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Abstract. A local radial basis function method (LRBF) is applied for the solution of
boundary value problems in annular domains governed by the Poisson equation, the
inhomogeneous biharmonic equation and the inhomogeneous Cauchy-Navier equa-
tions of elasticity. By appropriately choosing the collocation points we obtain linear
systems in which the coefficient matrices possess block sparse circulant structures and
which can be solved efficiently using matrix decomposition algorithms (MDAs) and
fast Fourier transforms (FFTs). The MDAs used are appropriately modified to take
into account the sparsity of the arrays involved in the discretization. The leave-one-
out cross validation (LOOCV) algorithm is employed to obtain a suitable value for the
shape parameter in the radial basis functions (RBFs) used. The selection of the nearest
centres for each local influence domain is carried out using a modification of the kdtree
algorithm. In several numerical experiments, it is demonstrated that the proposed al-
gorithm is both accurate and capable of solving large scale problems.
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1 Introduction

The local radial basis function (LRBF) method was first discussed in [30] and then inde-
pendently introduced in [28, 31, 32, 34] introduced, see also [21]. In contrast to the tradi-
tional meshed based methods [1,2], LRBF is a meshless method which may be viewed as
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a special case of the Kansa method [15]. Meshless methods are well-suited for the numer-
ical solution of boundary and initial value problems in two and three dimensions. Un-
like the global Kansa-radial basis function (RBF) method [6–8] which leads to dense and
poorly conditioned linear systems, the LRBF method leads to sparse systems. In recent
years, the LRBF method has been successfully applied to a large variety of problems in
science and engineering. No special treatment for pre-conditioning is required [22,23,33].

Efficient global Kansa-RBF algorithms for problems in geometries possessing radial
symmetry were proposed in [18–20, 25]. These algorithms are matrix decomposition algo-
rithms (MDAs) [4, 5] and make use of fast Fourier transforms (FFTs). This allows us to
decompose a large system into a series of small systems which can be solved efficiently
and thus the issue of ill-conditioning occurring for large dense matrices is resolved. How-
ever, when the number of collocation points is sufficiently large, the rank of the smaller
decomposed matrices could still be large. In such a case, the memory space required to
store these (not so small) matrices as well as the computational cost are still challeng-
ing issues. Furthermore, when the rank of the decomposed matrices becomes larger, the
computational cost of finding a suitable shape parameter using LOOCV which is adopted
in [25] increases rapidly. To alleviate these difficulties for very large-scale problems, a lo-
calized RBF method can be considered so that the decomposed matrices are sparse. Our
goal in this work is to formulate the MDAs developed in [25] for the global Kansa-RBF
method, for the LRBF method. As will be demonstrated, this leads to very efficient algo-
rithms which exploit both the structure and the sparsity of the matrices involved, and thus
to substantial savings in both computer time and memory. The nearest centres for each
local influence domain in the LRBF method are selected using a modification of the kdtree
algorithm [29]. While the emphasis of this paper is not on the determination of the op-
timal value of the shape parameter, we use the leave-one-out cross validation (LOOCV)
algorithm [27] as a tool for determining appropriate values of the shape parameter which
yield to satisfactorily accurate results. In the numerical examples examined in this paper,
we shall focus on the use of the normalized multiquadric (MQ) while stressing that the
proposed algorithms are applicable to other RBFs.

The paper is organized as follows. In Section 2 we present the three types of bound-
ary value problems to be considered in the paper, namely Poisson, biharmonic and linear
elasticity problems. Some important implementational issues related to the proposed
technique are addressed in Section 3. A description of the LRBF method and correspond-
ing MDA for Poisson problems is provided in Section 4 and its extension to biharmonic
problems in Section 5. The LRBF method and corresponding MDA for linear elasticity
problems is presented in Section 6. In Section 7 the proposed method is applied to sev-
eral numerical examples and the results analyzed. Finally, some conclusions and ideas
for future work are given in Section 8.

2 The problems

In all problems considered the domain Ω is the annulus
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Ω=
{

x∈R
2 : ̺1< |x|<̺2

}

, (2.1)

where ∂Ω = ∂Ω1∪∂Ω2, ∂Ω1∩∂Ω2 = ∅ and ∂Ω1 =
{

x∈R
2 : |x|=̺1

}

and ∂Ω2 =
{

x∈R
2 : |x|=̺2

}

.

2.1 Poisson problems

We first consider the Poisson equation

∆u= f in Ω, (2.2a)

subject to the boundary conditions

u= gD on ∂Ω, (2.2b)

or
∂u

∂n
= g

N
on ∂Ω1 u= g

D
on ∂Ω2, (2.2c)

where f ,gD and gN are given functions. In (2.2c) and throughout the paper, ∂/∂n de-
notes the derivative along the outward unit normal vector to the boundary denoted by
n = (nx, ny).

2.2 Biharmonic problems

We next consider the biharmonic equation

∆2u= f in Ω, (2.3a)

subject to either the boundary conditions

u= gD and
∂u

∂n
= gN on ∂Ω, (2.3b)

or the boundary conditions

u= gD and ∆u= gL on ∂Ω, (2.3c)

where f , gD , gN and gL are given functions. Note that boundary value problem (2.3a)-
(2.3b) is known as the first biharmonic problem while the boundary value problem consist-
ing of (2.3a) and (2.3c) is known as the second biharmonic problem.
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2.3 Linear elasticity problems

We finally consider the Cauchy–Navier system for linear elasticity (see, e.g. [13])


















L1(u1,u2)=µ∆u1+
µ

1−2ν

(

∂2u1

∂x2
+

∂2u2

∂x∂y

)

= f1,

L2(u1,u2)=
µ

1−2ν

(

∂2u1

∂x∂y
+

∂2u2

∂y2

)

+µ∆u2= f2,

in Ω, (2.4a)

subject to either the Dirichlet boundary conditions

u1 = g
D1

and u2= g
D2

on ∂Ω, (2.4b)

or the mixed boundary conditions

t1 = g
N1

, t2= g
N2

on ∂Ω1, and u1 = g
D1

, u2= g
D2

on ∂Ω2, (2.4c)

where the domain Ω is defined in (2.1), the boundary segments ∂Ωi, i=1,2, are defined
as in Section 2.1, and fi, gDi

, gNi
, i= 1,2, are given functions. In (2.4), (u1,u2) denote the

displacements and (t1,t2) denote the tractions which are defined by [13]

t1=2µ

[(

1−ν

1−2ν

)

∂u1

∂x
+

(

ν

1−2ν

)

∂u2

∂y

]

nx+µ

[

∂u1

∂y
+

∂u2

∂x

]

ny,

t2=µ

[

∂u1

∂y
+

∂u2

∂x

]

nx+2µ

[(

ν

1−2ν

)

∂u1

∂x
+

(

1−ν

1−2ν

)

∂u2

∂y

]

ny.

In (2.4a) the constant ν ∈ [0,1/2) is Poisson’s ratio and the constant µ > 0 is the shear
modulus.

