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Abstract. This paper presents an extension work of the hybrid scheme proposed by
Wang et al. [J. Comput. Phys. 229 (2010) 169-180] for numerical simulation of sub-
sonic isotropic turbulence to supersonic turbulence regime. The scheme still utilizes
an 8th-order compact scheme with built-in hyperviscosity for smooth regions and a
7th-order WENO scheme for highly compression regions, but now both in their con-
servation formulations and for the latter with the Roe type characteristic-wise recon-
struction. To enhance the robustness of the WENO scheme without compromising
its high-resolution and accuracy, the recursive-order-reduction procedure is adopted,
where a new type of reconstruction-failure-detection criterion is constructed from the
idea of positivity-preserving. In addition, a new form of cooling function is proposed,
which is proved also to be positivity-preserving. With a combination of these tech-
niques, the new scheme not only inherits the good properties of the original one but
also extends largely the computable range of turbulent Mach number, which has been
further confirmed by numerical results.

AMS subject classifications: 76F05, 76F50, 76F65
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1 Introduction

Compressible turbulence is of fundamental importance to a number of natural phenom-
ena and industrial applications, including interstellar medium [1,2], solar winds [3], star-
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forming clouds in galaxies [4], high-temperature reactive flows [5], supersonic aircraft de-
sign [6] and inertial confinement fusion [7, 8]. With increasing computational resources,
direct numerical simulations of incompressible turbulent flows have been routinely con-
ducted for many canonical boundary conditions and geometries. Similar developments
for compressible flows are desired in order to provide parameterizations needed for mod-
eling complex compressible turbulence in relevant applications.

While the pseudo-spectral method for incompressible homogeneous isotropic turbu-
lence in a periodic domain has been well established [9], such a standard method is no
longer suitable for compressible turbulence at high Mach numbers due to the notorious
Gibbs phenomenon [10]. This barrier can be overcome by either the shock-fitting ap-
proach [11] or the shock-capturing approach [12, 13]. Although the former guarantees
more accurate representations of shocked flows, it is merely feasible in cases where the
shock topology is extremely simple and no shock wave forms during the calculation.
Since our present goal is to simulate compressible turbulence where shocklets form ran-
domly, we discuss only the latter within the context of finite difference method (FDM),
which can be mainly categorized into four classes, namely, the classical shock-capturing
methods [13–20], the artificial viscosity methods [12,21–24], the nonlinear filtering meth-
ods [25–28], and the hybrid methods [29–33]. For a review on these methods, the paper
of [34] is highly recommended. At present paper, we only focus on the last one.

Briefly speaking, the hybrid methods are based on the idea of endowing a baseline
spectral-like scheme with shock-capturing capability through local replacement with a
classical shock-capturing scheme, where the shock sensor plays a key role. Along this di-
rection, some progresses have been made in the past two decades. For example, Adams
and Shariff [30] first considered a truly adaptive hybrid discretization, consisting of a
baseline 5th-order compact upwind (CU) scheme coupled with a 5th-order essentially
non-oscillatory (ENO) scheme, where the shock sensor is based on the local gradient
of the flux vector components. Pirozzoli [31] expanded this method by transforming it
into a fully conservative formulation, replacing the ENO scheme with weighted essen-
tially non-oscillatory (WENO) scheme, and using the local density gradient as the shock
sensor. This method was further improved by Ren et al. [32], who used the Roe type
characteristic-wise reconstruction and introduced a complex weight function to gradu-
ally switch between CU scheme and WENO scheme at the interface. Zhou et al. [35]
introduced a new family of CU scheme and combined this with WENO scheme. There
are also several other studies that combine the usual, non-compact scheme and WENO
scheme [36–38], but they have the very similar issues in shock detection and the interface
treatments as discussed above.

