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Abstract. We present a formula approximating the mean escape time (MST) of a par-
ticle from a tilted multi-periodic potential well. The potential function consists of a
weighted sum of a finite number of component functions, each of which is periodic.
For this particular case, the least period of the potential function is a common period
amongst all of its component functions. An approximation of the MST for the potential
function is derived, and this approximation takes the form of a product of the MSTs
for each of the individual periodic component functions. Our first example illustrates
the computational advantages of using the approximation for model validation and
parameter tuning in the context of the biological application of DNA transcription. We
also use this formula to approximate the MST for an arbitrary tilted periodic potential
by the product of MSTs of a finite number of its Fourier modes. Two examples using
truncated Fourier series are presented and analyzed.
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1 Introduction

Brownian ratchets were first introduced in the early 1900s by Smoluchowski and later
developed by Feynman [23, 51]. A Brownian ratchet is a system where periodic forc-
ing coupled with Brownian motion can be harnessed and directed to do work, such as
particle transport. Brownian ratchets are often modeled as particle transport through
a periodic potential where the Brownian motion is incorporated as a thermal noise term
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used to propel the particle from one potential well, over a potential wall, and into the next
well. Since the introduction of Brownian ratchets, they have been used in several fields to
analyze diffusive motion, typically in microscopic systems where noise is fundamental to
movement. Some examples include motor proteins [5], intercellular transport [6], DNA
transcription [1,3,4,15,26,27,32,49], Josephson junctions [12], ring-laser gyroscopes [13],
and actin polymerization in neuroscience [41, 52].

Motivation for this work comes from seeking a model of RNA polymerase (RNAP)
translocation along a DNA strand. RNAP motion is often modeled as a Brownian ratchet,
where the periodic structure of U(x) is aligned with RNAP transcription of successive
nucleotides and the tilt Fx biases RNAP motion in one direction along the DNA strand.
However, it is well-established in the literature that each RNAP experiences short pauses
in its motion, where it stalls at some nucleotide location for a brief amount of time before
resuming elongation. These so called transcriptional pauses occur at random locations with
a mean frequency of about 1 per 100 nucleotides [39]. Therefore one particular model
of RNAP motion on DNA with pauses may be a Brownian motion in tilted potential
with U(x)=U1(x)+U2(x), where U1(x,L) is periodic with period L corresponding to 100
nucleotides and U2(x,L/100) has a least period of L/100.

We investigate a one-dimensional random walk generated by Gaussian white noise,
ξ(t), and influenced by a tilting force F. This stochastic model is formulated as

dx

dt
=− d

dx
(U(x)−Fx)+

√
2Dξ(t), t>0, (1.1)

where x(t) is the one dimensional position at time t, and D is the noise intensity. Often
the parameter D is given by the Einstein relation [18],

D=
kβT

γ
, (1.2)

where kβ is the Boltzmann constant, T is temperature, and γ is friction. The tilting force
is included in the model by subtracting a tilting term, Fx, from the periodic potential
denoted as U(x) in the equation above, see [43]. If F< 0, the force pulls particles to the
left and if F>0, the force pulls particles to the right. Using this tilting term, the effective
potential in Eq. (1.1) is

V(x)=U(x)−Fx, (1.3)

where U(x) is periodic with period L. One way to approach this problem is as Kramers
problem in periodic potentials, to find the rate that a particle escapes from a potential
well [31]. Kramers problem is an important area of research in this field [8, 9, 11, 38, 46].
Several exact solutions have been proposed and analyzed [20–22, 36, 37].

Our main motivation for interest in the mean escape time (MST) of a Brownian par-
ticle over a wall comes from the fact that the characteristics of the long range behavior
of the particle (i.e. over many periods and a long time) can be computed by decompos-
ing the motion into two components. One is the motion on the spatial scale of a single
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period, which is characterized by distribution of the escape time, and the other is on the
spatial scale of many periods modeled as a random walk on segments. The time scale
of the random walk is determined by the mean escape time from a single segment and
therefore characterization of long term distribution of the particle in terms of drift and
dispersion depends crucially on the MST. This decomposition is described in more detail
in Section 2.

Characterization of the long range behavior of the particle depends explicitly on the
form of the potential function that is specified. In this paper we study a tilted potential
V(x) whose periodic part U(x), from Eq. (1.3), admits a decomposition into a sum of
potentially simpler periodic functions Ui(x)

U(x)=
n

∑
i=1

Ui(x), (1.4)

where each Ui(x) has a corresponding least period of

Li=
L

Ni
, i=1,2,···n with integers 1=N1 ≤N2≤···≤Nn. (1.5)

Notice that all of the periodic functions, Ui, have a common period L = L1. Our goal
is to estimate the MST of a particle in the potential V(x), given by Eq. (1.3), in terms
of the MSTs of the individual components Ui(x). Ideally such a formula would allow
approximation of the MST for an arbitrary periodic potential by combining the MSTs of
its Fourier modes. As we will see below, since computation of the MST of the potential
V(x) involves a numerical quadrature of a highly oscillatory function, by precomputing
the MST of low frequency Fourier modes one is able to effectively approximate the MST
of an arbitrary periodic function with efficiency.

We present several results in this direction. An issue to be addressed when decom-
posing V(x) into its components, is how to assign the drift term −Fx. We assign this
term to the lowest frequency periodic function U1(x) and thus decompose the effective
potential given by Eq. (1.3) into what we will refer to as the multi-periodic potential

Vn(x)=
n

∑
i=1

Vi(x) (1.6)

where
V1(x)=U1(x)−Fx and Vi(x)=Ui(x), i=2,··· ,n.

We obtain an approximation formula for the MST corresponding to the potential in (1.3),
and we derive an error estimate for the approximation. The error estimate for the ap-
proximate MST depends on the period of a low frequency function, rather than a high
frequency function; as a result, our formula is most useful for periodic potentials with a
dominant low frequency, perturbed by one or more high frequency functions. This er-
ror estimate also depends largely on the noise intensity D, with significantly less error
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computed when utilizing a large value of this parameter. The error estimate calculation
and its dependency on parameters is discussed in detail in Section 4. We also explore an
equal distribution of the drift where we assign

Vn
i (x)=Ui(x)− F

n
x, for i=1,··· ,n.

We obtain the upper and lower bound on the MST of (1.3) for this case.
This paper is organized as follows. The main result is presented in Section 3 as a

theorem with the proof of this theorem detailed in Sections 4 and 5. In Section 6 the MST
approximation formula is combined with Fourier series expressions, and the examples of
Section 7 illustrate both advantages and shortcomings of the approximation. In the next
section, we give some preliminary but important concepts and formulas for diffusive
transport in a tilted periodic potential.

2 Transport in a tilted periodic potential

We begin by formulating the Fokker-Planck equation for an ensemble of solutions of
Eq. (1.1). We denote by P(x,t|x0,t0) the probability that the particle is located at the
spatial position x at time t, given that the particle started at position x0 at time t0. We use
the concise notation P(x,t) when we fix x0=0 and t0=0. The time evolution of a statistical
ensemble is captured by the time evolution of P(x,t) which satisfies the Fokker-Planck
equation [10, 33, 42, 46]

∂tP(x,t)=∂x(V
′(x)+D∂x)P(x,t). (2.1)

While the Fokker-Planck equation is not solvable in general, the behavior of the solution
can be qualitatively characterized by its drift and dispersion. Formulas for these quantities
are given later in this section by Eq. (2.6) and Eq. (2.7) respectively. In our example of
diffusive particles in a tilted potential, the mean of the function P(x,t) will drift in the
downhill direction of the tilt and its variance will grow (disperse) with time. We now
review an elegant paper by Lindner et. al. [33] which derives explicit formulas for both
the drift and dispersion.

The key idea of Lindner and co-authors is to separately solve a problem on two dif-
ferent spatial scales. First they partition the domain of the periodic potential into over-
lapping segments, mi, of length 2L (see Fig. 1) where U(x) (defined in Eq. (1.3)) has least
period L. In each segment, they solve the Fokker-Planck equation for the MST. In the
second step, the MST is used to construct a stochastic jump process that transports the
particle between the segments. We now describe the computation of the MST from a sin-
gle segment. Consider a segment, mi, on the spatial interval x∈ [−L,L] with initial data
given by the Dirac delta function at x=0 that represents the initial position of the particle,
and we impose absorbing boundary conditions at the endpoints, x=±L. When a particle
reaches either x=±L of segment mi it is removed from that segment and placed at the
spatial location x= 0 of the segment mi+1 if it exits right, or the segment mi−1 if the exit
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Figure 1: The domain of the potential function V(x) is partitioned into overlapping segments of length 2L;
here segment mi spans the interval [−L,L]. When a particle exits from either end of the segment, it is placed
at the position x=0 of the neighboring segment.

is on the left, see Fig. 1. Since the escape from one segment is independent of all other
segments, each segment can be solved by a Fokker-Planck equation in (2.1) with an initial
condition and boundary conditions given by

P(x,0)=δ(x), P(−L,t)=P(L,t)=0. (2.2)

Now we describe the larger spatial scale. Lindner et al. considers a stochastic jump
process nt with jumps left and right depicted as realizations of Wi = {−1,1} with proba-
bilities p− and p+ respectively. The net spatial movement at time t is therefore a random
sum of increments

nt=
Nt

∑
i=1

Wi, (2.3)

where Nt is the total number of jumps before time t. Since each of the increments of
Wi as well as the escape times from a segment are independent of each other, nt is a
Cumulative Process with Independent Increments [14, 33]. Here the notation Nt and nt

is used to indicate a dependence on the time variable t, and it is not meant to denote a
partial derivative with respect to t. The asymptotic mean and variance of nt are

〈nt〉= 〈W〉 t

µ
(2.4)

and

〈∆n2
t 〉= 〈∆W2〉 t

µ
+〈W〉2 tσ2

µ3
, (2.5)

where µ and σ2 are the mean and variance of the escape time density from a single seg-
ment mi, respectively [14]. The notation 〈nt〉 represents the ensemble average of nt, while



6 T. Heberling, L. Davis and T. Gedeon / Commun. Comput. Phys., 25 (2019), pp. 1-40

〈∆n2
t 〉= 〈(nt−〈nt〉)2〉 denotes the variance. Using these quantities, the drift, which for

large times is given by the mean stationary velocity, is

v=
L(p+−p−)

µ
, (2.6)

and the dispersion is given by the effective diffusion coefficient,

De f f =
L2

2

(
1

µ
+
(p+−p−)2

µ3
(σ2−µ2)

)
. (2.7)

As one can observe from each of these equations, the MST from a single segment,
denoted by µ, is of central importance when describing diffusive transport of Brown-
ian particles. More generally, the mean first passage time from a segment for a particle
beginning at any position x∈ [−L,L] can be found using the techniques outlined in [24], as

T1(x)=
1

D




(∫ x
−L Φ(y)dy

)∫ L
x

∫ y
−L

Φ(y)
Φ(z)

dzdy−
(∫ L

x Φ(y)dy
)∫ x

−L

∫ y
−L

Φ(y)
Φ(z)

dzdy
∫ L
−L Φ(y)dy


 (2.8)

using the notation Φ(x) = e
V(x)

D for the sake of brevity. The MST, µ, discussed here is
simply T1(0), the first passage time when the particle begins at x=0. Hence we arrive at
the equation which stands as the definition used in this work for the mean escape time
of the particle from a single segment

µ=
1

D
(

1+e
−FL

D

)
∫ L

0

∫ x

x−L
e

V(x)
D e

−V(y)
D dydx :=q

∫ ∫

Ω
e

V(x)
D e

−V(y)
D dydx. (2.9)

Here the parameter q is defined as

q :=
1

D
(

1+e
−FL

D

) ,

and the domain Ω is defined as

Ω={(x,y)|x−L≤y≤ x, 0≤ x≤ L}. (2.10)

For convenience we use q and Ω to simplify the notation throughout this work.