For convenience, we shall write the Cauchy-Navier equations (2.4a) as
{

L1
1(u1)+L2

1(u2)= f1,

L1
2(u1)+L2

2(u2)= f2,
in Ω, (2.5)

where the linear operators Lj
i , i, j=1,2, are defined as

L1
1≡µ∆+

µ

1−2ν

∂2

∂x2
, L2

1≡
µ

1−2ν

∂2

∂x∂y
, L1

2≡L2
1, L2

2≡µ∆+
µ

1−2ν

∂2

∂y2
.

3 Implementational considerations

3.1 Preliminaries

In the application of the LRBF the solution of the problem is expressed in terms of RBFs.
An RBF φ(x,y) is a function which may be written in the form

φ(x,y)=Φ(r), where r2=(x−x)2+(y−y)2. (3.1)



C. S. Chen and A. Karageorghis / Commun. Comput. Phys., 25 (2019), pp. 41-67 45

Thus each RBF φ is associated with a point (x,y) which is usually referred to as a cen-
ter. In addition to the centres we consider the collocation points where the differential
equations and boundary conditions are collocated. Note that, in general, the numbers
and locations of the collocation points and the centres differ and the number of centres is
normally taken to be less than the number of collocation points. In the current work the
centres and the collocation points are the same. Often, RBFs contain a parameter called
the shape parameter, the optimal determination of which remains a major challenge.

3.2 Distribution of collocation points

First, we distribute a set of K collocation points (centres) X=(xi)
K
i=1 in Ω in the following

way. We define the M angles

ϑm =
2π(m−1)

M
, m=1,··· ,M, (3.2)

and the N radii

rn =̺1+(̺2−̺1)
n−1

N−1
, n=1,··· ,N. (3.3)

The collocation points {(xmn,ymn)}M,N
m=1,n=1 are defined as follows:

xmn = rn cos
(

ϑm+
2παn

M

)

, ymn = rnsin
(

ϑm+
2παn

M

)

, m=1,··· ,M, n=1,··· ,N. (3.4)

In (3.4) the parameters {αn}N
n=1 ∈ [−1/2,1/2] correspond to rotations of the collocation

points which lie on concentric circles and may be used to produce more uniform distri-
butions.

The Kint interior points (xi)
Kint

i=1 are taken as

x(n−2)M+m=(xmn,ymn), m=1,··· ,M, n=2,··· ,N−1, (3.5)

and the Kbry boundary points (xi)
Kint+Kbry

i=Kint+1 as

x(N−2)M+m=(xm1,ym1), and x(N−1)M+m=(xmN ,ymN), m=1,··· ,M, (3.6)

where, clearly, Kint =(N−2)M, Kbry =2M and K=MN. The points (xi)
Kint+Kbry1
i=Kint+1 are the

boundary points on ∂Ω1 and the points (xi)
K
i=Kint+Kbry1

+1 are the boundary points on ∂Ω2.

Clearly, Kbry =Kbry1
+Kbry2

and K=Kint+Kbry1
+Kbry2

.

3.3 Selection of shape parameter

In the applications of numerical methods which use RBFs, it is important to choose a
suitable RBF. Moreover, in the cases where these RBFs involve a shape parameter, it is
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crucial and challenging to determine an appropriate value of the shape parameter which
yields accurate results [9,16,27]. As stated in Section 1, the emphasis of the current study
is not on the determination of the optimal value of the shape parameter. In the current
study, we will use the so called LOOCV algorithm proposed by Rippa [27] to find a sub-
optimal value of the shape parameter. Certain MATLAB c© codes for LOOCV may be
found in [12]. As described in [25], we shall use the local minimizer MATLAB c© function
fminbnd to find the minimum of a function of one variable within a fixed interval. Initial
guesses for the lower and upper bounds denoted by min and max need to be provided so
that the search takes place in the interval [min, max]. An attractive feature of LOOCV is
that the exact solution of the given problem does not need to be known in its application
for the selection of a (sub-optimal) shape parameter.

In this work, we shall determine an appropriate value for the shape parameter by
considering the solution of the local systems in the LRBF. We shall describe this technique
by considering the Dirichlet Poisson problem (2.2a) with boundary conditions (2.2b) or
(2.2c). For the local system (4.10), to find a suitable shape parameter, we modify the
MATLAB c© code in [12] as follows:

1 funtion eps =ostEps(,RBF,D,LapRBF,DM)

2 A=RBF(DM,);

3 rhs=LapRBF(D,);

4 invA=pinv(A);

5 errorvetor=(invA*rhs)./diag(invA);

6 eps=norm(errorvetor);

where DM is the distancematrix Bi in (4.10) and D is the distance vector in (4.8). For the
normalized MQ, RBF and LapRBF are given as follows:

RBF = �(r,) sqrt(1+(*r).^2);

LapRBF = � (r,) **((r*).^2+2)./((r*).^2+1).^(3/2);

The cost function ostEps is given by

[,fval℄ = fminbnd(�() ostEps(,RBF,D,LapRBF,DM),min,max);

where fminbnd is the MATLAB c© function finding the minimum of the cost function for
the shape parameter  and min and max define the initial search interval of the shape
parameter.

In some instances it was sufficient to determine the shape parameter by considering
LOOCV in a single randomly chosen local influence domain but in other instances this
lead to poor results. We therefore adopted a different strategy in which the shape param-
eter was taken to be equal to the average of the LOOCV parameters obtained in each of
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the local influence domains involved. Because of the circulant structure of the global ma-
trix (see (4.16)), we only need to find the average of N local influence domains (where N
is defined in (3.3)) and, since each local matrix in (4.10) is relatively small, the additional
computational cost is negligible.

3.4 Efficient selection of neighbouring points

As described in Section 3.2, an important feature of the LRBF method is the selection
of the κ nearest centres for each local influence domain. One way of efficiently select-
ing these points, as proposed in [36], is to use the kdtree algorithm [29, page 389], see
also [11, Appendix A.2]. In particular, we use the MATLAB c© executable (MEX) func-
tions kdtree_build and kdtree_k_nearest-neighbors. Despite the efficiency of such a
search algorithm, it should be pointed out that this procedure can be costly when the
number of collocation points is sufficiently large and that the most time-consuming part
of the algorithm is the building of the tree (kdtree_build) before the search. For ex-
ample, it requires approximately thirty minutes to build the kdtree for the case of one
million collocation points. An advantage of the proposed algorithm is that for every cir-
culant submatrix this selection needs to be carried out only once. Moreover, the search
algorithm is made more efficient by only to conducting the search in a small section of
the circular domain as shown in Fig. 1. More specifically, since each point has a specific
index number between 1 to MN, we store only the indices of the collocation points in the
red region in Fig. 1. The tree is built for the relatively small number of these points and
then the search process is carried out. In this way, the computational cost in the case of a
very large number of collocation points is significantly reduced.
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Figure 1: Redued searh points (red).
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4 Poisson problems

4.1 The LRBF method

In this section we describe the LRBF method for Poisson problems. It should be noted
that the description that follows could be applied to any equation of the form Lu = f
where L is a second order linear elliptic operator by simply replacing ∆ by L. However,
the LRBF–MDA proposed in this work is only applicable to the Laplace and Helmholtz
operators.