Recently, Wang et al. [33] developed a novel hybrid scheme that is applicable to the
numerical simulation of compressible isotropic turbulence with relatively high turbulent
Mach number Mt.1.0. This scheme utilizes a 7th-order WENO scheme for highly com-
pression regions and an 8th-order compact central (CC) scheme for smooth regions, with
the shock sensor being the shocklet detection algorithm given by Samtaney et al. [39].
In addition, a numerical hyperviscosity formulation is proposed to remove the alias er-
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ror associated with the CC scheme without compromising its numerical accuracy. With
this hybrid scheme (hereafter we call it Wang’s scheme for short), the authors made a
thorough study of subsonic isotropic turbulence, including but not limited to effect of
shocklets on the velocity gradients [40], effects of local compressibility on the statisti-
cal properties and structures of velocity gradients [41], scaling and statistics of velocity
structure functions [42], and shocklets-particle interaction [43], to name a few. For recent
progress in this direction, please see the review of Chen et al. [44].

Needless to say, these progresses have deepened our understandings of compressible
turbulence in the nonlinear subsonic regime with turbulent Mach number Mt less than
1 but not negligible. In sharp contrast, the nonlinear supersonic turbulence, where Mt is
greater than unity, is still much less known. Although this configuration is unavoidable
in astrophysics, hypersonic aerodynamics, and inertial confinement fusion, etc., it has
been paid to of little attention because the lack of available tools. On the one hand, the
nonlinear phenomena of the compressive mode are too strong such that traditional linear
theories and asymptotic series expansions are no longer valid [45]. On the other hand,
shocklets are more frequently generated from turbulent fluctuations as Mt increases [46],
requiring higher challenges to the numerical methods. Although for Euler turbulence
the highest Mt in numerical experiment has been as large as 17 [47], it is scarcely larger
than unity for Navier-Stokes turbulence. For example, the largest Mt for this type of flow
in literature is 0.6 for compact scheme [48], 0.8 for optimized WENO scheme [49], 0.885
for gas kinetic method [50], 1.02 for localized artificial method [51], and 1.03 for hybrid
approach [42], etc. This embarrassed situation motivates us to develop a useful scheme
to study the supersonic isotropic turbulence.

The paper is organized as follows. Section 2 presents the governing equations for
compressible turbulent flow as well as some useful parameters. Section 3 describes the
main techniques used to extend Wang’s scheme to flows at larger values of turbulent
Mach number. A series of numerical tests are then shown in Section 4 to illustrate the
validation and extension of the new schemes. Finally, main conclusions are summarized
in Section 5. To be self-contained, some well-known techniques involved in the present
scheme are listed in the Appendix A.

2 Governing equations for compressible turbulence

Consider the compressible turbulence of calorically perfect gas driven and maintained
by large-scale forcing term f and cooling function −Λ. The governing equations are

∂tρ+∇·(ρu)=0, (2.1)

∂t(ρu)+∇·(ρuu)=ρf −∇p+∇·τ , (2.2)

∂t(ρE)+∇·(ρEu)=−ρΛ+ρf ·u−∇·(pu)+∇·(τ ·u)−∇·q, (2.3)

p=ρRT, (2.4)
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where u is the fluid velocity, ρ,p,T are the density, pressure and temperature, E is total
energy, R is the gas constant, q is the heat flux,

q=−κ∇T (2.5)

with κ and T being the heat conduction coefficient and temperature, and τ is the viscous
stress tensor (superscript T denotes matrix transpose),

τ≡2µS+λϑI, S≡ 1

2

[

∇u+(∇u)T
]

. (2.6)

Here I is the unit tensor, ϑ=∇·u is the dilatation, µ and λ are the first (shear) and second
dynamic viscosities, respectively. Under the Stokes assumption, λ=−2µ/3. In addition,
µ, as well as κ, can be modeled by Sutherland’s law [52],

µ

µ0
=

κ

κ0
=

1.4042T0

T+0.4042T0

(

T

T0

)1.5

, (2.7)

where subscript 0 denotes reference state. For air, µ0=1.716×10−5kg/m·s, T0=273.15K,
and κ0 can be obtained from the definition of Prandtl number, Pr=µ0cp/κ0 =0.7, where
cp=const. is the specific heat at constant pressure.