3 Mean escape time for a multi-periodic potential

The main result of this paper concerns the MST of a Brownian particle from a segment
of a tilted, periodic potential. The segments are fully explained in Section 2 and also
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depicted graphically in Fig. 1. The MST for a potential V(x) of Eq. (1.3) is denoted by
µ(V,L,F) and depends on three aspects of the potential: V(x), the periodic function; L,
the period; and F, the tilt. For simplicity, we will denote the MST as

µ :=µ(V,L,F) (3.1)

calculated using Eq. (2.9).
Our main result approximates the MST for the multi-periodic potential defined by

Eqs. (1.3), (1.4) and (1.5) in terms of the MSTs of the individual periodic functions Ui(x).
Since the potential V(x) contains the tilting term −Fx, this term has to be assigned to
one of the component functions Ui(x). In our first result, we assign the tilting term to
the periodic component with the largest period U1(x), as given in Eq. (1.6), while the
other periodic components will have zero tilt. We denote the MST for potential V1(x) :=
U1(x)−Fx, considered as a potential with period L1= L by

µ1 :=µ(U1,L1,F). (3.2)

When considering a potential function of the form given in Eq. (1.6) where the potential
consists of a finite sum of periodic functions, we use the notation that for any integer n
the MST for the potential defined by Vn is given by

µn =q
∫∫

Ω
e

Vn(x)
D e

−Vn(y)
D dydx. (3.3)

The following lemma provides a crucial scaling rule that allows us to define the appro-
priate notation for the MST approximation formula discussed in the next section.

Lemma 3.1. Consider the periodic potential U(x)∈C[−L,L] with period L and zero tilt. Then

µ(U,L,0)= L2µ(Û,1,0), (3.4)

where Û(x)=U(Lx) for all x∈ [−1,1].

Proof. First recall the definition

µ(U,L,0)=
1

2D

∫ L

0

∫ x

x−L
e

U(x)
D e

−U(y)
D dydx. (3.5)

Using the substitutions

z=
x

L
and w=

y

L

the integral in Eq. (3.5) becomes

µ(U,L,0)=
1

2D

∫ 1

0

∫ z

z−1
e

Û(z)
D e−

Û(y)
D L2dydz, (3.6)
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where Û(z)=U(Lz) for all z∈ [−1,1]. Note here that Û is simply a transformed version
of the original U(x) function, and Û(z) is periodic with period 1. Applying the definition
in Eq. (2.9) to the potential defined by U(x) (with zero tilt, ie F= 0), from Eq. (3.6), one
can write

µ(U,L,0)=(L)2µ(Û,1,0) (3.7)

where

µ(Û,1,0)=
1

2D

∫ 1

0

∫ z

z−1
e

Û(z)
D e

−Û(y)
D dydz. (3.8)

The proof is completed.

The above equation gives the foundation for the definition below, and we use the
notation

νi :=2Dµ(Ûi,1,0), for i=2,3,··· ,n, (3.9)

where µ(Ûi,1,0) is the MST of the potential Ûi(z(x)). Each function Ûi(z) is a transformed
version of the original function Ui(x) in a manner analogous to the process outlined in
the proof above. For such a function, the potential Ui(x), with period Li, is defined on
its domain of all x∈ [−Li,Li], and this interval is transformed using the linear mapping
z(x) = x/Li, where z : [−Li,Li]→ [−1,1]. The transformed function Ûi has period equal
to one, and the notation Ûi(z,1) is used to clarify this in the discussion that follows only
when necessary. The constant 2D in definition (3.9) simplifies the result in the definition
and the theorem given below.

We now define an approximation of the MST for the function V(x) using the notation

Tn =µ1

(
n

∏
i=2

νi

)
, (3.10)

where µ1 is defined in (3.2) and νi is defined in (3.9) above. The theorem below gives
an assessment of the error incurred with this approximation. The notation Tn utilizes n
to denote the number of periodic functions in the decomposition of V(x) in Eq. (1.6). This is
an approximation of the true MST of V(x) as defined in the Eq. (3.3). The simplifying
approximation Tn as well as the magnitude of the error from the original MST µn are
the main focus of the remainder of this paper. We also illustrate the effectiveness of the
approximation with three examples. First, we state the theorem that is the main result of
the paper.

Theorem 3.1. Suppose the tilted multi-periodic potential V(x) defined in Eq. (1.6) belongs to
C1[−L,L]. Then the multiplicative approximation, denoted Tn, for the MST of V(x) is given by
Eq. (3.10), and

|Tn−µn|≤C
κ

1
D

D2
, (3.11)

where the constant C depends explicitly on the fixed value of L, the functional form of the potential
V(x) as well as the noise intensity D. The constant κ also depends upon the prescribed potential
V(x) and its first derivative.
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The proof for Theorem 3.1 is provided in Section 5. For completeness, we also inves-
tigate a different treatment for the tilt, this is explained below. In Theorem 3.1, we assign
the tilt −Fx to the periodic function U1(x). Now we consider the case of splitting the tilt
evenly among all the periodic functions.

Theorem 3.2. Suppose the tilted, multi-periodic potential is given by

V(x)=
n

∑
i=1

Vn
i (x) (3.12)

similar to the potential in Eq. (1.6) except Vn
i (x) :=Ui(x,L/Ni)− Fx

n , where the tilt is split into
n equal parts. Each periodic function has a tilting term associated with it. Then the MST, µ, from
a segment of this potential satisfies

(
1+e

−FL
nD

)

(
1+e

−FL
D

)
(

n

∏
i=2

e
F(1−Ni)Li

nD ηi

)
µ(U1,L1,F/n)+O(L2)

≤µ≤

(
1+e

−FL
nD

)

(
1+e

−FL
D

)
(

n

∏
i=2

ηi

)
µ(U1,L1,F/n)+O(L2), (3.13)

where ηi =D
(
1+e

−FLi
nD

)
µ
(
Ûi,1, FLi

n

)
.

The proof of Theorem 3.2 is provided in Appendix A. There is an important disad-
vantage to splitting the tilt term, aside from the fact that we are only able to provide
lower and upper bounds. When Theorem 3.2 is used for a Fourier series approximation,
increasing the number of Fourier terms approximating a periodic function U(x) from n
to n+1 would be computationally expensive as all numbers ηi would need to be recom-
puted. This is because the drift term in Vn

i (x) is Fx/n while the drift term in Vn+1
i (x)

is Fx/(n+1) affecting the MST calculation for each term. In contrast, in the formula for
Tn in Theorem 3.1, the term µ1 and all terms νi,i=2,··· ,n remain the same between suc-
cessive approximations with n and n+1 elements. Only the new term νn+1 needs to be
computed and inserted into formula (3.10) with n+1 elements. This is an advantage to
using the MST given in Theorem 3.1.

4 Preliminary results

In this section we provide several lemmas that aid in the proof of Theorem 3.1. First
we present a theorem from [24] that shows the probability of escaping the segment mi

from Fig. 1 on the left or on the right is independent of the particular algebraic form of
the periodic potential so long as the period L and the tilt F are fixed. We denote the
probability of exiting to the right through the position x= L by p+, and the probability
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of escaping left through the position x=−L by p−. The probability p− is related to the
probability p+ through the equation

p−+p+=1, (4.1)

since a particle will leave the segment with probability one. Using formulas from [24],
another relationship between these probabilities is also shown below.

Theorem 4.1. Let U(x,L)∈C1[−L,L] denote a periodic function with period L. Then V(x)=
U(x,L)−Fx is a tilted periodic potential function, and the escape probabilities associated with
this potential function satisfy

p+= e
FL
D p−.

Corollary 4.1. Consider the potential function V(x)=∑
n
i=1Ui(x,Li)−Fx and the potential func-

tion V1(x) = U1(x,L1)−Fx. Since L1 = L, the common period of V(x) and V1(x), then the
probabilities of escaping to the right or to the left, respectively, are the same for both of the two
potentials. Furthermore, these common values are

p+=
1

1+e
−FL

D

(4.2)

and

p−=
e
−FL

D

1+e
−FL

D

. (4.3)

The proof of Theorem 3.1 employs the Weighted Mean Value Theorem for Double
Integrals. For the reader’s convenience, the statement of this theorem is provided below.

Theorem 4.2 (Weighted Mean Value Theorem for Double Integrals). Let f and g be con-
tinuous functions on a closed and bounded domain Ω. If g is positive then there exists a point
(s⋆,t⋆)∈Ω such that

∫∫

Ω
f (x,y)g(x,y)dydx= f (s⋆ ,t⋆)

∫∫

Ω
g(x,y)dydx.

A proof of this theorem for single integrals is presented in [2], and the proof for the
case of double integrals is presented in Appendix B.

Now we present a series of lemmas that provide estimates for the proof of Theo-
rem 3.1. In the first lemma we estimate the integral for the MST given by Eq. (2.9). Note
that the domain of integration is a parallelogram of length and height L, defined previ-
ously in (2.10). For a given integer n, we partition Ω into smaller parallelograms of length
and height Ln = L/Nn, where Ln is the period of Un(x) and the shortest of the periods
Li,i=1,··· ,n. These smaller parallelograms are defined as

Ωk,s :={(x,y)|(k−1)Ln ≤ x≤ kLn, x−L+(s−1)Ln ≤y≤ x−L+sLn} (4.4)
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for each choice of (k,s), k= 1,··· ,Nn, s= 1,··· ,Nn, where k partitions the domain on the
x−axis, and s partitions the domain on the y−axis. This is depicted in Fig. 2. In the
following results, we often use the reference domain or the canonical domain Ω0,n, which
is the parallelogram that includes the origin, i.e.