Let X =(xi)
N
i=1 be a set of collocation points in Ω. For point xi ∈Ω, we choose the set

of κ nearest neighbouring points denoted by Xi =(xi
ℓ
)κ
ℓ=1 which lie in the local influence

domain of xi. The points of Xi are indexed locally as xi
ℓ
=xℓ(i) and these overlapping sets of

points (Xi)
K
i=1 are such that (xi)

K
i=1=

⋃K
i=1Xi=X . We next consider collocating in the local

influence domain Xi. For x∈Xi, the approximate solution of the given partial differential
equation can be written as

uK(x)=
κ

∑
ℓ=1

αi
ℓ
Φ(||x−xi

ℓ
||), x∈Xi, (4.1)

where the function Φ is an appropriately chosen RBF and the coefficients αi
ℓ
= αℓ(i) are

indexed accordingly.

Next, we collocate the local approximation at all the points of Xi,

uK(xi
j)=

κ

∑
ℓ=1

αi
ℓ
Φ(||xi

j−xi
ℓ
||), for j=1,··· ,κ, (4.2)

which generates the local system

ui
K=











uK(xi
1)

uK(xi
2)

...
uK(xi

κ)











=











Φ(||xi
1−xi

1||) Φ(||xi
1−xi

2||) ··· Φ(||xi
1−xi

κ ||)
Φ(||xi

2−xi
1||) Φ(||xi

2−xi
2||) ··· Φ(||xi

2−xi
κ ||)

...
...

...
...

Φ(||xi
κ−xi

1||) Φ(||xi
κ−xi

2||) ··· Φ(||xi
κ−xi

κ||)





















αi
1

αi
2
...

αi
κ











=Biα
i,

(4.3)
where the matrix Bi ∈R

κ×κ is clearly symmetric and the vector α
i ∈R

κ×1 is the vector of
coefficients. From approximation (4.1) for the centre and (4.3), we can write

uK(xi)=
κ

∑
ℓ=1

αi
ℓ
Φ(||xi−xi

ℓ
||)=(hi

Φ)
T

α
i =(hi

Φ)
TB−1

i ui
K=

(

wi
)T

ui
K, (4.4)

where

hi
Φ=

[

Φ(||xi−xi
1||),Φ(||xi−xi

2||),··· ,Φ(||xi−xi
κ ||)

]T
, wi =B−1

i hi
Φ, (4.5)
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and

ui
K=

[

uK(x1(i)),uK(x2(i)),··· ,uK(xκ(i))
]T

.

In (4.4)-(4.5) we have used the fact that since the matrix Bi is symmetric so is its inverse.
Note that from (4.4), it follows that the value of uK(xi) is expressed as a weighted average
of the values of the uK(xi

ℓ
),ℓ=1,··· ,κ, that is, u(xi) is approximated by a weighted average

of the values of the neighbouring u(xi
ℓ
),ℓ= 1,··· ,κ. The invertibility of the matrix Bi is

discussed in, e.g., [35].
In the application of the LRBF method for the solution of boundary value problem

(2.2) we satisfy the Poisson equation at each interior point of Ω in X , that is

∆uK(x)= f (x), x∈Xi, (4.6)

or, locally, for x= xi,

∆uK(xi)=
κ

∑
ℓ=1

αi
ℓ
∆Φ(||xi−xi

ℓ
||)=(hi

∆Φ)
TB−1

i ui
K=

(

wi
∆

)T
ui
K= f (xi), i=1,··· ,Kint, (4.7)

where

hi
∆Φ=

[

∆Φ(||xi−xi
1||),∆Φ(||xi−xi

2||),··· ,∆Φ(||xi−xi
κ ||)

]T
(4.8)

and
wi

∆ =B−1
i hi

∆Φ. (4.9)

The local elements wi
∆ can be appropriately placed in the global matrix [36]. Note that

(4.7) is essentially a finite difference approximation of the Laplacian of u in terms of the
values of u at its neighbouring points, which justifies the fact that the LRBF method is
also known as the RBF-finite difference method [32]. In each set Xi, we determine the
vector wi

∆ by solving the κ×κ system

Biw
i
∆ =hi

∆Φ. (4.10)

The vectors wi
∆, i= 1,··· ,K, contain all the necessary coefficients of the approximations

(uK(xi))
K
i=1 in the global system. However, these need to be distributed accordingly in

the global matrix and each will be incorporated into a line of the global matrix which will
contain zeros except for the elements of wi

∆ at the appropriate positions.
In the case when Neumann boundary conditions are prescribed on ∂Ω1, we need to

evaluate ∂uK/∂x and ∂uK/∂y at the boundary points of ∂Ω1. We thus locally calculate

∂uK
∂x

(xi)=
κ

∑
ℓ=1

αi
ℓ

∂Φ

∂x
(||xi−xi

ℓ
||)=(hi

Φx
)TB−1

i ui
K=

(

wi
x

)T
ui
K, i=Kint+1,··· ,Kint+Kbry1

,

(4.11)
where

hi
Φx

=

[

∂Φ

∂x
(||xi−xi

1||),
∂Φ

∂x
(||xi−xi

2||),··· ,
∂Φ

∂x
(||xi−xi

κ ||)
]T

, (4.12)
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and
wi

x =B−1
i hi

Φx
.

Clearly, ∂uK/∂y can be obtained in a similar way.
At the boundary point xi on ∂Ω1 we have that

∂uK
∂n

(xi)=
κ

∑
ℓ=1

αi
ℓ

∂Φ

∂n
(||xi−xi

ℓ
||)=

κ

∑
ℓ=1

αi
ℓ

(

∂Φ

∂x
(||xi−xi

ℓ
||)nx(xi)+

∂Φ

∂y
(||xi−xi

ℓ
||)ny(xi)

)

=(hi
Φn
)TB−1

i ui
K=

(

wi
n

)T
ui
K= gN (xi), i=Kint+1,··· ,Kint+Kbry1

, (4.13)

where hi
Φn

=nx(xi)h
i
Φx

+ny(xi)h
i
Φy

and wi
n = B−1

i hi
Φn

. The vectors wi
n are determined by

solving the κ×κ systems Biw
i
n = hi

Φn
and their elements are appropriately placed in the

global matrix [36].
In the case of Dirichlet boundary conditions, things are considerably easier as we

simply need to impose the boundary conditions

uK(xi)= gD (xi), i=Kint+1,··· ,Kint+Kbry, (4.14)

which means that the lines in the global matrix which correspond to these equations will
only contain one non-zero element (equal to 1) in the global position of the corresponding
boundary point.