The governing equations for the kinetic energy k=u·u/2 and internal energy e= cvT
can be deduced from (2.2) and (2.3), and the results are

∂t(ρk)+∇·(ρku)=ρf ·u+pϑ−∇·(pu)+∇·(τ ·u)−ε, (2.8)

∂t(ρe)+∇·(ρeu)=−ρΛ−pϑ−∇·q+ε, (2.9)

where ε is the viscous dissipation,

ε≡τ : S=µθϑ2+µω2−2µ∇·(B·u). (2.10)

Here, µθ = λ+2µ is the dilatational viscosity, ω = |ω| and ω =∇×u are the vorticity
magnitude and vector, respectively, and B is the surface-deformation tensor,

B≡ϑI−(∇u)T, ∇·B=0. (2.11)

For isotropic turbulence, the average of (2.8) and (2.9) reduce to

∂t〈ρk〉= 〈ρf ·u〉+〈pϑ〉−〈ε〉, (2.12)

∂t〈ρe〉=−〈ρΛ〉−〈pϑ〉+〈ε〉. (2.13)

Therefore, the forcing term f and the cooling function −Λ have only direct effects on the
kinetic energy and the internal energy, respectively. In sharp contrast, the pressure term
can transform the internal energy to kinetic energy in expansion regions and transform
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the kinetic energy to internal energy in compression regions. Nevertheless, for stationary
isotropic flow, there is

〈ρf ·u〉= 〈ρΛ〉, (2.14)

namely, the kinetic energy added to the velocity field is balanced by the cooling rate.
Finally, we define some important parameters characterizing the compressible turbu-

lence. The root-mean-square (rms) velocity urms and its spectrum E(k) are defined as

3

2
u2

rms=
1

2
〈u(x,t)·u(x,t)〉=

∫ ∞

0
E(k)dk, (2.15)

where 〈·〉 denotes ensemble average and k is the wavenumber. The longitudinal integral
length scale LI and the transverse Taylor-scale λ are defined by

LI =
π

2u2
rms

∫ ∞

0

E(k)

k
dk, λ=

√
3urms

〈

(∂1u1)
2+(∂2u2)

2+(∂3u3)
2
〉1/2

, (2.16)

thus the typical eddy turnover time Te = LI/urms. Then, the turbulent Mach number
Mt and Taylor-microscale Reynolds number Rλ, the two most important dimensionless
parameters in compressible isotropic turbulence, can be computed as

Mt=
√

3
urms

〈a〉 , Rλ=
〈ρ〉urmsλ

〈µ〉 , (2.17)

where a =
√

γRT is the speed of sound and γ is the ratio of specific heat. Finally, the
average viscous dissipation rate 〈ε〉 and Kolmogorov length scale η are computed as

〈ε〉= 〈τ : S〉, η=

( 〈µ〉3

〈ρ〉2〈ε〉

)1/4

. (2.18)

These parameters are critical in the turbulence theory [53]. In addition, to represent the
intermittency of turbulence, the skewness of velocity derivative S3 is defined as

S3=

√
3
〈

(∂1u1)
3+(∂2u2)

3+(∂3u3)
3
〉

〈

(∂1u1)
2+(∂2u2)

2+(∂3u3)
2
〉3/2

. (2.19)

3 Review and implementation of the hybrid scheme

3.1 The hybrid scheme of Wang et al. (2010)

As remarked before, Wang et al. [33] combined the 7th-order WENO scheme (see [54]
or Appendix A.1) for the shock regions and the 8th-order CC scheme (see [55] or Ap-
pendix A.2) for smooth regions to treat the advection terms in the governing equations
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(2.1)-(2.3), where the shock front is identified by spatial points with highly negative local
dilatation as defined by ϑ/ϑrms<−3 [39]. Here ϑrms denotes the rms value of dilatation.
To depress potential oscillations due to the interface, additional six grid points are added
on both sides in each spatial direction immediately outside the front. Thus, denoting F
as the flux vector along x-direction (ref. (A.18) in Appendix A.3), they obtained