Ω0,n :={(x,y)|0≤ x≤ Ln , x−Ln≤y≤ x}. (4.5)

In the proof below we will also separate the function Un(x) from the multi-periodic po-
tential (1.6) rewritten as

V(x)=Vn−1(x)+Un(x), (4.6)

where

Vn−1(x)=
n−1

∑
i=1

Ui(x)−Fx. (4.7)

Lemma 4.1. Consider a tilted multi-periodic potential V(x)∈C1[−L,L] given by Eq. (4.6). Then
there exists a set of points (x⋆k,s,y

⋆

k,s)∈Ωk,s for each 1≤ k,s≤Nn such that the MST for V(x) is

µ=
2µ(Un,Ln,0)(

1+e
−FL

D

)
Nn

∑
k=1

Nn

∑
s=1

Ψn−1(x⋆k,s)

Ψn−1(y⋆k,s)
, (4.8)

where the scalar valued function Ψn is defined for any integer n as

Ψn(z) := e
Vn (z)

D . (4.9)

Proof. Using Eq. (2.9) we write the MST for V(x) as

µ=q
∫∫

Ω

Ψn−1(x)

Ψn−1(y)
e

Un(x)
D e

−Un(y)
D dydx. (4.10)

Partitioning the domain Ω into subdomains Ωk,s as described above (see Fig. 2), we have

µ=q
Nn

∑
k=1

Nn

∑
s=1

∫∫

Ωk,s

Ψn−1(x)

Ψn−1(y)
e

Un(x)
D e

−Un(y)
D dydx. (4.11)

Using Theorem 4.2, for each pair (k,s) there exists a point (x⋆k,s,y
⋆

k,s)∈Ωk,s such that

µ=q
Nn

∑
k=1

Nn

∑
s=1

Ψn−1(x⋆k,s)

Ψn−1(y⋆k,s)

∫∫

Ωk,s

e
Un(x)

D e
−Un(y)

D dydx. (4.12)

We next transform each domain Ωk,s to the canonical domain Ω0,n by an area-preserving,
linear change of variables Gk,s : Ωk,s →Ω0,n defined by

Gk,s(x,y)=(x−(k−1)Ln,y−(s−Nn)Ln−(k−1)Ln). (4.13)
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L

-L

L

Ω

Ω k,s

Ω 0,n

y

x
Ln

Figure 2: The domain of integration Ω is shown in blue, and it is partitioned into N2
n parallelograms, each with

both width and height of Ln. These subdomains are denoted Ωk,s for 1≤k,s≤Nn with an arbitrary subdomain
shown in green. The subdomain Ω0,n is the parallelogram containing the origin shown in red.

Applying Gk,s in order to map Ωk,s to Ω0,n, exploiting the Ln-periodicity of the Un function
within the integrand and multiplying and dividing by 2D in (4.12), we have

µ=q (2D)
Nn

∑
k=1

Nn

∑
s=1

Ψn−1(x⋆k,s)

Ψn−1(y⋆k,s)

(
1

2D

∫∫

Ω0,n

e
Un(x)

D e
−Un(y)

D dydx

)
. (4.14)

Note that the scaled integral term within the parentheses is the MST for the periodic
potential Un(x) with zero tilt; that is, µ(Un,Ln,0). This term can be factored out of the
summation. Hence Eq. (4.14) simplifies to Eq. (4.8), and the proof is complete.

The last preliminary result deals with estimation of the error between the double sum
appearing in Eq. (4.8) and the double integral used in the MST calculations, as in Eq. (2.9).
We begin by calculating the error over an arbitrary integration subdomain Ωk,s and then
sum the error estimates over all subdomains to compute the error over the entire domain
Ω. In particular, we define the difference between an appropriately scaled version of the
double sum in (4.8) and the double integral for the MST of the multi-periodic potential
V(x) as

ǫn :=

∣∣∣∣∣

∫∫

Ω

Ψ(x)

Ψ(y)
dydx−(Ln)

2
Nn

∑
k=1

Nn

∑
s=1

Ψ(x⋆k,s)

Ψ(y⋆k,s)

∣∣∣∣∣, (4.15)

where Ψ(x) is defined as in Eq. (4.9) but we suppress the subscript notation for conve-
nience. We also make the following definition of a constant needed for the proof of the
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result, and a bound is given that can easily be justified with elementary techniques. Let

M2= max
(z1,z2)∈Ω

∣∣∣∣
Ψ(z1)

Ψ(z2)

∣∣∣∣≤κ
1
D , (4.16)

where κ is a constant depending on the choice of the periodic potential V(x).

Lemma 4.2. Let V ∈C1[−L,L], and consider a multi-periodic potential in the form (4.6). The
error ǫn defined in (4.15) is bounded as follows

ǫn <CLn, (4.17)

where C is a constant that depends on the functional form of V, the period L and the noise intensity
D.

Remark 4.1. The constant C in Eq. (4.17) is independent of n, the number of periodic
potentials used to form V(x) in Eq. (1.6). Since each of the functions that form V is
uniformly bounded by a constant that is independent of n, the constant C only depends
on this bound, but not on n.

Proof. Consider the error ǫk,s, over one arbitrary parallelogram Ωk,s. For simplicity the
point (x⋆k,s,y

⋆

k,s) is denoted as (x⋆,y⋆). The error for each Ωk,s is

ǫk,s =

∣∣∣∣
∫∫

Ωk,s

Ψ(x)

Ψ(y)
dydx−Ψ(x⋆)

Ψ(y⋆)
(Ln)

2

∣∣∣∣. (4.18)

Define the function f (x,y) =Ψ(x)/Ψ(y), and for any (x,y)∈Ωk,s, the first-order Taylor
expansion of the integrand, f (x,y), in a neighborhood of (x⋆,y⋆) is

f (x,y)=
Ψ(x⋆)

Ψ(y⋆)
+

V ′(a)
D

Ψ(a)

Ψ(b)
(x−x⋆)−V ′(b)

D

Ψ(a)

Ψ(b)
(y−y⋆), (4.19)

where (a,b) is a point in Ωk,s in a neighborhood of (x⋆,y⋆) that depends on the point
(x,y). Then Eq. (4.18) is expressed as a single integral, and using the first order Taylor
expansion in the integral gives

ǫk,s =

∣∣∣∣
∫∫

Ωk,s

f (x,y)− f (x⋆ ,y⋆)dydx

∣∣∣∣

=

∣∣∣∣
∫∫

Ωk,s

Ψ(x⋆)

Ψ(y⋆)
+

Ψ(a)

Ψ(b)

[
V ′(a)

D
(x−x⋆)−V ′(b)

D
(y−y⋆)

]
−Ψ(x⋆)

Ψ(y⋆)
dydx

∣∣∣∣ . (4.20)

Since V(x) ∈ C1, then V(x) and its derivative is bounded on [−L,L]. We also replace
|x−x⋆| by the upper bound Ln, and |y−y⋆| by the upper bound 2Ln. Using these and
integrating over Ωk,s gives the error estimate

ǫk,s ≤
1

D
max

z∈[−L,L]

∣∣V ′(z)
∣∣M2

(∫∫

Ωk,s

|x−x⋆|+|y−y⋆ |dydx

)

≤κ
1
D ‖V ′‖∞

D
(3L3

n). (4.21)
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Relabeling the constant in Eq. (4.21), we arrive at the error estimate over the subdomain
Ωk,s

ǫk,s ≤
Ĉ

D
(Ln)

3 , for 1≤ k,s≤Nn , (4.22)

and we note that the constant Ĉ depends on both the functional form of V (and its deriva-
tive) and the parameter D. Summing the error over the N2

n parallelograms we determine

ǫn ≤
Ĉ

D
(Ln)

3 N2
n =

Ĉ

D
(L)2Ln =CLn, (4.23)

where C=L2 Ĉ
D is a constant that depends explicitly on the fixed value of L, the functional

form of the potential V(x) as well as the noise intensity D.

5 Proof of Theorem 3.1

The proof of the main result of this paper is by recursion, and the following lemma is
given in order to simplify the recursion step of the proof. In addition, the following
definition generalizes the bound on V ′(·) used in Eq. (4.21) to include notation suitable
for the recursion step used in the arguments given below. For a fixed positive integer K,
define the bound

M1,K = max
z∈[−L,L]

∣∣∣∣
d

dx
VK−1(z)

∣∣∣∣=
∥∥∥∥

d

dx
VK−1

∥∥∥∥
∞

. (5.1)

Lemma 5.1. Fix an integer K≥1, and assume that the potential VK+1 is defined by (1.6) and its
MST is given as in Eq. (3.3). If µK is known, then µK+1 is given by

µK+1=νK+1(µK)+qνK+1ǫK+1, (5.2)

where
|ǫK+1|≤CK+1LK+1.

Proof. Beginning with the definition in (3.3) and partitioning Ω into sub-parallelograms
of size determined by NK+1, we have

µK+1=q

(∫∫

Ω
e

VK(x)
D e

−VK(y)
D e

UK+1(x)

D e
−UK+1(y)

D dydx

)

=q
NK+1

∑
k=1

NK+1

∑
s=1

∫∫

Ωk,s

ΨK(x)

ΨK(y)
e

UK+1(x)

D e
−UK+1(y)

D dydx, (5.3)

where ΨK is given by (4.9), but in the discussion that follows, we suppress the subscript
in order to simplify the notation. By Theorem 4.2 there exists a point (x⋆k,s,y

⋆

k,s)∈Ωk,s for
each 1≤ k,s≤NK+1 such that

µK+1=q
NK+1

∑
k=1

NK+1

∑
s=1

[
Ψ(x⋆)

Ψ(y⋆)

]∫∫

Ωk,s

e
UK+1(x)

D e
−UK+1(y)

D dydx, (5.4)
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and note that the k,s dependence of x⋆ and y⋆ is suppressed for simplicity.
Then the expression for µK+1 can be rewritten by replacing the integral over Ωk,s with

the integral over the reference domain defined in Eq. (4.5) using the mapping in (4.13).
The integral over Ω0,K+1 is independent of the summation, can be factored out and then
is expressed in terms of the definition of νK+1 as shown in the equations below.