By extending the local elements (4.7), (4.13), and (4.14) to global form and placing
them in the global matrix, we obtain the following global sparse system [36]:

AuK=b, (4.15)

where the matrix A∈R
K×K is sparse. The right hand side vector b=[b1,··· ,bK]T is defined

as follows:

bi = f (xi), i=1,··· ,Kint,

bi = gD(xi) or gN (xi), i=Kint+1,··· ,Kint+Kbry1
,

bi = g
D
(xi), i=Kint+Kbry1

+1,··· ,Kint+Kbry1
+Kbry2

.

The solution of sparse system (4.15) for the vector uK ∈ R
K×1 yields the approxi-

mations to the solution u at the set of centres X . In particular, if we define the vector

uK=[uK1
,··· ,uKK ]

T, then uKi
represents the approximation of the solution at the point xi,

i=1,··· ,K.
In the present case, with the distribution of collocation points described in Section 3.2,

system (4.15) has the special structure

Au=











A1,1 A1,2 ··· A1,N

A2,1 A2,2 ··· A2,N
...

...
. . .

...
AN,1 AN,2 ··· AN,N





















u1

u2
...

uN











=











b1

b2
...

bN











=b, (4.16)
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Figure 2: Typial distribution of olloation points and in�uene domains. The nearest four points to two

entres (+) are highlighted in irles.

where the M×M submatrices An1,n2 , n1,n2=1,··· ,N, are circulant [10] and sparse. Hence
matrix A in system (4.16) is block circulant consisting of sparse blocks. A brief explanation
as to why each M×M submatrix An1,n2 in (4.16) is circulant is as follows. On each con-
centric circle ℓ, say (where ℓ=1,··· ,N), we have M centres. For each of these centres, the
local system (4.3) or more specifically (4.7) is the same. This means that for each centre
xi, i=1,··· ,M, on a concentric circle ℓ, the sets of solutions (coefficients) wi

∆ are the same.
Thus the coefficients relating each centre xi with its κ neighbouring points (some of which
belong to circles other than ℓ) are the same for each centre on the circle ℓ. When this rela-
tion is "transferred" to the global matrix, the matrix resulting from each of the M points
on the circle ℓ to the M points on any circle ℓ=1,··· ,N, will be circulant. This is because
the relation between a point xi and the non-zero-coefficient elements on circle ℓ′, say, will
be circulant. Alternatively, for each point xi on the circle ℓ the sets of neighbouring points
are globally circulant. This can be observed visually in Fig. 2 where we present a typical
distribution of collocation points in black dots. Two consecutive centres are denoted by
a cross (+) and their four nearest points, are denoted by blue and red circles. The point
with a black circle belongs to both sets. A similar argument is valid for boundary points
where Neumann conditions are imposed while the corresponding Dirichlet case is trivial.

Thus system (4.16) can be solved efficiently using the MDA proposed in [25] with
some modifications exploiting the sparsity of the matrices An1,n2 , n1,n2=1,··· ,N.

4.2 Matrix decomposition algorithm

Following [25], if U is the unitary M×M Fourier matrix (see, e.g. [10]) and IN is the N×N
identity matrix, pre–multiplication of system (4.16) by IN⊗UM yields

(IN⊗UM)A(IN⊗U∗
M)(IN⊗UM)u= Ãũ= (IN⊗UM)b= b̃, (4.17)
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where

Ã=(IN⊗UM)A(IN⊗U∗
M)=











D1,1 D1,2 ··· D1,N

D2,1 D2,2 ··· D2,N
...

...
...

DN,1 DN,2 ··· DN,N











, (4.18)

and

ũ=(IN⊗UM)u=











ũ1

ũ2
...

ũN











, f̃ =(IN⊗UM)b=











b̃1

b̃2
...

b̃N











. (4.19)

From the properties of circulant matrices [10], each of the M×M matrices Dn1,n2 , n1,n2=
1,··· ,N, is diagonal and if

Dn1,n2 =diag(Dn1,n21
,Dn1,n22

,··· ,Dn1,n2M
) and An1,n2 =circ(An1,n21

,An1,n22
,··· ,An1,n2M

),
(4.20)

we have, for n1,n2=1,··· ,N,

Dn1,n2m
=

M

∑
k=1

An1,n2k
ω(k−1)(m−1), m=1,··· ,M. (4.21)

For convenience, we define the vectors describing the matrices Dn1,n2 and An1,n2 in (4.20)
by

dn1,n2 =[Dn1,n21
,Dn1,n22

,··· ,Dn1,n2M
]T , an1,n2 =[An1,n21

,An1,n22
,··· ,An1,n2M

]T . (4.22)

Since the matrix Ã consists of N2 blocks of order M, each of which is diagonal, system
(4.17) can be decomposed into the M independent systems of order N

Em xm = ym, m=1,··· ,M, (4.23)

where
(Em)n1,n2

= Dn1,n2m
, n1,n2=1,··· ,N,

and
(xm)n =(ũn)m , (ym)n =

(

b̃n

)

m
, n=1,··· ,N. (4.24)

Having obtained the vectors xm,m=1,··· ,M, we can recover the vectors ũn,n=1,··· ,N
and, subsequently, the vector u from (4.19), i.e.

u=











u1

u2
...

uN











=(IN⊗U∗
M)ũ=











U∗
Mũ1

U∗
Mũ2
...

U∗
MũN











. (4.25)
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The MDA for Poisson problems can be summarized as follows:

Algorithm 1

Step 1: Compute b̃n=UMbn, n=1,··· ,N.

Step 2: Construt the diagonal matries Dn1,n2 from (4.21).
Step 3: Solve the M, N×N systems (4.23) to obtain the {xm}M

m=1,

and subsequently the {ũm}N
m=1 from (4.24).

Step 4: Reover the vetor of oeffiients u from (4.25).

In Steps 1, 2 and 4, FFTs are used while the most expensive part of the algorithm
is the solution of M linear systems, each of order N in Step 3. The FFTs are carried
out using the MATLAB c© [26] commands fft and ifft. Because of the sparsity of the
matrix A in (4.16) several of the vectors an1,n2 in (4.22) are zero vectors. Thus, by using
an appropriate if statement we can avoid calculating the FFTs of zero vectors in Step 2
(i.e. (4.21)), which leads to substantial savings. In particular, we may check whether we
have a zero vector by using the MATLAB c©

nnz command which determines the number
of non-zero elements in the array. If the number of non-zero elements in the array is
zero we do not perform the FFT in Step 2 and take the corresponding resulting vector
dn1,n2 in (4.22) to be zero. Moreover, since each of the matrices Em is therefore sparse,
the solution of the systems in Step 3 can thus be solved using the MATLAB c©

sparse

command leading to further substantial savings in the computational cost. In addition
to the savings in computational cost, considerable savings in storage are achieved since
only one row of the sparse circulant matrices involved needs to be stored.