3

8
F′

j−1+F′
j+

3

8
F′

j+1=
F

Hybrid
j+1/2 −F

Hybrid
j−1/2

∆x
, (3.1)

where ∆x is the uniform grid distance, F′ is the x-derivative of the physical flux,

F
Hybrid
j+1/2 ≡



















F
Compact
j+1/2 for smooth regions,

FWENO
j+1/2 for shock regions,

1

2

(

F
Compact
j+1/2 +FWENO

j+1/2

)

at the joint,

(3.2)

and










F
Compact
j+1/2 =

398

480
(F j+Fj+1)+

23

480
(F j−1+F j+2)−

1

480
(F j−2+F j+3),

FWENO
j+1/2 =

3

8
F̂

WENO
j− 1

2
+F̂

WENO
j+ 1

2
+

3

8
F̂

WENO
j+ 3

2
.

(3.3)

Similar to forcing incompressible turbulence [56], the solenoidal forcing f is con-
structed in the Fourier space by fixing the kinetic energy E(k) per unit mass within the
two lowest wave number shells, 0.5<k≤1.5 and 1.5<k≤2.5, to prescribed values consis-
tent with the k−5/3 kinetic energy spectrum. At the same time, to maintain a stationary
state of compressible turbulence, energy is removed from the system through the cooling
function −Λ such that the mean internal energy is kept constant. In particular, the form
of cooling function adopted is

Λ= aTb, (3.4)

where a and b are two parameters. Three different values of b, namely, b = 0,2,4, were
considered by [33], and no significant differences were found. The viscous term in the
momentum equation and the viscous dissipation term in the energy equation were han-
dled by a 6th-order non-compact central scheme, while the thermal diffusion term in the
energy equation was still treated by an 8th-order CC scheme. The time marching was
performed by the 2nd-order Runge-Kutta method [57].

3.2 Remarks on Wang’s scheme

We remark that there are two possibilities that may degrade the high-resolution of Wang’s
scheme. One is that their scheme is not in truly conservation formulation as they asserted.
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This can be seen clearly from (3.1), where the derivative of physical flux rather than nu-
merical flux is solved. In fact, the scheme in truly conservation formulation is

3

8
F̂ j− 1

2
+F̂ j+ 1

2
+

3

8
F̂ j+ 3

2
=F

Hybrid
j+1/2 , (3.5)

where F̂ is the numerical flux and F
Hybrid
j+1/2 is still given by (3.2). This can be obtained

by following the tactic of Pirozzoli [31], of which the concept can be dated back to Lax
[58]. Our numerical results show that this improvement has a negligible effect on the
statistical properties of the flow field. However, for the instantaneous distribution of
flow field there are some significant differences when shocklets exist (figure not shown).
For example, when Mt = 0.7 there may be a relative larger discontinuity of the result
obtained by the original scheme, which may be spurious and could lead to oscillations.
Thus, we prefer (3.5) rather than (3.1) as our final formulation.

The other one is that the WENO scheme they adopted is based on the conservation-
wise reconstruction rather than the characteristic-wise reconstruction, which may also
lead to spurious oscillations. This can be improved by following the procedure of Ren et
al. [32], of which the technique can be traced back to Harten et al. [59], where an implicit
assumption, i.e., there is at least one smooth stencil, was used to prove the ENO property
of the ENO scheme. This assumption, however, can never be satisfied in such problems
where shock waves intersect with each other. To depress potential oscillations due to
the violation of this assumption, Harten et al. [19] first recommended to use this kind
of reconstruction. Similar to the first case, this improvement has also a negligible effect
on the statistical properties of the flow field for Mt < 1. For extreme conditions (say,
Mt ≫ 1) where all flow processes are activated and so are their interactions, the scheme
incorporated with conservation-wise reconstruction may fail due to numerical instability.
Thus, we choose the characteristic-wise reconstruction, of which the details are given in
Appendix A.3.

