppose that assumptions A1-A4 hold. Then for all k > k̄, there exists a positive
constant K3 independent of the iterates such that,

qk(0)− qk(sk)

≥K3 ‖ ∇x̃ℓ(x̃k, λk) + ρk∇GkDkGk ‖ min

{

δk,
‖ ∇ℓ(x̃k, λk) + ρk∇GkDkGk ‖

‖ Bk ‖

}

. (3.5)

Proof. Using (2.2) and (2.3), the proof is similar to the proof of Lemma (6.2) of [19] for

another algorithm. �

From the way of updating the positive parameter ρk, we have

1

2
(qk(0)− qk(sk))−∆λT

k (Gk +∇GT
k sk) < σ‖∇GkDkGk‖min{‖∇GkDkGk‖, δk}, (3.6)

only when there exists an infinite subsequence of indices {ki} indexing iterates of acceptable

steps that satisfy, for all k ∈ {ki} the sequence {ρk} is unbounded.

The following two lemmas show that if ρk → ∞, as k → ∞, then a subsequence of the

iteration sequence generated by Algorithm (2.1) satisfies Fritz John conditions or infeasible

Mayer-Bliss conditions in the limit.
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Lemma 3.9. Suppose that assumptions A1-A4 hold. If ρk → ∞, as k → ∞ and there exists
a subsequence {kj} of indices indexing iterates that satisfy ‖DkGk‖ ≥ ǫ1 > 0 for all k ∈ {kj},
then a subsequence of the iteration sequence indexed {kj} satisfies the infeasible Mayer-Bliss
conditions in the limit.

Proof. The proof is by contradiction. Suppose there exists no subsequence of the sequence

of iterates that satisfies the infeasible Mayer-Bliss conditions in the limit. Using Lemma (3.3),

then for all k we have, | ‖DkGk‖
2 − ‖Dk(Gk +∇GT

k sk)‖
2 |≥ ε1 and from Definition (3.3), we

have ‖∇GkDkGk‖ ≥ ε2 for some ε2 > 0. Since ρk → ∞, then there exists infinite number of

acceptable iterates at which Inequality (3.6) holds. We consider two cases:

i) If ‖DkGk‖
2 − ‖Dk(Gk +∇GT

k sk)‖
2 ≥ ε1, we have

ρk{‖DkGk‖
2 − ‖Dk(Gk +∇GT

k sk)‖
2} ≥ ρkε1 → ∞. (3.7)

Since

1

2
(qk(0)− qk(sk))−∆λT

k (Gk +∇GT
k sk)

= −
1

2
∇x̃k

ℓ(x̃k, λk)
T sk −

1

4
sTkHksk −

1

2
∆λT

k (Gk +∇GT
k sk)

+
ρk
4
{‖DkGk‖

2 − ‖Dk(Gk +∇GT
k sk)‖

2}.

Using assumptions A2 -A4, and Inequality (3.7), we have [ 12 (qk(0) − qk(sk)) − ∆λT
k (Gk +

∇GT
k sk)] → ∞. Hence, the left hand side of Inequality (3.6) tends to infinity as k → ∞,

while the right hand side goes to zero. This gives a contradiction in this case.

ii) If ‖DkGk‖
2 − ‖Dk(Gk +∇GT

k sk)‖
2 ≤ −ε1. Because ρk → ∞ as k → ∞, we have

ρk{‖DkGk‖
2 − ‖Dk(Gk +∇GT

k sk)‖
2} ≤ −ρkε1 → −∞. (3.8)

Similar to the case (i), we have

[
1

2
(qk(0)− qk(sk))−∆λT

k (Gk +∇GT
k sk)] → −∞.

Since Predk = (qk(0) − qk(sk)) − ∆λT
k (Gk + ∇GT

k sk), we have Predk → −∞. This gives a

contradiction with Predk > 0. These two contradictions prove the lemma. �

The following lemma studies the case when lim infk→∞‖DkGk‖ = 0 and ρk → ∞ as k → ∞.