5 Biharmonic problems

We define the collocation points in the same way as described in Section 3.2, see (3.2)-

(3.4). However, the interior points (xi)
Kint

i=1 are defined from

x(n−3)M+m=(xmn,ymn), m=1,··· ,M, n=3,··· ,N−2, (5.1)

while the boundary points (xi)
Kint+Kbry

i=Kint+1 from

x(N−3)M+m=(xm1,ym1) and x(N−2)M+m=(xmN ,ymN), m=1,··· ,M. (5.2)

The reason for taking fewer interior points than in the Poisson case is that in the bihar-
monic case we need to impose two boundary conditions on the boundary instead of one.
Thus, Kint =(N−4)M, Kbry =2M and K=NM. The points on ∂Ω1 and ∂Ω2 are defined
as in Section 3.2.

As in Section 4.1 we use the local approximation (4.1). In the application of the LRBF
method for the solution of boundary value problem (2.3), we satisfy the biharmonic equa-
tion (2.3a) at each interior point of Ω in Xi, that is

∆2uK(x)= f (x), x∈Xi. (5.3)
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The local formulation of (5.3) is similar to (4.7)-(4.9) by replacing ∆ by ∆2.

Regarding the Dirichlet and Neumann boundary conditions in the first biharmonic
problem, we impose these as in the Poisson case, namely equations (4.14) and (4.13), re-
spectively, at each of the Nbry boundary points. In the second biharmonic problem, we
apply the Dirichlet boundary condition as in (4.14). For the Laplacian boundary condi-
tion, the local formulation is practically the same as (4.7)-(4.9). Note that in the second
biharmonic problem, the problem may be decoupled into two Poisson problems which
could be subsequently solved by the method described in Section 4.1, see [24].

In both biharmonic problems, we have a total of K=Kint+2Kbry (taking into account
the two conditions on the boundary) equations in K unknowns, leading to a system of
the form (4.15) where the matrix A is block circulant and sparse. With reference to system
(4.15), the right hand side vector b is now defined by

bi= f (xi), i=1,··· ,Kint,

bi= gD (xi), i=Kint+1,··· ,Kint+Kbry,

bKbry+i= gN (xi) or gL (xi), i=Kint+1,··· ,Kint+Kbry.

Clearly, the resulting system can be solved efficiently using the MDA presented in Section
4.2.

6 Linear elasticity problems

We define the collocation points in the same way as described in Section 3.2, see (3.2)-
(3.4), and Kint, Kbry, Kbry1

, Kbry2
and K are also defined as in Section 3.2.

In this case we have two unknown functions, namely the displacements (u1,u2),
which we approximate locally, for k=1,2, as in (4.1), by

ukK(x)=
κ

∑
ℓ=1

αi
kℓ

Φ(||x−xi
ℓ
||), x∈Xi, or c.f. (4.4), ukK(x)=

(

wi
)T

ui
kK

, (6.1)

where wi is defined as in (4.5) and

ui
kK
=
[

ukK(x1(i)),ukK(x2(i)),··· ,ukK(xn(i))
]T

.

We satisfy the Cauchy-Navier equations (2.4a) at each interior point of Ω in Xi, that is,
for k=1,2,

Lk(u1K(x),u2K(x))= fk(x), x∈Xi. (6.2)
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By collocating the local approximation of all points xi∈Xi, we have

Lk (u1K(xi),u2K(xi))=
κ

∑
ℓ=1

αi
1ℓ
L1

kΦ(||xi−xi
ℓ
||)+

κ

∑
ℓ=1

αi
2ℓ
L2

kΦ(||xi−xi
ℓ
||)

=(hi
L1

k
)TB−1

i ui
1K+(hi

L2
k
)TB−1

i ui
2K

=
(

wi
L1

k

)T
ui

1K+
(

wi
L2

k

)T
ui

2K

= fk(xi), i=1,··· ,Kint, (6.3)

where

hi

Lk2
k1

=
[

Lk2

k1
Φ(||xi−xi

1||),Lk2

k1
Φ(||xi−xi

2||),··· ,Lk2

k1
Φ(||xi−xi

κ ||)
]T

, k1,k2 =1,2,

and
wi

Lk2
k1

=B−1
i hi

Lk2
k1

, k1,k2=1,2.

The Dirichlet boundary conditions in (2.4b) and (2.4c) are applied separately for u1

and u2 as in (4.14). The Neumann boundary conditions in (2.4c) are applied as follows

t1K(xi)=
κ

∑
ℓ=1

αi
1ℓ

[

2µ

(

1−ν

1−2ν

)

∂Φ(||xi−xi
ℓ
||)

∂x
nx(xi)+µ

∂Φ(||xi−xi
ℓ
||)

∂y
ny(xi)

]

+
κ

∑
ℓ=1

αi
2ℓ

[

2µ

(

ν

1−2ν

)

∂Φ(||xi−xi
ℓ
||)

∂y
nx(xi)+µ

∂Φ(||xi−xi
ℓ
||)

∂x
ny(xi)

]

=(hi
t1
1
)TB−1

i ui
1K+(hi

t2
1
)TB−1

i ui
2K

=
(

wi
t1
1

)T
ui

1K+
(

wi
t2
1

)T
ui

2K

= gN1
(xi),

and

t2K(xi)=
κ

∑
ℓ1

αi
1ℓ

[

µ
∂Φ(||xi−xi

ℓ
||)

∂y
nx(xi)+2µ

(

ν

1−2ν

)

∂Φ(||xi−xi
ℓ
||)

∂x
ny(xi)

]

+
κ

∑
ℓ=1

αi
2ℓ

[

µ
∂Φ(||xi−xi

ℓ
||)

∂x
nx(xi)+2µ

(

1−ν

1−2ν

)

∂Φ(||xi−xi
ℓ
||)

∂y
ny(xi)

]

=(hi
t1
2
)TB−1

i ui
1K+(hi

t2
2
)TB−1

i ui
2K

=
(

wi
t1
2

)T
ui

1K+
(

wi
t2
2

)T
ui

2K

= gK2
(xi), i=Kint+Kbry1

+1,··· ,Kint+K,
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where

hi
t1
1
=2µ

(

1−ν

1−2ν

)

nx(xi)hi
Φx
+µny(xi)hi

Φy
, hi

t2
1
=2µ

(

ν

1−2ν

)

nx(xi)hi
Φy
+µny(xi)hi

Φx
,

hi
t1
2
=µnx(xi)hi

Φy
+2µ

(

ν

1−2ν

)

ny(xi)hi
Φx

, hi
t2
2
=µnx(xi)hi

Φx
+2µ

(

1−ν

1−2ν

)

ny(xi)hi
Φy

,

hi
Φx

and hi
Φy

are defined as in (4.12), and wi

t
k2
k1

=B−1
i hi

t
k2
k1

, k1,k2=1,2.

Assembling all equations for the K centres xi, we obtain a system of the form (4.15)
where, now, the matrix A∈R

2K×2K is sparse but not block circulant. With reference to
system (4.15) the right hand side b is defined by

bi = f1(xi), bi+1= f2(xi), i=1,··· ,Kint,

bi = gD1
(xi) (or bi= gN1

(xi)) and bi+1= gD2
(xi) (or bi+1= gN2

(xi)),

i=Kint+1,··· ,Kint+Kbry1
,

bi = gD1
(xi)and bi+1= gD2

(xi), i=Kint+Kbry1
+1,··· ,K.