Characteristic-wise reconstruction alone, however, can never totally depress numer-
ical oscillations and avoid blow-up. This is more serious in high-order schemes. To ex-
tend Wang’s scheme to supersonic turbulence regime, therefore, more robust high-order
shock-capturing schemes are desiring. Along this direction, some improved ENO/WENO
schemes have been proposed, such as the TENO scheme [60] and WENO-AO scheme
[61]. Their ideas are in common, both based on the fact that the lower-order stencils are
more likely to have at least one smooth stencil than that of a higher-order one, and hence
a lower-order scheme is taken when there is no smooth stencil of the higher-order. In
fact, this procedure can be carried out recursively until the 1st-order scheme if there are
discontinuities everywhere, which can be designed monotonic and of which the solution
has been mathematically proved to exist at least for one-dimensional flow. This is the so-
called recursive-order-reduction (ROR) method [62, 63], where the key ingredient is the
reconstruction-failure-detection (RFD) criterion. However, the available criteria [62, 63]
based on the density or pressure are somewhat empirical and may be problematic for
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complex applications. To overcome this barrier, therefore, a new criterion based on the
idea of positivity-preserving is constructed in § 3.3.

During our numerical tests, we encountered code blow-up even for the Godunov
scheme [13] in the supersonic regime with the cooling function proposed by Wang et
al. [33]. By numerical experiments and theoretical analysis, we realized that there are
two reasons for this failure. One is that the simulation is sensitive to the initial conditions,
and the other is that the cooling function itself is not positivity-preserving. The first one
can be resolved by using the stationary flow data at a relatively smaller turbulent Mach
number as initial conditions, while the second one is overcome by proposing a positivity-
preserving cooling function (for details see § 3.4 below).

3.3 A positivity-preserving ROR-WENO scheme

It is well known that, for high-order WENO schemes non-physical negative density or
pressure (failure of positivity) can occur due to interpolation errors at or near very strong
discontinuities, which may cause blow-up of the numerical solution. Such pathological
situations have indeed been observed in the Woodward-Colella problem and supersonic
isotropic turbulence (results not shown here). To resolve this difficulty, two possible ways
are available in literature.

The first one is to recursively reduce the order of WENO scheme, which was first
adopted by Titarev and Toro [62] and is now called the ROR-WENO scheme [63]. Besides
the traditional procedures involved in WENO scheme, it includes two extra steps:

1) Checking the reconstruction-failure-detection (RFD) criterion;

2) Reducing the order, say from r to r−1, recursively, until the criterion is not satisfied.

Evidently, the key ingredient of ROR-WENO scheme is the RFD criterion. Although
the criterion proposed by Titarev and Toro [62] and/or that improved by Gerolymos et
al. [63] have been successfully applied in some benchmark problems, they are not ap-
propriate in our case since negative pressure or density can still occur due to very strong
shocks/shocklets and thus make the scheme crash. The reason is that all these criteria are
empirical to some extent and do not preserve positivity of density and pressure. There-
fore, more robust criteria with strong mathematical foundation are urgently needed for
the success of ROR-WENO scheme in the simulation of supersonic turbulence.

The second one is to resort to the so-called positivity-preserving method [64–66]. It
first detects critical numerical fluxes which may lead to negative density and pressure,
and then for such critical fluxes imposes a simple flux limiter by combining the high-
order numerical flux with the 1st-order Lax-Friedrichs flux to satisfy a sufficient condition
for preserving positivity. Some canonical problems involving vacuum or near vacuum
suggest that this method, when applied on the WENO scheme, can be used to prevent
positivity failure. We note that, the non-physical negative pressure and density due to
interpolation errors at strong shocks have been used to determined the limiter function
[64, 65], which might be problematic for the simulation of supersonic turbulence where
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the shocks/shocklets are very strong and flow is far away from vacuum or near vacuum.
Actually, our numerical experiments show that this method indeed cannot prevent the
simulation of supersonic isotropic turbulence from blow-up. Nevertheless, the idea of
positivity-preserving provides a physical-reasonable approach to construct more robust
high-order shock-capturing schemes.