Lemma 3.10. Suppose that assumptions A1-A4 hold. If ρk → ∞, as k → ∞, and there exists a
subsequence {kj} of iterates that satisfies ‖DkGk‖ > 0 for all k ∈ {kj} and limkj→∞ ‖Dkj

Gkj
‖ =

0, then a subsequence of the sequence of iterates indexed {kj} satisfies Fritz John’s conditions
in the limit.

Proof. Let the subsequence {kj} be renamed to {k} to simplify the notations avoiding double

indexes. The proof is by contradiction. Assume there exists no subsequence that satisfies Fritz

John’s conditions in the limit. Hence, using Lemma (3.2), there exists a constant ε3 such that

for all k sufficiently large,

| ‖DkGk‖
2 − ‖Dk(Gk +∇GT

k sk)‖
2 |

‖DkGk‖2
≥ ε3. (3.9)
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We consider three cases:

i) If lim infk→∞
sk

‖DkGk‖
= 0, Inequality (3.9) gives contradiction.

ii)If lim supk→∞
sk

‖DkGk‖
= ∞. From the way of computing the trial steps, we have

∇x̃k
ℓ(x̃k, λk) + ρk∇GkDkGk = −(Bk + µkI)sk, (3.10)

where µk ≥ 0 is the Lagrange multiplier of the trust region constraint. Since Bk = Hk +

ρk∇GkDk∇GT
k and using (3.10), then Inequality (3.5) can be written as follows

qk(0)− qk(sk)

≥K3 ‖ ∇x̃k
ℓk + ρk∇GkDkGk ‖ min

{

δk,
‖ [ 1

ρk
Hk + (∇GkDk∇GT

k + µk

ρk
I)]sk ‖

‖ 1
ρk
Hk +∇GkDk∇GT

k ‖

}

. (3.11)

Because ρk → ∞, as k → ∞, there exists an infinite number of acceptable steps such that

Inequality (3.6) holds. But Inequality (3.6) can be written as

1

2
(qk(0)− qk(sk))−∆λT

k (Gk +∇GT
k sk) < σ‖∇Gk‖

2‖DkGk‖
2. (3.12)

From Inequalities (3.11) and (3.12), we have

K3

2
‖ ∇x̃k

ℓk + ρk∇GkDkGk ‖ min

{

δk,
‖ [ 1

ρk
Hk + (∇GkDk∇GT

k + µk

ρk
I)]sk ‖

‖ 1
ρk
Hk +∇GkDk∇GT

k ‖

}

−∆λT
k (Gk +∇GT

k sk) < σb21‖DkGk‖
2 (3.13)

where b1 = supx∈Ω‖∇Gk‖. Since

∆λT
k (Gk +∇GT

k sk) = ∆λT
k Gk +∆λT

k ∇GT
k sk

= (λk+1Dk+1 − λkDk)
TGk +∆λT

k ∇GT
k sk

= (λk+1(Dk + Vk)− λkDk)
TGk +∆λT

k ∇GT
k sk

≤ ‖∆λk‖‖DkGk‖+ ‖λk+1‖‖VkGk‖+ ‖∆λT
k∇GT

k ‖‖sk‖

≤ ‖∆λk‖‖DkGk‖+K1‖λk+1‖‖sk‖+ ‖∆λT
k∇GT

k ‖‖sk‖

≤ ‖∆λk‖‖DkGk‖+ [K1‖λk+1‖+ ‖∆λT
k ∇GT

k ‖]‖sk‖

≤ ‖∆λk‖‖DkGk‖+ [K1‖λk+1‖+ ‖∆λT
k ∇GT

k ‖]δk.

Then, from Inequality (3.13) and the above inequality we have

K3

2
‖ ∇x̃k

ℓk + ρk∇GkDkGk ‖ min

{

δk,
‖ [ 1

ρk
Hk+(∇GkDk∇GT

k +
µk

ρk
I)]sk ‖

‖ 1
ρk
Hk +∇GkDk∇GT

k ‖

}

−‖∆λk‖‖DkGk‖ − [K1‖λk+1‖+ ‖∆λT
k ∇GT

k ‖]δk < σb21‖DkGk‖
2.