The solution vector uK ∈R
2K×1 yields the approximations to the solution (u1,u2) at the

centres. As described in [25], by an appropriate transformation, the sparse, non-block
circulant matrix can be transformed into a sparse block circulant matrix and the system
solved efficiently by an appropriate MDA. This process is described next.

6.1 Matrix decomposition algorithm

As in [25] we define the 2M×2M matrix

R=















Rϑ1
0 0 ··· 0 0

0 Rϑ2
0 ··· 0 0

...
...

. . .
...

...
...

0 0 0 ··· RϑM−1
0

0 0 0 ··· 0 RϑM















, (6.4)

where

Rϑk
=

(

cosϑk sinϑk

sinϑk −cosϑk

)

, ϑk=
2π(k−1)

M
, clearly satisfies R2

ϑk
= I2 and hence R2= I2N.

We premultiply the 2MN×2MN Cauchy-Navier system (4.15) by the 2MN×2MN
matrix IN⊗R to get

(IN⊗R)Au= Ãũ=(IN⊗R)b= b̃, where ũ=(IN⊗R)u, (6.5)
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and

Ã=(IN⊗R)A(IN⊗R)=











Ã1,1 Ã1,2 ··· Ã1,N

Ã2,1 Ã2,2 ··· Ã2,N
...

...
. . .

...
ÃN,1 ÃN,2 ··· ÃN,N











, (6.6)

with Ãm,ℓ=RAm,ℓR, m,ℓ=1,···M.

The elements
(

Ãn1,n2

)

m1,m2
=
((

Ãn1,n2

)

m1,m2

)2

i,j=1
(which are 2×2 arrays), are given by

(

Ãn1,n2

)

m1,m2
=Rϑm1

(An1,n2)m1,m2
Rϑm2

, m1,m2=1,··· ,M, n1,n2=1,··· ,N, (6.7)

and each submatrix Ãn1,n2 ,n1,n2 =1,··· ,N, is sparse and has a block 2×2 block circulant
structure.

System (6.5) may be written in the form

(

B11 B12

B21 B22

)(

c1

c2

)

=

(

d1

d2

)

, where Bij=













B̃
ij
1,1 B̃

ij
1,2 ··· B̃

ij
1,N

B̃
ij
2,1 B̃

ij
2,2 ··· B̃

ij
2,N

...
...

. . .
...

B̃
ij
N,1 B̃

ij
N,2 ··· B̃

ij
N,N













, i, j=1,2,

(6.8)

and each M×M submatrix B̃
ij
n1,n2

, i, j=1,2, n1,n2=1,··· ,N, is circulant and defined by

(

B̃
ij
n1,n2

)

m1,m2

=
(

(

Ãn1,n2

)

m1,m2

)

i,j
, m1,m2=1,··· ,M. (6.9)

We premultiply system (6.8) by the matrix I2⊗ IN⊗UM to get

(I2⊗ IN⊗UM)

(

B11 B12

B21 B22

)(

c1

c2

)

=

(

B̃11 B̃12

B̃21 B̃22

)(

p1

p2

)

= (I2⊗ IN⊗UM)

(

d1

d2

)

=

(

q1

q2

)

, (6.10)

where
(

p1

p2

)

=(I2⊗ IN⊗UM)

(

c1

c2

)

and B̃ij=(IN⊗UM)Bij(IN⊗U∗
M), i, j=1,2. (6.11)

Each of the matrices Bij,i, j=1,2 is block circulant, and from (4.18) it follows that

B̃ij =













D
ij
1,1 D

ij
1,2 ··· D

ij
1,N

D2,1 D
ij
2,2 ··· D

ij
2,N

...
...

...

D
ij
N,1 D

ij
N,2 ··· D

ij
N,N













, (6.12)
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where each M×M matrix D
ij
n1,n2

, n1,n2=1,··· ,N, is diagonal.
If

D
ij
n1,n2

=diag
(

D
ij
n1,n21

,D
ij
n1,n22

,··· ,Dij
n1,n2M

)

and B̃
ij
n1,n2

=circ
(

B̃
ij
n1,n21

,B̃
ij
n1,n2 M

,··· ,B̃ij
n1,n2M

)

,

we have, for n1,n2=1,··· ,N,

D
ij
n1,n2m

=
M

∑
k=1

B̃
ij
n1,n2k

ω(k−1)(m−1), m=1,··· ,M. (6.13)

Since each matrix B̃ij, i, j=1,2, consists of N2 diagonal blocks of order M, system (6.10) is
equivalent to the M systems of order 2N

(

Em
11 Em

12

Em
21 Em

22

)(

xm
1

xm
2

)

=

(

ym
1

ym
2

)

, m=1,··· ,M, (6.14)

where
(

Em
ij

)

n1,n2

= D
ij
n1,n2m

, n1,n2=1,··· ,N.

From the vectors xm
i , i = 1,2, m = 1,··· ,M, we can obtain the vectors p1,p2 and the

vectors c1,c2, and subsequently the vector ũ, before finally obtaining the vector u.
The MDA for linear elasticity problems can be summarized as follows:

Algorithm 2

Step 1: Compute b̃=(IN⊗R)b.
Step 2: Calulate the 2×2 arrays

(

Ãn1,n2

)

1,m2
from (6.7).

Step 3: Compute q1,q2 in (6.10) and hene ym
i , m=1,··· ,N, i=1,2 in (6.14).

Step 4: Construt the diagonal matries D
ij
n1,n2

from (6.13) and matries Em
ij in

(6.14).
Step 5: Solve the M, 2N×2N systems (6.14) to obtain the xm

i , i=1,2,
m=1,··· ,M, and subsequently the vetors pi, i=1,2.

Step 6: Reover the vetors ci, i=1,2 from (6.11).
Step 7: Reorder vetors ci, i=1,2 to obtain vetor ũ.
Step 8: Compute u=(IN⊗R)ũ.

In Steps 3, 4 and 6 FFTs are used while the most expensive part of the algorithm is
the solution of M linear systems, each of order 2N in Step 5. Because of the sparsity
of the matrices Bij, i, j = 1,2, in (6.8), the corresponding matrices B̃ij, i, j = 1,2, are also

sparse and several of the vectors [B̃
ij
n1,n21

,B̃
ij
n1,n22

,··· ,B̃ij
n1,n2M

]T in (6.13) are zero vectors.
Thus, as in the Poisson case, the FFT calculations of these zero vectors in Step 4 can be
avoided by appropriately using the nnz command. Also, as in the Poisson case, each of
the matrices Em

ij is sparse, hence the coefficient matrices in the systems of Step 5 are sparse

and further savings can be achieved by using the sparse command in their solution.
Again, substantial savings in storage are obtained as only the first line of the circulant
matrices involved needs to be constructed and stored.
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7 Numerical examples

In all numerical examples considered, we took the inner and outer radii of the annular
domain Ω to be ̺1 = 0.3, ̺2 = 1, respectively, and, unless otherwise stated, we chose
collocation points described by αn =(−1)n/4, n=1,··· ,N (cf. (3.4)).