µK+1=q
NK+1

∑
k=1

NK+1

∑
s=1

[
Ψ(x⋆)

Ψ(y⋆)

]∫∫

Ω0,K+1

e
UK+1(x)

D e
−UK+1(y)

D dydx

=q(2D)µ(UK+1,LK+1,0)
NK+1

∑
k=1

NK+1

∑
s=1

[
Ψ(x⋆)

Ψ(y⋆)

]

=
q(2D)µ(UK+1,LK+1,0)

L2
K+1

NK+1

∑
k=1

NK+1

∑
s=1

[
Ψ(x⋆)

Ψ(y⋆)

]
L2

K+1

=q(2D)µ(ÛK+1,1,0)
NK+1

∑
k=1

NK+1

∑
s=1

[
Ψ(x⋆)

Ψ(y⋆)

]
L2

K+1

=qνK+1

NK+1

∑
k=1

NK+1

∑
s=1

(∫∫

Ωk,s

[
Ψ(x)

Ψ(y)
dydx

]
+ǫk,s

)
. (5.5)

The last equalities follow from applying Lemma 3.1 and using the definition of νK+1 in
Eq. (3.9) to simplify the term left of the summation, and the term within the parentheses
is obtained using the result in Lemma 4.2. Applying the summation over all the paral-
lelograms, the first term can then be written in terms of µK, and the error terms can be
expressed as follows

µK+1=νK+1

(
q
∫∫

Ω

Ψ(x)

Ψ(y)
dydx+q

NK+1

∑
k=1

NK+1

∑
s=1

ǫk,s

)

=νK+1(µK)+qνK+1ǫK+1, (5.6)

where ǫk,s and ǫK+1 are exactly those given in Eqs. (4.22)-(4.23), and

|ǫK+1|≤
3‖ d

dx VK‖∞ M2LK+1

D
≤ 3‖ d

dx VK‖∞κ
1
D

D
LK+1≤CK+1LK+1. (5.7)

The proof is completed.

With the three previous results, we are ready to prove Theorem 3.1.

Proof. Fix an integer K ≥ 1, and the proof is constructed by applying Lemma 5.1 recur-
sively to obtain

µK+1=νK+1(µK)+qνK+1ǫK+1

=νK+1(νKµK−1+qνKǫK)+qνK+1ǫK+1

=νK+1νK(νK−1µK−2+q(νK−1ǫK−1))+q(νKνK+1ǫK)+qνK+1ǫK+1
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=

(
K+1

∏
i=K−1

νi

)
µK−2+q

K+1

∑
i=K−1

(
K+1

∏
j=i

νj

)
ǫi

=
...

=

(
K+1

∏
i=2

νi

)
µ1+q

K+1

∑
i=2

(
K+1

∏
j=i

νj

)
ǫi

=TK+1+E(K+1), (5.8)

where the error term in the above equation is represented by E(K+1). Then define

Bi=
K+1

∏
j=i

νj and B= max
1≤i≤K+1

{Bi},

and we see that the error is bounded by the following.

|E(K+1)|= |µK+1−TK+1|≤q

∣∣∣∣∣
K+1

∑
i=2

(
K+1

∏
j=i

νj

)
ǫi

∣∣∣∣∣

≤qB
K+1

∑
i=2

|ǫi|

≤qB

[
3M2

D

K+1

∑
i=2

M1,iLi

]

≤ qBκ
1
D

D

[
3

K+1

∑
i=2

M1,iLi

]

≤C
κ

1
D

D2
. (5.9)

Then the proof of Theorem 3.1 is completed.

The approximation TN of the MST µN gives reasonable accuracy and is computation-
ally efficient for the repetitive trials of model validation. This is demonstrated in Section
7.1 where a model of RNAP transcription is tuned to satisfy certain biological character-
istics. As seen in the following sections, TN is a reliable approximation of the MST, but it
is not asymptotically convergent in the classical sense. When a Fourier series is used to
construct a periodic potential function, the MST approximation, TN , for the truncated se-
ries does not necessarily improve as we increase N, where N is the number of component
functions used to construct the truncated series. That is, TN does not generally converge
to µN as N → ∞. The error estimate in Eq. (5.9) shows that this can happen when the
value of B increases with the integer K or when the value of M1,K increases with K.

Having a specific bound for the error is illuminating for several reasons. First, this
error bound explicitly shows the dependence on the noise intensity D. The parameter κ
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has 1/D as an exponent and the E(K+1) has D2 in the denominator. This implies that
the error bound will decrease with increasing D, but it will increase with decreasing D.
Also, the constant C contains the length parameter Li. Since Li decreases with increasing
i, the largest term of the error bound corresponds to the first term, i= 2. Therefore, the
approximation TN will be the most accurate in the case where L2<<L1. This corresponds
to a case where there is a distinct separation of spatial scales over which each potential
has the most influence on the MST. The example in Section 7.1 illustrates an application
where this relationship can be exploited. There the potential function describing a tran-
scriptional pause influences the MST calculation on a much smaller spatial scale than that
of the potential describing the RNAP elongation mechanism.

The following section also ties this concept to that of the classical Fourier series ap-
proximation of a function and relates the MST of a truncated Fourier series to that of the
full series. That is, it demonstrates that µN →µ as N→∞ under certain conditions, and
the examples in Section 7 show that TN can be a very good approximation of µN even
when convergence as N→∞ is not guaranteed.

6 Fourier series expansion of a periodic potential

When using a periodic potential, it is common to approximate the potential with a trun-
cated Fourier series approximation. Typically one can achieve a good approximation to
the original potential assuming a sufficient number of terms are present in the truncated
series. For a function U(x) that is periodic with period L on the interval [0,L], the Fourier
series representation of U(x) is

U(x)=
a0

2
+

∞

∑
n=1

an cos

(
2πnx

L

)
+

∞

∑
n=1

bn sin

(
2πnx

L

)
, (6.1)

and the truncated Fourier expansion is then

UN(x)=
a0

2
+

N

∑
n=1

an cos

(
2πnx

L

)
+

N

∑
n=1

bn sin

(
2πnx

L

)
. (6.2)

Following the Fourier Convergence Theorem, discussed in detail in [7] for example,
if U(x) and its derivative U′(x) are piecewise continuous, its Fourier series converges
pointwise to U(x) for all values x where U(x) is continuous. At points of discontinuity,
x= x0, the Fourier series converges to the average of the left and right limits of U(x) as
x→ x0. The convergence of the Fourier series becomes uniform if we require that U(x)
is continuous with U′(x) piecewise continuous [7]. Using this result, a theorem for the
convergence of µN to µ is presented below.

Theorem 6.1. Let U(x) be a continuous periodic function with a piecewise continuous derivative,
with x∈ [−L,L]. If UN(x) represents the truncated Fourier series approximation of U(x) given



18 T. Heberling, L. Davis and T. Gedeon / Commun. Comput. Phys., 25 (2019), pp. 1-40

in Eq. (6.2) then the MST for UN(x) defined in (3.3) converges to the MST of U(x); that is,

lim
N→∞

µN =µ. (6.3)

Proof. Consider the periodic potential U(x)−Fx and the truncated Fourier series poten-
tial with N terms UN(x)−Fx. Since U(x) is a continuous function with a piecewise con-
tinuous derivative, by the Fourier Convergence Theorem UN(x) converges uniformly to
U(x) [7]. The uniform convergence implies that

∫∫

Ω
e

U(x)−Fx
D e

−(U(y)−Fy)
D dydx= lim

N→∞

∫∫

Ω
e

U N (x)−Fx
D e

−(U N(y)−Fy)
D dydx

(this follows directly from Theorem 7.16 in [47]). Therefore

µ=
1

D
(

1+e
−FL

D

)
∫∫

Ω
e

U(x)−Fx
D e

−(U(y)−Fy)
D dydx

= lim
N→∞

1

D
(

1+e
−FL

D

)
∫∫

Ω
e

U N (x)−Fx
D e

−(U N(y)−Fy)
D dydx= lim

N→∞
µN . (6.4)

The proof is completed.

With the preceding result, ideally one would like to quantify the error of the MST of
the truncated series based on the number of terms, N. That is, we would like to charac-
terize the magnitude

|µ−µN |≤q
∫∫

Ω
e
−F(x−y)

D

∣∣∣∣e
U(x)−U N(x)

D −e
U(y)−U N(y)

D

∣∣∣∣dΩ (6.5)

as a function of the number of terms included in the truncated series approximation.
While this may be done for the error given by the L2 norm [25], ||U−UN||2, we are not
able to do so using the error given by the pointwise difference |U−UN|. In fact, Lemma
10.2 from [30] shows that the pointwise convergence of a Fourier series may be arbitrarily
slow.

7 Examples

This section presents examples that illustrate various aspects of the theoretical results
given in the paper. We explore three examples using several forms of MST calcula-
tions. For this purpose, the MST of the original potential given by Eq. (2.9) and that
of the truncated Fourier series potential, are denoted as µ and µN , respectively. That
is, µN = µ(UN(x),2π,0) as described in the notation of Eq. (3.1) where UN is defined in
Eq. (6.2). Moreover, in the first example, a Fourier series is not used as the potential con-
sists of a sum of two periodic potentials, and the notation µ2 represents the true MST
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for that situation. In the third case, we compute the multiplicative approximation of the
MST given by Eq. (3.10) using a potential consisting of a finite sum of periodic functions
(such as a truncated Fourier series potential when one is under consideration), and this
is denoted TN to remain consistent with previous sections.

Section 7.1 illustrates an application of this research to a biological model of DNA
transcription where several RNA polymerase are transcribing the DNA strand simulta-
neously. Their elongation is interrupted by short, frequent transcriptional pauses. The
elongation process as well as the transcriptional pause process are each modeled as a pe-
riodic process using a periodic potential function. The period of the elongation process is
determined by the average duration of the transcription of one nucleotide, and the period
of the pause process is much longer. Pauses are observed to occur, on average, every 100
nucleotides [39] during RNAP elongation. We apply the MST approximation in Eq. (3.10)
and explore the influence of the model parameters on the calculated MST.

The next example in Section 7.2 considers a quadratic wave as the periodic potential.
We derive the Fourier series on the segment [0,L] and compute the MST of the truncated
series of the periodic function U(x) in the potential V(x)=U(x)−Fx. Of particular inter-
est is the calculation of the multiplicative MST for the truncated Fourier expansion using
Eq. (3.10) and measuring the errors when applying the approximation TN described in
this work.

Employing Eq. (3.10) can be particularly advantageous where there is a large gap
in Fourier series frequencies as is the special case for a periodic function U1(x,L)+
U2(x,L/N) where N is a large integer. Section 7.3 considers a function of this type where
the multi-periodic potential is highly oscillatory over the interval [0,L], which can lead to
a numerical integration for the MST in Eq. (2.9) that is slow and often inefficient. With N
large, the largest term in the error for Eq. (3.10) is proportional to LN =

(
L
N

)
, since the ex-

pression in the last steps of Eq. (5.9) simplifies to a nice form. Specifically, the term in the
final summation becomes simply 3M1,N LN . In this case LN is small, and the numerical
integration for the MST of the potential V1(x)=U1(x)−Fx and the potential V2(x)=U2(x)
are individually computed more easily and more efficiently by separate numerical inte-
gration schemes. In addition, those values can be computed offline and stored for later
use if additional terms of the Fourier series are needed at a later date. The example in
Section 7.3 illustrates the use of the approximation in this context, and the magnitude of
the error as a function of the parameter D is also explored.