Hence, if we divided the above inequality by ‖DkGk‖, we obtain

K3

2
‖ ∇x̃k

ℓk + ρk∇GkDkGk ‖ min

{

δk
‖DkGk‖

,
‖ [ 1

ρk
Hk+(∇GkDk∇GT

k +
µk

ρk
I)]sk ‖

‖ 1
ρk
Hk +∇GkDk∇GT

k ‖ ‖DkGk‖

}

−‖∆λk‖ − [K1‖λk+1‖+ ‖∆λT
k∇GT

k ‖]
δk

‖DkGk‖
< σb21‖DkGk‖. (3.14)
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The right hand side of the above inequality goes to zero as k → ∞ and ‖∆λk‖ is bounded.

This implies that along the subsequence {ki} where limki→∞
ski

‖Dki
Gki

‖ = ∞,

∥

∥

∥
∇x̃ki

ℓki
+ ρki

∇Gki
Dki

Gki

∥

∥

∥

∥

∥

∥
[ 1
ρki

Hki
+ (∇Gki

Dki
∇GT

ki
+

µki

ρki

I)]ski

∥

∥

∥

∥

∥

∥

1
ρki

Hki
+∇Gki

Dki
∇GT

ki
‖‖Dki

Gki

∥

∥

∥

,

is bounded. Therefore, asymptotically, either
ski

‖Dki
Gki

‖ lies in the null space of ∇Gki
Dki

∇GT
ki
+

µki

ρki

I or ‖ ∇x̃ki
ℓki

+ ρki
∇Gki

Dki
Gki

‖→ 0. The first possibility occurs only when
µki

ρki

→ 0 as

ki → ∞ and ski
/‖Dki

Gki
‖ lies in the null space of the matrix ∇Gki

Dki
∇GT

ki
which contradicts

assumption (3.9) and implies that a subsequence of the iteration sequence satisfies the Fritz

John conditions in the limit. The second possibility implies as ki → ∞

‖ ∇x̃ki
ℓki

+ ρki
∇Gki

Dki
Gki

‖→ 0.

Hence as ki → ∞, ρki
‖∇Gki

Dki
Gki

‖ must be bounded. Hence, we have ∇x̃ki
ℓki

= 0. This

implies that a subsequence of the iteration sequence satisfies the Fritz John conditions in the

limit.

iii) If lim supk→∞
sk

‖DkGk‖
< ∞ and lim infk→∞

sk
‖DkGk‖

> 0. Therefore ‖sk‖ → 0. Hence, as in

the second case, the right hand side of (3.14) goes to zero as k → ∞. This implies that

‖ ∇x̃k
ℓk + ρk∇GkDkGk ‖

‖ (∇GkDk∇GT
k + µk

ρk
I)sk ‖

‖ ∇GkDk∇GT
k ‖ ‖DkGk‖

→ 0.

But this implies that asymptotically, either

‖ ∇x̃k
ℓk+ρk∇GkDkGk ‖→ 0 or

‖ (∇GkDk∇GT
k +

µk

ρk
I)sk ‖

‖ ∇GkDk∇GT
k ‖ ‖DkGk‖

→ 0.

As the second case, the two possibilities imply that a subsequence of the iteration sequence

satisfies the Fritz John conditions in the limit. This completes the proof. �

In the rest of this paper, we continue our analysis assuming that the positive parameter ρk is

bounded. That is, we assume the existence of an integer k̄ such that for all k ≥ k̄, ρk = ρ̄ < ∞

and

1

2
(qk(0)− qk(sk))−∆λT

k (Gk +∇GT
k sk) ≥ σ‖∇GkDkGk‖min{‖∇GkDkGk‖, δk}. (3.15)

Lemma 3.11. Suppose that assumptions A1-A4 hold. At any given iteration indexed k at which
‖∇x̃k

ℓk + ρ̄∇GkDkGk‖ + ‖∇GkDkGk‖ > ǫ1, there exists a positive constant K4 that depends
on ǫ1 but not depend on k, such that

Predk ≥ K4δk. (3.16)

Proof. From (2.6), (3.15) and using Lemma (3.8), we have

Predk =
1

2
(qk(0)− qk(sk)) + [

1

2
(qk(0)− qk(sk)) −∆λT

k (Gk +∇GT
k sk)]