The accuracy of the approximations was assessed by calculating the LRBF approxi-
mations at the interior centres and then the root mean square error E, defined by

E=
||u−uK||2,Ω√

Kint

, (7.1)

where Kint is the number of interior collocation points.
The numerical computations were carried out on a MATLAB c© 2014 platform on a

desktop PC with 8x Intel(R) Core(TM) i7-2600k CPU@3.40 GHZ, 16 GB memory, in Linux
OS Buntu 14.04.1 LTS.

In the following examples, we took the RBF Φ in (4.1) to be the normalized MQ basis
function

Φ(rj)=
√

(crj)2+1, r2
j =(x−xj)

2+(y−yj)
2,

where c is the shape parameter.

7.1 Example 1

We consider the Dirichlet boundary value problem (2.2) for the Poisson equation corre-
sponding to the exact solution u=sin(πx)cos(πy/2).

First, we chose M=N=80 and in Fig. 3 we present the error E versus the shape pa-
rameter c for the case κ=9. From this figure, the observed optimal c and corresponding E
are 0.920 and 3.703(−6) respectively. We then applied the LOOCV algorithm to search for

0 1 2 3 4
10

−6

10
−4

10
−2

10
0

 E

 c

c=0.920, E=3.703(−6)

Figure 3: Example 1: Dirihlet ase. Error versus c for the ase M=N=80, κ=9.
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Table 1: Example 1: Shape parameters and orresponding errors obtained using various LOOCV initial searh

intervals for the Dirihlet boundary value problem with M=N=80.

κ=9 κ=30

[min, max] c E c E

[0,3] 0.5838 5.254(−5) 1.4064 3.898(−6)

[0,4] 0.5827 4.986(−5) 2.3792 5.674(−6)

[0,5] 0.5838 4.827(−5) 2.4324 7.015(−6)

[0,6] 0.5823 5.699(−5) 2.5168 8.060(−6)

[0,7] 0.5809 4.107(−5) 2.1995 3.922(−6)

[0,8] 0.5845 5.198(−5) 2.4964 7.601(−6)

Table 2: Example 1: Auray and CPU times for a large number of interpolation points using κ=9 and initial

searh interval [0,5].

M=N c E CPU (sec)

200 1.5800 3.000(−5) 0.51

300 2.1607 4.425(−5) 1.53

400 1.2450 8.928(−6) 3.16

500 1.3207 6.083(−6) 6.02

600 1.5903 8.297(−6) 10.08

700 1.9804 1.340(−5) 15.14

800 1.6084 4.837(−5) 25.05

900 1.5095 2.332(−5) 30.16

1000 2.1841 2.564(−5) 44.97

an appropriate shape parameter and in Table 1 we present the shape parameters obtained
by using various lengths of initial search intervals [min, max] and their corresponding er-
rors for the cases κ = 9 and κ = 30. We observe that the shape parameters obtained are
consistent for different initial search intervals. The accuracy can be further improved by
increasing the number of collocation points in the local influence domain to κ=30.

In Table 2 we present the results obtained using a large number of collocation points
which is often required in the solution of large-scale problems. An indication of the ef-
ficiency of the proposed LRBF-MDA is that, in this example, it takes only 45 seconds of
computer time to process a cloud of one million collocation points. Apparently, we can
easily move beyond one million points. Note that after the accuracy reaches a certain
level, it stabilizes with the increase of the collocation points. The reason that we imple-
ment such a large number of collocation points is to demonstrate that our algorithm is
capable of handling problems with extremely large numbers of collocation points in a
stable manner without problems of ill-conditioning, memory space, and computational
time.
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7.2 Example 2

In this example we consider the first biharmonic problem (2.3a)-(2.3b) corresponding to
the exact solution u(x,y)=ex+y. We chose collocation points described by αn =(−1)n/5,
n=1,··· ,N (cf. (3.4)).

In Fig. 4 we present the profile of the error versus the shape parameter c for M=N=
80,200, κ= 30. The shape parameters and corresponding errors obtained using LOOCV
for various initial search intervals [min,max], in the cases M=N=80, κ=9,30,50, are given
in Table 3. Despite of the fluctuation of the curve in Fig. 4(a), the estimation of a good
shape parameter shown in Table 3 for κ=30 is quite stable for various initial search inter-
vals. In the case κ=9, the solution is stable in terms of shape parameter, but the accuracy
is poor. The situation is reversed for the case κ=50 where the obtained shape parameters
are not stable but the accuracy is much improved. When the number of collocation points
is increased (M=N=200), the fluctuation of the curve becomes more intense as shown in
Fig. 4(b), and the corresponding values of the shape parameter obtained using LOOCV
Table 4 are unstable for various initial search intervals. In addition, the accuracy does
not necessarily improve when increasing the number of collocation points. The main
difficulty in this problem is the determination of a suitable shape parameter.

The difficulties encountered when local methods are used to solve biharmonic prob-
lems are well-document in the literature [3, 24]. Hence, the relatively low accuracy of the
results obtained in this example is not unusual. Improved results can be obtained when
the second biharmonic problem consisting of (2.3a) and (2.3c) is split into two Poisson
Dirichlet problems and these are subsequently solved using Algorithm 1, described in
Section 4.2. Further details regarding this approach may be found in [24].
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Figure 4: Example 2: Biharmoni problem. Error versus c for the ases M=N=80,200, κ=30.



62 C. S. Chen and A. Karageorghis / Commun. Comput. Phys., 25 (2019), pp. 41-67

Table 3: Example 2: Shape parameters and orresponding errors obtained using various LOOCV initial searh

intervals for solving the biharmoni problem with M=N=80.

κ=9 κ=30 κ=50

[min, max] c E c E c E

[0,3] 0.7692 1.977(−1) 1.3392 4.807(−4) 1.4990 1.578(−4)

[0,4] 0.7670 1.840(−1) 2.1417 1.115(−3) 1.8621 3.465(−4)

[0,5] 0.7675 2.026(−1) 2.2020 1.411(−3) 2.4882 1.117(−3)

[0,6] 0.7682 2.019(−1) 2.2791 1.669(−3) 2.7767 2.916(−3)

[0,7] 0.7682 1.641(−1) 2.1556 1.259(−3) 3.0092 2.867(−3)

[0,8] 0.7664 2.079(−1) 2.1653 1.148(−3) 2.8660 3.230(−3)

Table 4: Example 2: Shape parameters and orresponding errors obtained using various LOOCV initial searh

intervals for solving the biharmoni problem with M=N=200.