7.1 RNAP elongation in the presence of transcriptional pausing

The original motivation for investigating the MST of periodic potentials was in the ap-
plication of Brownian ratchets to the mathematical modeling of DNA transcription. The
example given in this section illustrates how the MST approximation presented in the
previous sections can be used for such an application. We model the transcription pro-
cess using two periodic potentials, one for RNAP elongation and the other for RNAP
pausing. These two components of the potential function contribute to the overall MST
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on separate spatial scales. The MST approximation derived in this work is advantageous
for the biological application because we are able to vary parameters of the two peri-
odic potentials independently and efficiently approximate relevant measures of model
validity. Furthermore, modifications to the tilt parameter or other biologically relevant
parameters only require changes in one of the two potentials, and we take advantage of
this in our computations as well. The efficiency of calculation, combined with a small
observed error, makes the approximation a useful tool to study parameter dependencies
in this problem.

Elongation of RNAP along the DNA strand is not uniform but is interrupted by fre-
quent transcriptional pauses. There are at least three different types of pauses; back-
tracking pauses, hairpin pauses, and ubiquitous pauses [17, 39]. Backtracking pauses
and hairpin pauses have been shown to have a higher probability of occurring during
transcription of specific sequences [16, 28, 29]. On the other hand, ubiquitous pauses are
thought to have no dependence on DNA sequence and are equally likely to occur at any
position along the DNA strand. It has been theorized that ubiquitous pauses are caused
by a restructuring of the polymerase [39], but the exact cause remains an open question.
These pauses are short (1−5 seconds) and occur approximately every 100 nucleotides
(nt) [39].

The potential function for this example is specified by V(x)=U1(x,L1)+U2(x,L2)−Fx
where L1=100 nt and L2=1 nt. We assume that the periodic potentials have the form

U1(x)= c1e
ǫ
(

cos
(

2πx
L1

)
−1
)

(7.1)

for the pause process experienced by the RNAP and

U2(x)= c2cos

(
2πx

L2

)
(7.2)

for the elongation motion of the RNAP, see Fig. 3. The higher amplitude spikes (such as
the one in the middle of Fig. 3) correspond to positions where we expect the RNAP to
pause as it will require more energy and therefore time, for a particle to exit a well with
a larger amplitude. The smaller amplitude potential models the standard elongation
that takes place between each pause. In the following section, the model parameters are
quantified and used to tune the model to accurately depict RNAP movement.

7.1.1 Estimation of parameter values.

There are seven parameters in the transcription model; D,c1,c2,L1,L2,F, and ǫ. The pa-
rameters L1 = 100 and L2 = 1 are mentioned above and defined as such because of the
average number of nucleotides on the rrn operon between RNAP pauses. Section 7.1.2
describes how the amplitude parameters c1 and c2 are calculated to reach the desired MST
based on information reported in the biological literature. The noise intensity parameter,
D, is computed from literature as well, and the tilt F is computed as a function of D as
explained below. The only parameter that is not computed in a manner that is consistent
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Figure 3: Plot of the RNAP pause potential.

with the biological literature is ǫ, which controls the shape of the potential U1(x). The
details of the parameter calculations are described below.

A parameter of central importance is the noise intensity parameter D in (1.2), which is
also known as the diffusion coefficient, and many other parameters depend on the value
of D. In order to estimate it, one needs a value for the Boltzmann constant (kβT=4.1 pN
nm [34, 35]) and the friction coefficient, γ. The latter is given by the sum of the rotational
and translational friction. By approximating the enzyme as a sphere of radius R≈ 6.5 nm
[40], we have

γ=6πηR+

(
2π

10BP

)2

8πηR3 (7.3)

as developed in [48], where η is the viscosity of the medium, typically water, which is
estimated to be 10−9 pN s/nm2, and BP is the distance between nucleotides which is ap-
proximately 0.34 nm. Therefore Eq. (7.3) yields γ= 2.4×10−5 pN s/nm. Using these values
for kβT and γ, we calculate D≈ 1.7×105 nm2/s, which agrees well with the experimental
value of 1.5×105 nm2/s given in [50].

As mentioned above, we are choosing U1(x) to represent the presence of pauses dur-
ing elongation and U2(x) to represent translocation by one nucleotide. Hence for our
purposes L1= 100 nucleotides, L2= 1 nucleotide, and we convert D from units measured
using nanometers into units involving nucleotides as given below.

D=1.7×105 nm2/s× 1nt2

0.342nm2
=1.47×106 nt2/s.

For ease of computation, an additional rescaling for D is applied, and we compute in
terms of (100 nt)2, and the value used in model simulations becomes

D=1.47×102
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with units of (100 nt)2/sec. From this, we calculate F based on the desired values for
p+ and p− given by Eqs. (4.2) and (4.3). The probabilities are determined from experi-
mental results describing the transcription process. In order to account for backtracking
pauses that, while infrequent, do occur during transcription we prescribe p+(L2)= 0.99
and p−(L2)= 0.01 during the elongation process when the RNAP is not experiencing a
pause. This allows the particle to exit the segment [−L2,L2] occasionally to the left i.e. in
the direction opposite that of the elongation. Using Eq. (4.2) and setting p+= 0.99, and
staying consistent with the length scale determined by the rescaling of D, one can solve
for F in terms of the units of L2=0.01 (100 nt),

F=−Dln

(
1−0.99

0.99

)
, (7.4)

where D= 1.47×102 (100 nt)2/s.
We estimate ǫ somewhat qualitatively by examining the graph of the total effective

potential V(x)=U1(x)+U2(x)−Fx and the contribution of the pause potential U1(x,L1)
to its behavior. For small values of ǫ the “base” of the pause potential spreads out and is
wider. We prefer to have a very small base so that the graphical behavior of our pause
potential resembles that of a Dirac delta function. Fig. 4 displays the graphs of the full
potential functions V(x) for four different values of ǫ (with all other parameters fixed).
For the computations presented here, we choose ǫ=1000, but the choice of ǫ is somewhat
arbitrary.

7.1.2 Estimation of parameters c1 and c2

Now we estimate the amplitude of U1(x) and U2(x), c1 and c2 respectively. These pa-
rameters are tuned so that the model is consistent with information from the biological
literature. The average velocity of an RNAP transcribing an rrn operon is 90 nt/s which
corresponds to a 60 s transcription time [39]. Assuming the length of the DNA strand is
5450 nucleotides, as for E. Coli, the number of 100 nucleotide segments (space from one
pause to another in our model) to compose the strand is 54.5. Therefore, to obtain a 60
second transcription time, the MST from one segment should be 1.1009 seconds. As men-
tioned previously, pauses range in time duration from 1-5 seconds. To remain biologically
consistent and to adhere to the 60 second transcription time, we tune the amplitude of
the pause potential, c1, to calculate a one second pause. In this case, we use the formula,

µ1=
1

D
(

1+e
−FL1

D

)
∫ L1

0

∫ x

x−L1

e
U1(x)−Fx

D e
−(U1(y)−Fy)

D dydx (7.5)

and seek to determine c1 so that µ1 = 1 second. After some experimentation, this am-
plitude is c1=1790.4138. Keeping c1 fixed, we next consider full multi-periodic potential
where the potential contains both the pause and the elongation potentials. The amplitude
for this elongation potential, c2, is tuned in order to calculate the MST of 1.1009. This am-
plitude is computed as c2 =20.8067. The MST is calculated using the original formula in
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(a) ǫ=1 (b) ǫ=10

(c) ǫ=100 (d) ǫ=1000

Figure 4: The parameter ǫ affects the shape of the pause potential function. Higher values of ǫ produce more
of a spike, while the lower values of ǫ create a much less severe and more rounded potential.

Eq. (2.9) and the potential V(x)=U1(x,L1)+U2(x,L2)−Fx where U1 and U2 are defined
in Eq’s (7.1) and (7.2) respectively.

Using the same parameters, we compare the approximation formula, T2 with that
of the analytical expressions mentioned above. The MST approximation calculated using
the formula for T2 is 1.01055 seconds. Therefore the difference between the two calculated
MSTs is

|µ2−T2|≈0.090845 seconds

which is an excellent agreement. The parameters used in these calculations are shown in
Table 1.

Table 1: Parameters used in calculations of mean escape time.

Parameter L1 L2 c1 c2 ǫ F D

Value 1 0.01 1790.4138 20.8067 1000 675.5 1.47 ×102

We also analyze the impact of the parameter ǫ, by varying ǫ over a large range of
values. These results are shown in Fig. 5. We note that for all values of ǫ explored here
(note the logarithmic scale), the error between the MST and the approximation remains
very small. Interestingly, the graph of the mean escape time has a pronounced maximum
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Figure 5: MST for a range of ǫ values with the calculated MST shown in the black dashed line and the
approximation shown in the red stars.

at value ǫ≈3 along with points of inflection on either side of this value. At this point, we
do not have a theoretical explanation of this effect of the shape of the potential on mean
escape time; however, there are results in the literature describing significant enhance-
ment of diffusion effects for values of the tilt parameter that are near a certain threshold,
see [44] and [45]. In the current case of the biological application, the tilt parameter is
determined according to the predisposition of the RNAP to move in the forward direc-
tion along the DNA strand with a certain probability, therefore, the tilt parameter is not
free to be tuned further. However, this observation warrants future consideration as to
whether a biologically observed phenomena of elongation “speed up” on highly tran-
scribed genes [19] should be investigated in the context of this model. Fig. 5 leads one to
conclude that the shape parameter ǫ can be adjusted so that a certain mean escape time
from a transcriptional pause may be achieved.

We conclude this example by noting that our model captures the main features of
DNA elongation with the pausing behavior. Using our MST approximation,

T2=2Dν2(U2)µ1(U1), (7.6)

we only need to recalculate µ1(U1) when we change parameters of the pausing process,
and ν2(U2) when we change elongation parameters. This efficiency is a clear computa-
tional benefit of our approximation formula during the model validation process.