≥
K3

2
‖ ∇x̃ℓk + ρ̄∇GkDkGk ‖ min

{

δk,
‖ ∇x̃ℓk + ρ̄∇GkDkGk ‖

‖Bk‖

}

+σ‖∇GkDkGk‖min{‖∇GkDkGk‖, δk}. (3.17)
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We consider two cases:

i) If ‖∇x̃ℓk + ρ̄∇GkDkGk‖ > ǫ1
2 and using Inequality (3.17), then

Predk ≥
K3

2
‖ ∇x̃ℓk + ρ̄∇GkDkGk ‖ min

{

δk,
‖ ∇x̃ℓk + ρ̄∇GkDkGk ‖

‖Bk‖

}

,

≥
K3ǫ1
4

min

{

1,
ǫ1

2b2δmax

}

δk,

where ‖Bk‖ ≤ b2 under assumptions A1 −A4.

ii) If ‖∇GkDkGk‖ > ǫ1
2 and using Inequality (3.17), then we have

Predk ≥
σǫ1
2

min

{

ǫ1
2δmax

, 1

}

δk.

From the above two cases, the result follows by takeing K4 = min{K3ǫ1
4 min{1, ǫ1

2b2δmax
}, σǫ1

2

min{ ǫ1
2δmax

, 1}}. �

Lemma 3.12. Suppose that assumptions A1-A4 hold. If

‖∇x̃ℓk + ρ̄∇GkDkGk‖+ ‖∇GkDkGk‖ > ǫ1,

then the condition Aredkj
≥ τ1Predkj

will be satisfied for some finite j i.e., an acceptable step
is found after finitely many trials.

Proof. Since ‖∇x̃ℓk+ ρ̄∇GkDkGk‖+‖∇GkDkGk‖ > ǫ1. From Inequalities (3.4) and (3.16),

we have

|
Aredk
Predk

− 1 |=
| Aredk − Predk |

Predk
≤

K2ρ̄δ
2
k

K4δk
=

K2ρ̄δk
K4

.

Now as the trial step skj
gets rejected, δkj

becomes small and eventually after finite number of

trials, (i.e., for j finite), the acceptance rule will be met. This completes the proof. �

Lemma 3.13. Suppose that assumptions A1-A4 hold. If ‖∇x̃ℓk+ρ̄∇GkDkGk‖+‖∇GkDkGk‖ >
ǫ1, at a given iteration k, the jth trial step satisfies

‖skj‖ ≤
(1 − η1)K4

2ρ̄K2
, (3.18)

then it must be accepted.

Proof. We prove this lemma by contradiction. Assume that the step skj is rejected and

Inequality (3.18) holds. Then, from Inequalities (3.4) and (3.16) we have

(1 − η1) <
| Aredkj − Predkj |

Predkj

<
K2ρ̄‖skj‖2

K4‖skj‖
≤

(1− η1)

2
.

This gives a contradiction and proves the lemma. �

Theorem 3.1. Suppose that assumptions A1-A4 hold. Then the sequence of iterates generated
by the algorithm satisfies

lim inf
k→∞

[ ‖∇x̃ℓk‖+ ‖∇GkDkGk‖ ] = 0. (3.19)
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Proof. First, we prove that

lim inf
k→∞

[‖∇x̃ℓk + ρ̄∇GkDkGk‖+ ‖∇GkDkGk‖] = 0. (3.20)

We prove this equation by contradiction. Suppose that, for all k, ‖∇x̃ℓk + ρ̄∇GkDkGk‖ +

‖∇GkDkGk‖ > ǫ1. Consider a trial step indexed j of the iteration indexed k, k ≥ k̄, and such

that kj ≥ k̄. Using Lemma 3.11, we have for any acceptable step indexed kj ,

Φkj − Φkj+1 = Aredkj ≥ η1Predkj ≥ η1K4δkj . (3.21)

As k goes to infinity the above inequality implies that

lim
k→∞

δkj = 0. (3.22)

That is, the radius of the trust region is not bounded below.

If we consider an iteration indexed kj > k̄ and if the previous step was accepted; i.e. if

j = 1, then δk1 ≥ δmin. Hence δkj is bounded in this case.