κ=30 κ=40

[min, max] c E c E

[0,3] 1.797 1.027(−3) 0.9393 2.204(−4)

[0,4] 2.5047 7.763(−4) 2.6169 1.535(−4)

[0,5] 3.9463 1.599(−3) 1.9098 7.789(−3)

[0,6] 2.2918 1.446(−2) 3.6594 3.231(−3)

[0,7] 2.1335 4.284(−3) 2.0375 1.416(−2)

[0,8] 2.5234 2.092(−2) 3.6375 2.539(−2)

7.3 Example 3

In this example we first consider the Dirichlet Cauchy-Navier problem (2.4a)-(2.4b) cor-
responding to the exact solutions u1(x,y)=ex+y, u2(x,y)=cos(x+y).

In our numerical experiments, we first chose M=N=80, κ=9 and in Fig. 5 we show
how the errors behave with respect to the shape parameter. As was the case in Example
1, the two error curves E1 and E2 (which are defined as in (7.1)) are relatively smooth
and predictable which is ideal for the application of LOOCV. The values of the shape
parameters obtained using LOOCV and the corresponding errors which are presented in
Table 5, are in very good agreement with the optimal solutions in Fig. 5 for the same input
data. As shown in Table 6, we obtain similar results for the Cauchy-Navier problem with
mixed Neumann/Dirichlet boundary conditions, that is, the boundary value problem
consisting of (2.4a) and (2.4c).

In Table 7 we present the results obtained for the Dirichlet Cauchy-Navier problem
using a large number of collocation points. These indicate that as the number of degrees
of freedom increases, the numerical solutions remain stable and accurate.

Another noteworthy observation from Table 7 is that for 360,000 collocation points, it
takes only 71.09 seconds of CPU time to complete the task, which highlights the efficiency
of the proposed algorithm.
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Table 5: Example 3: Shape parameters and orresponding errors obtained using various LOOCV initial searh

intervals for solving the Dirihlet Cauhy-Navier problem with M=N=80, κ=9.

[min, max] c E1 E2

[0,3] 0.5751 2.854(−5) 2.485(−5)

[0,4] 0.5792 3.067(−5) 2.530(−5)

[0,5] 0.5744 2.746(−5) 2.440(−5)

[0,6] 0.5748 3.074(−5) 2.509(−5)

[0,7] 0.5781 2.625(−5) 2.418(−5)

[0,8] 0.5766 3.051(−5) 2.529(−5)

Table 6: Example 3: Shape parameters and orresponding errors obtained using various LOOCV initial searh

intervals for solving the mixed Neumann/Dirihlet Cauhy-Navier problem with M=N=80, κ=9.

[min, max] c E1 E2

[0,3] 0.5831 3.989(−5) 3.284(−5)

[0,4] 0.5814 4.193(−5) 3.231(−5)

[0,5] 0.5821 4.145(−5) 3.263(−5)

[0,6] 0.5807 4.367(−5) 3.203(−5)

[0,7] 0.5810 4.161(−5) 3.224(−5)

[0,8] 0.5793 4.094(−5) 3.244(−5)

We also performed two stress tests for the Dirichlet Cauchy-Navier problem by mov-
ing the inner boundary very close to the exterior boundary and by moving the inner
boundary very close to the center of the concentric circles, respectively. First, we let the
radii of the inner and outer circles be 0.97 and 1.0, respectively. The numerical solution of
boundary value problems by traditional global methods in thin domains such as this, is
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Table 7: Example 3: Auray and CPU times for a large number of interpolation points for the Dirihlet

Cauhy-Navier problem using κ=8 and initial searh interval [0,5].

M=N c E1 E2 CPU (sec)

200 0.6695 1.979(−5) 2.194(−5) 2.10

300 0.9754 1.570(−5) 2.742(−5) 5.53

400 1.3013 1.885(−5) 2.884(−5) 15.15

500 1.5227 4.244(−5) 2.694(−5) 26.18

600 1.7764 5.815(−5) 3.712(−5) 71.09

most challenging. With the proposed LRBF-MDA and LOOCV, however, with M=1000,
N=50 and κ=8 we obtained high accuracy with errors E1 =1.114(−7), E2 =2.949(−7),
c=2.1105. In the other extreme case, we reduced the radius of the inner circle to 0.01 and
taking M=N=500, κ=20, we obtained E1=8.540(−5), E2=1.107(−4) for c=2.4275.

The dense concentration of collocation points in the thin annulus in the first case and
on the circles close to the centre in the second, could create difficulties due to severe
ill-conditioning. The proposed LRBF-MDA, however, appears to overcome this.

We also observe that the shape parameters obtained in Tables 5-7 are very similar to
those reported in Example 1. This leads us to the conjecture that the shape parameter of
second order elliptic equations is heavily dependent on the density and distribution of
the collocation points.

8 Conclusions

The LRBF method has been applied to boundary value problems for the Poisson, inhomo-
geneous biharmonic and inhomogeneous Cauchy-Navier equations in annular domains.
By appropriately choosing the collocation points, and in the case of the Cauchy-Navier
equations by an appropriate transformation, the LRBF discretization leads to systems
in which the coefficient matrices are sparse block circulant. These systems lend them-
selves for the application of MDAs which lead to substantial savings in computer time
and storage. The LOOCV algorithm is used to select a shape parameter which yields
accurate results and a modification of the kdtree algorithm is used to efficiently select the
neighbouring points in the local influence domain.

In the proposed method we do not exploit one of the main advantages of the LRBF
method which is its ability to tackle problems with irregularly scattered points [14] as
well as regularly distributed points. However, by appropriately selecting the parameters
αn and the radii rn in (3.4), we can obtain unlimited collocation point distribution pat-
terns. In addition, we should state that it is not the purpose of this study to compare the
proposed method with other methods but to propose an alternative efficient and elegant
technique for the solution of the problems in question. It could well be the case that other
methods perform better for some of the proposed distributions of collocation points.
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Possible areas of future research could include the extension of the current LRBF al-
gorithms for the solution of three-dimensional axisymmetric problems as was achieved
in the case of the global Kansa-RBF method in [18]. The proposed method could also be
adapted for the solution of problems in annular domain in which the types of boundary
conditions alternate on the same segment of the boundary. This was examined in [17]
using the method of fundamental solutions which is a boundary RBF method. The LRBF
discretization in the proposed MDAs leads to several independent sparse systems which
we solve using the MATLAB c©

sparse command. The performance of iterative solvers
such as bigstab for the solution of these sparse systems could be a subject of future
investigation.

An outstanding issue is the efficient calculation of the FFTs of sparse vectors which
occurs repeatedly in the application of the proposed algorithm. Clearly, it is not possible
to use the fft (or the ifft) command with a sparse vector. One can, however, select
the columns of the Fourier matrix which multiply the non-zero elements of the vector
in question via the MATLAB c©

bsxfun command and then carry out the multiplications
with just the non-zero elements of the vector via the command nonzeros. Extensive ex-
perimentation has revealed that the fft command for the full vector is still considerably
less expensive.
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