7.2 Mean escape time using a Fourier expansion for a quadratic wave

In this example, we use a truncated Fourier expansion in order to approximate a potential
function. Mean escape time estimates are computed using the function given by the
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partial sum as well as the multiplicative MST approximation derived in this paper. We
examine the errors incurred using each of these approximations. Begin with the quadratic
function

U0(x)=−
(

x− L

2

)2

defined on the interval [0,L]. The periodic function is the periodic extension of U0 given
by

U(x)=−
(
(x−nL)− L

2

)2

, x∈ [nL,(n+1)L], n∈N. (7.7)

We consider the tilted periodic potential

V(x)=U(x)−Fx, (7.8)

where U(x) is the periodic extension given in Eq. (7.7). For this example, we consider
F=0.2. The graph of this potential on the interval [0,3L] is shown in Fig. 6(a).

Since U(x) is a continuous function and U′(x) is piecewise continuous, by the Fourier
Convergence Theorem the Fourier series converges uniformly to U(x) for all x. The
Fourier series for U(x) is given by

U(x)=
−L

12
−

∞

∑
n=1

(
L

nπ

)2

cos

(
2πnx

L

)
. (7.9)

The truncated Fourier series is the finite sum,

UN(x)=
−L

12
−

N

∑
n=1

(
L

nπ

)2

cos

(
2πnx

L

)
. (7.10)

The error between the truncated Fourier expansion and the original function decreases
with the addition of more terms, and the inclusion of a small number of terms in the
sum is required in order to observe good agreement between the original function and
its approximation, see Fig. 6(b). To frame the truncated Fourier series in the context of a
tilted multi-periodic potential consider the definition

VN(x) :=

(
−L

12
−
(

L

π

)2

cos

(
2πx

L

)
−Fx

)
−

N

∑
n=2

(
L

nπ

)2

cos

(
2πnx

L

)
. (7.11)

This expression takes the form

VN(x)=(U1(x)−Fx)+
N

∑
i=2

Ui(x), (7.12)

where

Ui(x)=−
(

L

iπ

)2

cos

(
2πix

L

)
, i=2,3,··· ,N. (7.13)
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(a) The tilted potential function V(x) with
F = 0.2 and U(x) as the periodic extension
given in Eq. (7.7) on the interval [0,3L].

(b) The potential (black) on [0,L] is com-
pared to the Fourier series with one term,
U1(x) (green stars) and with five terms,
U5(x) (red dashes).

(c) The errors calculated by the differences
|µ−µN| and |µN−TN | are shown in red and
black dashes respectively.

(d) The MST using the quadratic potential µ
and using the Fourier series µN are shown in
red and black dashes, respectively. The MST
approximation, TN , using Eq. (3.10), is dis-
played with blue stars. Results shown for a
range of values for D with N=20 fixed.

Figure 6: Figures (a) and (b) display the graph of the quadratic potential function V(x) along with some Fourier
approximations. Figures (c) and (d) illustrate measures of the error among the various MST calculations for
the functions shown in (a) and (b).

has a period of Li= L/i for i=2,3,··· ,N and

U1(x,L)=

(
−L

12
−
(

L

π

)2

cos

(
2πx

L

))
. (7.14)

The MST for this example is calculated in three ways. The first is to compute the true
mean escape time µ where the function in (7.8) is used in the definition of the MST given
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Table 2: Mean escape times µ and µN, with the multiplicative approximation TN .

Magnitude of Magnitude of

N µ µN TN |µ−µN | |µN−TN |
2 0.30184637 0.25011249 0.25011249 10−2 10−11

6 0.30184637 0.25013829 0.25013828 10−2 10−8

11 0.30184637 0.25013884 0.25013882 10−2 10−8

16 0.30184637 0.25013890 0.25013888 10−2 10−8

21 0.30184637 0.25013896 0.25013890 10−2 10−8

by (2.9). The second is to compute the true mean escape time µN for a function which is
a finite Fourier approximation VN as given in the Eq. (7.12). The third and final means
of approximation considered here is to use the MST labeled TN , which is an approxi-
mation of µN . Using the multiplicative approximation from Theorem 3.1, the quantity
TN is calculated according to the definition in Eq. (3.10). We examine the sharpness of
this estimate by numerically calculating both µN and the exact value of µ using a very
accurate quadrature rule for the expression (2.9). For all three calculations we use the pa-
rameters D=2 and L=1. The errors between the MSTs given by the differences |µ−µN |,
and |µN−TN | for an increasing number of functions are shown in Fig. 6(c). Also, Table 2
displays the results of µ, µN , and TN as well as the differences |µ−µN | and |µN−TN |.

The difference |µ−µN | is 0.051734 for the truncated function with one term and de-
creases to 0.051707 for the truncated function with twenty terms. This error given by
|µ−µN | remains very consistent over the addition of terms. As we can see from Fig. 6(b),
the Fourier series approximation to U0(x) is already very good at 5 terms. As more terms
are added, this error will continue to decrease. From Theorem 6.1, this error will ap-
proach zero as the number of terms N → ∞, but we compare the error in the MST ap-
proximation |µN−TN | for small N as that is the context where TN is the most accurate
approximation of the mean escape time. This error remains quite small for a reasonably
large value of N, which determines the number of terms in the finite Fourier approxima-
tion.

Next consider the MST for a fixed number of Fourier series terms, N= 20, while the
value of the noise intensity parameter D is allowed to vary. From our discussion of the
error estimate we derived Eq. (5.9), and just as in our previous example, as D decreases,
the term on the right hand side of Eq. (5.9) increases, and errors are more significant
in this approximation. The results of these calculations are displayed in Fig. 6(d). The
difference |µN−TN | for D=0.5 is on the order of 10−5. This quantity increases to 10−2 for
D=0.1.

While the difference |µ−µN | does increase dramatically for small values of D, TN

remains close to µN . The difference |µ−µN | is also expected to increase as D decreases,
from the inequality given in the proof of Theorem 6.1. While µN → µ as N → ∞ from
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Theorem 6.1, the difference |µ−µN | will require more terms of the sequence in order to
be made sufficiently small for small values of D. As we are holding N = 20 fixed here,
the error will continue to increase as D decreases. For values of D>1, Eq. (3.10) provides
excellent agreement to Eq. (2.9). This example illustrates that the accuracy of the MST
approximation is best used for situations where low numbers of terms in a Fourier series
approximation are needed. It also shows that the accuracy of the estimate also depends
strongly on the value of D, and both of these issues should be given consideration when
using this estimate.

7.3 Potential with two periodic functions

This section contains a simple example of a potential function consisting of a sum of only
two periodic functions, the frequency of the second function being significantly smaller
than that of the first. In such a construction, the notation from the previous section im-
plies that µ = µ2 since the original potential function can be viewed as a finite Fourier
expansion. Consider the multi-periodic potential

V(x)=cos(2πx)+
1

16
cos(200πx)−0.6x. (7.15)

The first periodic function, U1(x)=cos(2πx), has period L1=1, while the second function,
U2(x)= 1

16 cos(200πx), is also periodic with least period L2 = 1/100. The tilt parameter
is set by F= 0.6. A plot of this potential is shown in Fig. 7(a). The focus of this section
is the accuracy of the MST approximation for the situation where it is most suitable, that
is, when the largest period of the functions comprising V(x) is considerably larger than
that of the smaller period of the other component function of V(x) in (7.15). The error
|µ2−T2| is examined in detail, and the MST estimate computed using T2 is significantly
better than the bound given in this paper for some cases. In addition, the role of the noise
parameter D is also considered.

The potential V(x) is highly oscillatory but the MST of each individual function is
very easy to calculate. The formula for the MST is

µ2=q
∫ 1

0

∫ 1

x−1
e

U1(x)−0.6x
D e

−(U1(y)−0.6y
D e

U2(x)
D e

−U2(y)
D dydx. (7.16)

Following the error analysis completed in Lemma 5.1, we have the relationship

µ2=ν2µ1+qν2ǫ2=T2+qν2ǫ2. (7.17)

We seek to examine the error |µ2−T2| as a function of the parameter D using this equa-
tion. In order to quantify ǫ2 for this example, we follow the arguments in the proof of
Lemma 4.2, and the details of the calculations can be found in Appendix C. Those de-
tails include the estimates of M1 and M2 for this particular example, and using those
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(a) A multi-periodic potential with two periodic
functions as given in Eq. (7.15) is shown. It is the
sum of two cosine functions defined by periods
L1=1, L2=1/100 and a tilt of F=0.6.

(b) The graph of the error bound is shown in
black with the true error in red. The parameter
D ranges in the interval [0.1,10]. This plot uses
a log scale on the vertical-axis.

Figure 7: Figure (a) displays the graph of the potential function V(x) from Eq. (7.15), and Figure (b) illustrates
the behavior of the error of the MST approximation over a range of values for the noise intensity parameter.

estimates, one can express ǫ2 as a function of D where we have the following inequality

ǫ2(D)≤ 3

D
M1κ1/D L2≈

0.2065(10.066)1/D

D
. (7.18)

From Eq. (7.17), we see that the error in the MST approximation is given by |µ2−T2|=
qν2ǫ2, and that error is bounded by

|µ2−T2|≤qν2

[
0.2065(10.066)1/D

D

]
=

(
1

1+e
−0.6

D

)
ν2

[
0.2065(10.066)1/D

D2

]
(7.19)

from Eq. (C.3) for the current example.
To examine this error as a function of the noise intensity parameter, D, we calculate

and report both the true error |µ2−T2| along with the value of the error bound given
by the right side of Eq. (7.19). These calculations are reported in Table 3 for a variety of
different values of D. The results depict the very good agreement that we would expect
to find with the error decreasing with increasing values of D. The error bound and the
true error are plotted on the same axes for comparison using a log scale on the y-axis, in
Fig. 7(b). Although the error bound is valid for the range of D, it severely overestimates
the true error. In fact, the actual error values |µ2−T2| over the entire range of choices for
D are quite low indicating that the error using the MST calculation can be much smaller
than the prediction of the error bound given in this work.

These three examples detailed in Section 7 demonstrate the utility of the approxi-
mation method. With a relatively small error, one can estimate the MST using TN in a
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Table 3: Calculated errors for the MST approximation T2 over a range of noise intensity values D. The third
column contains the value of the error bound given by Eq. (7.19).

D |µ2−T2| Error Bound

0.1 2.219279971905 2.66226934×1011

0.25 4.6258332×10−6 3.208295296×104

0.5 2.6435893×10−9 6.482483122×10

0.75 3.5115565×10−7 5.5243404968

1 1.05732914×10−8 1.3447030926

5 7.50403×10−11 6.9475514757×10−3

10 8.1085959×10−9 1.3397311847×10−3

computationally efficient manner. The ease of computation, especially in light of altering
parameters for use in parameter studies, makes the approximation method an asset for
research involving repeated calculations of MST.