Now assume that j > 1. That is, there exists at least one rejected trial step. From Lemma

(3.13), we have for the rejected trial step,

‖ski‖ >
(1− η1)K4

2ρ̄K2
,

for all i = 1, 2, ...j − 1. Since ski is a rejected trial step, then from the way of updating the

radius of trust region (see Step 6 Algorithm 2.1) and using the above inequality, we have

δkj = α1‖skj−1‖ > α1
(1− η1)K4

2ρ̄K2
.

Hence δkj is bounded. But this contradicts (3.22). Therefore, the supposition is wrong. Hence,

lim inf
k→∞

[‖∇x̃ℓk + ρ̄∇GkDkGk‖+ ‖∇GkDkGk‖] = 0.

But this also implies (3.19). This completes the proof of the theorem. �

From the above theorem, we conclude that, given any ǫ1, the algorithm terminates because

‖∇x̃ℓk‖+ ‖∇GkDkGk‖ < ǫ1.

4. Numerical Experiments

In this section, we present the numerical results of the trust-region Algorithm (2.1) which

have been performed on a laptop with Intel Core (TM)i7-2670QM CPU 2.2 GHz and 8 GB

RAM. Algorithm (2.1) was implemented as a MATLAB code and run under MATLAB version

7.10.0.499 (R2010a)

Given a starting point x̃0 ∈ ℜn+1. We chose δmin = 10−3, δ0 = max(‖sncp0 ‖, δmin), and

δmax = 103δ0. Also we chose η1 = 0.25, η2 = 0.75, α1 = 0.5, α2 = 2, ε1 = 10−6, ε2 = 10−8.

The computation terminates when ‖∇x̃ℓk‖+ ‖∇GkDkGk‖ ≤ ε1 or ‖sk‖ ≤ ε2.

The results are reported in Table 1 where the mini-max test problems are numbered in the

same way as in [35]. For comparison, we have included the corresponding results of the number

of iteration (iter) and the number of function evaluation (nfunc) obtained by Method in [35]

(Table 1). For all mini-max problems, these algorithms achieved the same optimal solution.
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5. Concluding Remarks

In this paper, we propose a trust region Algorithm 2.1 for solving mini-max Problem (1.1).

To study the global convergence of the proposed algorithm four Assumptions A1 − A4 are

imposed. Under these Assumptions a number of important lemmas are stated and proved. To

validate the theoretical analysis of the algorithm, a number of mini-max problems are reported

and compared with the method in [35].

Table 5.1: Comparison of Method in [35] with Algorithm 2.1.

Problem Starting Method in [35] Algorithm 2.1

Name point
iter nfunc iter nfunc

Problem 1 [35] (1, -0.1) 5 5 3 4
(0, 0) 6 6 4 5
(2, 2) 6 6 4 5
(4, -4) 16 16 16 17

Problem 2 [35] (3,1) 17 17 10 12
(1, 3) 7 7 4 5

Problem 3 [35] (3,1) 13 13 8 9
(50, 0.05) 9 9 5 6

Problem 4 [35] (2.1,1.9) 7 8 10 11
(1.9, 2.1) 7 10 7 9
(2, 4) 8 9 5 6
(4, 2) 10 11 11 12

Problem 5 [35] (0,0,0,0) 10 11 8 9
(0,1,1,0) 10 13 8 9
(2,2,5,0) 10 10 8 10
(1,3,3,1) 10 10 7 8
(-2,1,1,-2) 10 10 9 10

Problem 6 [35] (0, 1) 4 4 5 6
(3, 1) 7 7 5 6

Problem 7 [35] (1,2,0,4,0,1,1) 15 33 15 20
(3, 3,0,5,1,3,0) 18 42 16 21

Problem 8 [35] (-1.2,1) 14 46 10 20
Problem 9 [35] (50,0.05) 8 8 9 11

(1,1.1) 11 20 9 11
Problem 10 [35] (1.41831,-4.79462) 8 8 10 12
Problem 11 [35] (2,3,5,5,1,2,7,3,6,10) 8 8 7 8

sum 254 347 213 262

For future work, related important questions that have to be looked at are how to use a

secant approximation of the Hessian of the Lagrangian function in order to produce a more

efficient algorithm and how to update the Lagrange multiplier which will reduce the cost of the

computation of the steps.
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