8 Discussion

This paper examines a model of particle transport from one potential well to the next by
considering the Fokker-Planck equation over an individual segment of its domain. The
particular form of the potential function prescribed in the equation allows us to give a
form for the particle’s mean escape time (MST) from this segment and hence estimate the
dispersion and the drift associated with the overall particle motion. Generally, the MST
must be estimated numerically since an algebraic expression of the integral representa-
tion is usually intractable, see Eq. (2.9). The focus of our analysis is the estimation of the
MST for tilted potential functions of the form V(x)=U(x)−Fx, where U(x) is periodic
with least period L. First it is noted that the probability of escaping a segment on the right
(or the left) depends on the tilt parameter F and the period L, as well as the noise inten-
sity parameter D. Consequently, we have shown that when U(x) is constructed using a
linear combination of periodic functions where L is a common period of all individual
elements within the combination, then the escape probability is unchanged with the ad-
dition of more periodic functions into that linear combination, so long as the period of
U(x) remains fixed. Hence, the escape probability is independent of the algebraic compo-
nents of U(x), so long as the least period of the function is given by the parameter L. In
contrast, the MST for a given potential function V(x) depends explicitly on its algebraic
representation, see Eq. (2.9).

The main results of this paper derive an expression that approximates the MST for the
case of a tilted periodic potential composed of a sum of several periodic functions. The
formula is multiplicative and is given in terms of the MST of each of the individual peri-
odic functions that compose the original potential. This formula, the multiplicative MST
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approximation given by Eq. (3.10) in Theorem 3.1, is valid for a potential that is composed
of a linear combination of any finite number of periodic functions. Theorem 3.1 is easily
proven with recursion.

A demonstrated application for Eq. (3.10) is its use for repeated calculations during
parameter estimation for model validation as shown in Section 7.1. There we were able
to determine coefficients for a model of RNAP elongation for DNA transcription that in-
cludes transcriptional pausing and achieve model outputs that are consistent with the
literature. Another use of Eq. (3.10) is in conjunction with a Fourier series approximation
of a potential function, as shown by the quadratic wave example in Section 7.2. When
a finite Fourier expansion is used to approximate the potential function, then the multi-
plicative MST derived here gives an approximation to the true MST of the original po-
tential that is efficient to calculate. In fact, the MST of the individual terms of the Fourier
series can be computed a priori and stored for table lookup when needed. An added benefit
is that the MST for each individual basis function can be pre-computed to a high degree
of accuracy using the formula in Eq. (2.9) and applying an adaptive quadrature rule that
can be adjusted to choose a computational grid that is appropriate for the period of the
particular function in the Fourier basis. As one adds more terms to the finite approxima-
tion of the Fourier series, only the MST of each of the new terms is required to build the
new approximation.

Finally, we also examine the effect of the noise intensity parameter on the reliabil-
ity and accuracy of the MST approximation. For noise intensity D≥ 1 there is excellent
agreement between the true MST and the multiplicative approximation. We also prove
convergence of the MST of the Fourier series to the MST of the limiting function. Quan-
tifying the explicit rate of convergence remains an open problem.
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A Proof of Theorem 3.2

Proof. Let the periodic potential be

Vn(x)=U1(x,L1)+U2(x,L2)+···+Un(x,Ln)−Fx

=

(
U1(x,L1)−

Fx

n

)
+

(
U2(x,L2)−

Fx

n

)
+···+

(
Un(x,Ln)−

Fx

n

)
(A.1)

as in Eq. (3.12). Also let Vn−1(x) be

Vn−1(x)=

(
U1(x,L1)−

Fx

n

)
+

(
U2(x,L2)−

Fx

n

)
+···+

(
Un−1(x,Ln−1)−

Fx

n

)
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so
Vn(x)=Vn−1(x)+(Un(x,Ln)−Fx/n).

Then the MST is

µ=
1

D
(

1+e
−FL

D

)
∫∫

Ω
e

Vn−1(x)
D e

−Vn−1(y)
D e

Un(x,Ln)−Fx/n
D e

−(Un(y,Ln)−Fy/n)
D dydx. (A.2)

Partitioning the domain into Ωk,s and using the Weighted Mean Value Theorem for Dou-
ble Integrals, there exists an (x0(k,s),y0(k,s)) such that

µ=
1

D
(

1+e
−FL

D

)
Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D

∫∫

Ωk,s

e
Un(x,Ln)−Fx/n

D e
−(Un(y,Ln)−Fy/n)

D dydx

=
1

D
(

1+e
−FL

D

)
Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D

∫∫

Ωk,s

e
Un(x,Ln)

D e
−Un(y,Ln)

D e
F(y−x)

nD dydx. (A.3)

Consider only the integral in Eq. (A.3) and apply the mapping Gk,s : Ωk,s →Ω0,n given by
Eq. (4.13),

∫∫

Ωk,s

e
Un(x,Ln)−Fx/n

D e
−(Un(y,Ln)−Fy/n)

D dydx

=
∫∫

Ω0,n

e
Un(x,Ln)−Fx/n

D e
−(Un(y,Ln)−Fy/n)

D e
F(s−Nn)Ln

nD dydx

=e
F(s−Nn)Ln

nD

∫∫

Ω0,n

e
Un(x,Ln)−Fx/n

D e
−(Un(y,Ln)−Fy/n)

D dydx

=D
(

1+e
−FLn

nD

)
µ(Un,Ln,F/n)e

F(s−Nn)Ln
nD . (A.4)

With the tilting term included on the function in the integral, an extra term emerges from
the integral as a result of the mapping to Ω0,n. Using this for the integral in Eq. (A.3), we
have

µ=

(
1+e

−FLn
nD

)

(
1+e

−FL
D

) µ

(
Un,Ln,

F

n

) Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D e
F(s−Nn)Ln

nD . (A.5)

Note,

e
F(1−Nn)Ln

nD ≤ e
F(s−Nn)Ln

nD ≤ e
F(Nn−Nn)Ln

nD =1.

Therefore (
1+e

−FLn
nD

)

(
1+e

−FL
D

) µ

(
Un,Ln,

F

n

)
e

F(1−Nn)Ln
nD

Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D

≤µ≤

(
1+e

−FLn
nD

)

(
1+e

−FL
D

) µ

(
Un,Ln,

F

n

) Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D . (A.6)
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Consider the term µ
(
Un,Ln, F

n

)
. We would like to determine what happens when we

change the period. Begin with the integral for µ(Un,Ln,F/n),

µ(Un,Ln,F/n)=
1

D(1+e
−FLn

nD )

∫ Ln

0

∫ x

x−Ln

e
Un(x,Ln)−Fx/n

D e
−(Un(y,Ln)−Fy/n)

D dydx. (A.7)

Making the substitution

z(x)=
1

Ln
x, dz(x)=

1

Ln
dx

we have

µ(Un,Ln,F/n)=
1

D(1+e
−FLn

nD )

∫ 1

0

∫ z(x)

z(x)−1

e
Ûn(z(x),1)−FLnz(x)/n

D

e
Ûn(z(y),1)−FLnz(y)/n

D

(Ln)
2 dz(y)dz(x)

=(Ln)
2µ(Ûn,1,FLn/n), (A.8)

where Ûn(z(x),1)=Un(x,Ln). Therefore

(Ln)
2µ

(
Ûn,1,

FLn

n

)
=µ(Un,Ln,F/n).

Returning to Eq. (A.6), we compute
(

1+e
−FLn

nD

)

(
1+e

−FL
D

) µ

(
Ûn,1,

F

n
Ln

)
e

F(1−Nn)Ln
nD

Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D (Ln)
2

≤µ≤

(
1+e

−FLn
nD

)

(
1+e

−FL
D

) µ

(
Ûn,1,

F

n
Ln

) Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D (Ln)
2 . (A.9)

Let ηm =D
(

1+e
−FLm

nD

)
µ
(

Ûm,1, F
n Lm

)
. We can simplify Eq. (A.9) as

ηn

D
(

1+e
−FL

D

) e
F(1−Nn)Ln

nD

Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D (Ln)
2

≤µ≤ ηn

D
(

1+e
−FL

D

)
Nn

∑
k=1

Nn

∑
s=1

e
Vn−1(x0(k,s))

D e
−Vn−1(y0(k,s))

D (Ln)
2 . (A.10)

Using Lemma 4.2, we have

ηn

D
(

1+e
−FL

D

) e
F(1−Nn)Ln

nD

∫∫

Ω
e

Vn−1(x)
D e

−Vn−1(y)
D dydx+O(Ln)

≤µ≤ ηn

D
(

1+e
−FL

D

)
∫∫

Ω
e

Vn−1(x)
D e

−Vn−1(y)
D dydx+O(Ln). (A.11)
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Now we repeat this process. Consider just the integral
∫∫

Ω
e

Vn−1(x)
D e

−Vn−1(y)
D dydx

=
∫∫

Ω
e

Vn−2(x)
D e

−Vn−2(y)
D e

Un−1(x,Ln−1)−Fx/n

D e
−(Un−1(y,Ln−1)−Fy/n)

D dydx

=
Nn−1

∑
k=1

Nn−1

∑
s=1

e
Vn−2(x0(k,s))

D e
−Vn−2(y0(k,s))

D

×
∫∫

Ωk,s

e
Un−1(x,Ln−1)−Fx/n

D e
−(Un−1(y,Ln−1)−Fy/n)

D dydx

=
Nn−1

∑
k=1

Nn−1

∑
s=1

e
Vn−2(x0(k,s))

D e
−Vn−2(y0(k,s))

D

×
∫∫

Ω0

e
Un−1(x,Ln−1)−Fx/n

D e
−(Un−1(y,Ln−1)−Fy/n)

D e
F(s−Nn−1)Ln−1

nD dydx

=D

(
1+e

−FLn−1
nD

)
µ

(
Un−1,Ln−1,

F

n

)Nn−1

∑
k=1

Nn−1

∑
s=1

e
Vn−2(x0(k,s))

D e
−Vn−2(y0(k,s))

D e
F(s−Nn−1)Ln−1

nD . (A.12)

Then we have the inequality

e
F(1−Nn−1)Ln−1

nD ≤ e
F(s−Nn−1)Ln−1

nD ≤ e
F(Nn−1−Nn−1)Ln−1

nD =1.

Using this inequality in Eq. (A.12), we calculate

ηnD
(

1+e
−FLn−1

nD

)

D
(

1+e
−FL

D

) µ

(
Un−1,Ln−1,

F

n

)
e

F(1−Nn)Ln
nD e

F(1−Nn−1)Ln−1
nD

×
Nn−1

∑
k=1

Nn−1

∑
s=1

e
Vn−2(x0)

D e
−Vn−2(y0)

D +O(Ln)

≤µ≤
ηnD

(
1+e

−FLn−1
nD

)
µ
(
Un−1,Ln−1, F

n

)

D
(

1+e
−FL

D

)

×
Nn−1

∑
k=1

Nn−1

∑
s=1

e
Vn−2(x0)

D e
−Vn−2(y0)

D +O(Ln). (A.13)

This simplifies to

ηn ·ηn−1

D
(

1+e
−FL

D

) e
F(1−Nn)Ln

nD e
F(1−Nn−1)Ln

nD

Nn−1

∑
k=1

Nn−1

∑
s=1

e
Vn−2(x0)

D e
−Vn−2(y0)

D (Ln−1)
2+O(Ln)

≤µ≤ ηn ·ηn−1

D
(

1+e
−FL

D

)
Nn−1

∑
k=1

Nn−1

∑
s=1

e
Vn−2(x0)

D e
−Vn−2(y0)

D (Ln−1)
2+O(Ln). (A.14)
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Using Lemma 4.2, we compute

ηn ·ηn−1

D
(

1+e
−FL

D

) e
F(1−Nn)Ln

nD e
F(1−Nn−1)Ln−1

nD

∫∫

Ω
e

Vn−2(x)
D e

−Vn−2(y)
D dydx+O(Ln−1)

≤µ≤ ηn ·ηn−1

D
(

1+e
−FL

D

)
∫∫

Ω
e

Vn−2(x)
D e

−Vn−2(y)
D dydx+O(Ln−1). (A.15)

If we continue this algorithm for all n functions, we will eventually have the formula

∏
n
i=2ηi

D
(

1+e
−FL

D

)
n

∏
i=2

e
F(1−Ni)Li

nD

∫∫

Ω
e

U1(x,L1)−Fx/n
D e

−(U1(y,L1)−Fy/n)
D dydx+O(L2)

≤µ≤ ∏
n
i=2ηi

D
(

1+e
−FL

D

)
∫∫

Ω
e

U1(x,L1)−Fx/n
D e

−(U1(y,L1)−Fy/n)
D dydx+O(L2). (A.16)

This leads to our final formula
(

1+e
−FL
nD

)

(
1+e

−FL
D

)
(

n

∏
i=2

e
F(1−Ni)Li

nD ηi

)
µ(U1,L,F/n)+O(L2)

≤µ≤

(
1+e

−FL
nD

)

(
1+e

−FL
D

)
(

n

∏
i=2

ηi

)
µ(U1,L,F/n)+O(L2). (A.17)

The proof is completed.

B Proof of Theorem 4.2

Proof. Since f is continuous on a closed and bounded Ω there exists a minimum and
maximum of f on this domain, m=minΩ( f (x,y)) and M=maxΩ( f (x,y)). Because g is a
positive function, we have

mg(x,y)≤ f (x,y)g(x,y)≤M f (x,y).

Therefore

m
∫∫

Ω
g(x,y)dydx≤

∫∫

Ω
f (x,y)g(x,y)dydx≤M

∫∫

Ω
g(x,y)dydx.

Also, since g is positive ∫∫

Ω
g(x,y)dydx>0.
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Hence

m≤
∫∫

Ω
f (x,y)g(x,y)dydx∫∫

Ω
g(x,y)dydx

≤M

and by the Intermediate Value Theorem, there exists a point (s0,t0)∈Ω such that

f (s0,t0)=

∫∫
Ω

f (x,y)g(x,y)dydx∫∫
Ω

g(x,y)dydx
.

Therefore

f (s0,t0)
∫∫

Ω
g(x,y)dydx=

∫∫

Ω
f (x,y)g(x,y)dydx.

The proof is completed.

C Calculations for Example 7.3

In order to quantify ǫ2 for this example, we follow the arguments in the proof of Lemma
4.2 and examine the expression for ǫk,s where

ǫk,s =

∣∣∣∣
∫∫

Ωk,s

e
U1(x)−Fx

D e
−(U1(y)−Fy)

D dydx−e
U1 (x⋆)−Fx⋆

D e
−(U1(y

⋆)−Fy⋆)
D L2

2

∣∣∣∣. (C.1)

This leads to an equation similar to (4.21), given by the following for this example

ǫk,s ≤
1

D
max

z∈[−L,L]
|U′

1(z)−F| max
(z1 ,z2)∈Ω

∣∣∣∣∣
e

U1(z1)−Fz1
D

e
U1(z2)−Fz2

D

∣∣∣∣∣

(∫∫

Ωk,s

|x−x⋆|+|y−y⋆ |dydx

)
. (C.2)

Summing the error over all 1002 parallelograms Ωk,s, one obtains the expression derived
in Eq. (5.7) which for this case is

ǫ2≤
1

D
M1M23L3

2(100)2 =
3

D
M1M2L2, (C.3)

where

M1= max
z∈[−L,L]

|U′
1(z)−F|, M2= max

(z1,z2)∈Ω

∣∣∣∣∣
e

U1(z1)−Fz1
D

e
U1(z2)−Fz2

D

∣∣∣∣∣.

For the calculation of M1, we apply principles of Calculus by finding the critical val-
ues. The function to be optimized is

U′
1(z)−F=−2πsin(2πz)−F

and its derivative is

U′′
1 (z)=−4π2 cos(2πz).
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The critical values are described by z = 2n−1
4 for n any integer. Since we only consider

z∈ [−L,L] = [−1,1], we have z=±3/4,±1/4 as the admissible critical values. Plugging
into the original equation, we have the critical values of 3/4 and -1/4 which leads to a
maximum value of |−2π−F|. Since F=0.6 in this example, we have

M1≈6.883. (C.4)

In order to calculate M2, we must solve a multivariable optimization problem. Recall
that

M2= max
(z1,z2)∈Ω

∣∣∣∣∣
e

U1(z1)−Fz1
D

e
U1(z2)−Fz2

D

∣∣∣∣∣= max
(z1,z2)∈Ω

∣∣∣ecos(2πz1)−cos(2πz2)+F(z2−z1)
∣∣∣
1/D

=κ1/D. (C.5)

We calculate
κ= max

(z1,z2)∈Ω

∣∣∣ecos(2πz1)−cos(2πz2)+F(z2−z1)
∣∣∣

by first defining

g(z1,z2)= ecos(2πz1)−cos(2πz2)+F(z2−z1) (C.6)

and then finding the critical points. The partial derivatives of g(z1,z2) are

∂g

∂z1
=(−2πsin(2πz1)−F)ecos(2πz1)−cos(2πz2)+F(z2−z1)

and
∂g

∂z2
=(2πsin(2πz2)+F)ecos(2πz1)−cos(2πz2)+F(z2−z1),

and these expressions are both equal to zero when

z∗i =
1

2π
sin−1

(−F

2π

)
+n/2, i=1,2, n=1,2. (C.7)

For the value of F=0.6, we have

z∗i ≈−0.485, −0.015, 0.515, 0.985, zi ∈Ω. (C.8)

Upon inspection, the largest value that g(z1,z2) attains over this set of critical values is
approximately 10.066. One must also check for maximizers of |g| along the boundary of
the parallelogram, but in this particular example, the maximum does not occur on the
boundary. After examining all the critical points and the points along the boundary, we
have determined that

κ≈ max
(z1,z2)∈Ω

∣∣∣ecos(2πz1)−cos(2πz2)+F(z2−z1)
∣∣∣=10.066.

Therefore
M2≈κ1/D =10.0661/D .



38 T. Heberling, L. Davis and T. Gedeon / Commun. Comput. Phys., 25 (2019), pp. 1-40

References

[1] E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block. Direct
observation of base-pair stepping by RNA polymerase. Nature, 438(7067):460–465, 2005.

[2] T. Apostol. Calculus. One-Variable Calculus with an Introduction to Linear Algebra, vol-
ume 1. John Wilay and Sons, 1966.

[3] L. Bai, A. Shundrovsky, and M. D. Wang. Sequence-dependent kinetic model for transcrip-
tion elongation by RNA polymerase. Journal of Molecular Biology, 344(2):335–349, 2004.

[4] G. Bar-Nahum, V. Epshtein, A. E. Ruckenstein, R. Rafikov, A. Mustaev, and E. Nudler. A
ratchet mechanism of transcription elongation and its control. Cell, 120(2):183–193, 2005.

[5] M. Bier. Brownian ratchets in physics and biology. Contemporary Physics, 38(6):371–379, 1997.
[6] P. C. Bressloff and J. M. Newby. Stochastic models of intracellular transport. Reviews of

Modern Physics, 85(1):135, 2013.
[7] R. V. Churchill. Fourier Series and Boundary Value Problems, volume 2. McGraw-Hill, Inc.,

1963.
[8] W. Coffey, Y. P. Kalmykov, S. Titov, and B. Mulligan. Thermally activated escape rate for

a Brownian particle in a tilted periodic potential for all values of the dissipation. Physical
Review E, 73(6):061101, 2006.

[9] W. Coffey, Y. P. Kalmykov, S. Titov, and B. Mulligan. Semiclassical master equation in
wigners phase space applied to brownian motion in a periodic potential. Physical Review
E, 75(4):041117, 2007.

[10] W. T. Coffey, M. W. Evans, and P. Grigolini. Molecular diffusion and spectra. Wiley-
Interscience, 1984.

[11] W. T. Coffey and Y. P. Kalmykov. The Langevin equation: with applications to stochastic
problems in physics, chemistry and electrical engineering. World Scientific.

[12] W. T. Coffey, Y. P. Kalmykov, and E. Massawe. Effective-eigenvalue approach to the nonlin-
ear langevin equation for the brownian motion in a tilted periodic potential: Application to
the josephson tunneling junction. Physical Review E, 48(1):77, 1993.

[13] W. T. Coffey, Y. P. Kalmykov, and E. Massawe. Effective-eigenvalue approach to the nonlin-
ear langevin equation for the brownian motion in a tilted periodic potential. II. application
to the ring-laser gyroscope. Physical Review E, 48(2):699, 1993.

[14] D. R. Cox. Renewal Theory. Methuen and Co LTD, 1962.
[15] M. Dangkulwanich, T. Ishibashi, L. Bintu, and C. Bustamante. Molecular mechanisms

of transcription through single-molecule experiments. Chemical Reviews, 114(6):3203–3223,
2014.

[16] J. Davenport, J. Wuite, R. Landick, and C. Bustamante. Single-molecule study of transcrip-
tional pausing and arrest by E. coli RNA polymerase. Science, 287(5462):2497–2500, 2000.

[17] M. Depken, E. Galburt, and S. Grill. The origin of short transcriptional pauses. Biophysical
Journal, 96(6):2189–2193, 2009.
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