Realizing these disadvantages, here we propose a positivity-preserving ROR-WENO
scheme, which is a combination of the advantages of the above two approaches. To il-
lustrate its main idea, let us first write the general explicit (2r−1)th-order conservative
scheme of the advection term of (A.18) with Euler-forward time integration as

Un+1
i,j,k =

1

6

(

Un
i,j,k−6

∆t

∆x
F̂

WENO
i+ 1

2 ,j,k

)

+
1

6

(

Un
i,j,k+6

∆t

∆x
F̂

WENO
i− 1

2 ,j,k

)

+
1

6

(

Un
i,j,k−6

∆t

∆y
Ĝ

WENO
i,j+ 1

2 ,k

)

+
1

6

(

Un
i,j,k+6

∆t

∆y
Ĝ

WENO
i,j− 1

2 ,k

)

+
1

6

(

Un
i,j,k−6

∆t

∆z
Ĥ

WENO
i,j,k+ 1

2

)

+
1

6

(

Un
i,j,k+6

∆t

∆z
Ĥ

WENO
i,j,k− 1

2

)

. (3.6)

Note that positivity-preserving means that the density and pressure of Un+1
i,j,k in the scheme

(3.6) are positive when that of Un
i,j,k are positive. Thus, a sufficient condition for preserving-

positivity is that all terms within parentheses have positive density and pressure.
To see more clearly how the positivity-preserving idea works, we may take the flux F

along x-direction as an example. First, define











U+
i,j,k =Un

i,j,k−6
∆t

∆x
F̂

WENO
i+ 1

2 ,j,k ,

U−
i+1,j,k=Un

i+1,j,k+6
∆t

∆x
F̂

WENO
i+ 1

2 ,j,k ,

(3.7)

where the numerical flux F̂
WENO
i+ 1

2 ,j,k is a high-order WENO scheme obtained by characterise-
wise reconstruction (see Appendices A.1 and A.3). Next, calculate the corresponding
density and pressure of U+

i,j,k and U−
i+1,j,k. If either of them is negative or smaller than

a prescribed value, then we reduce the order of the WENO scheme and recompute the
WENO flux. In other words, the RFD criterion of ROR-WENO scheme is

ρ(U+
i,j,k)≤0, ρ(U−

i+1,j,k)≤0, p(U+
i,j,k)≤0, or p(U−

i+1,j,k)≤0. (3.8)

This can be recursively performed until the 1st-order local Lax-Friedrichs (LLF) flux

F̂
LLF
i+ 1

2 ,j,k=
1

2
[Fi,j,k+Fi+1,j,k+λ̂s(U

n
i,j,k−Un

i+1,j,k)], (3.9)

which has the positivity-preserving property under a proper CFL number. Here λ̂s is
given by (A.29) in Appendix A.3.
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In general, the ROR procedure is activated only in extremely small portion of shock
regions where the fluctuations are too strong, and hence should have only a negligible
effect on the global formal order of the hybrid scheme but with significant improvement
on its robustness. Another good property of this procedure is that it can be performed on
an arbitrary single point, and thus would not consume too much extra computer time.
Similar procedures can be applied to the flux G and H, which are omitted here.

3.4 A positivity-preserving cooling function

The cooling function (3.4) is accomplished in program by directly changing the local in-
ternal energy per unit volume but keeping the local density and the average internal
energy unchanged after cooling. Denote E0(x,t) and E1(x,t) as the internal-energy fields
before and after cooling, respectively, there is

E1(x,t)−E0(x,t)= a(x,t)E0(x,t)b. (3.10)

Note that we have replaced T(x,t) in (3.4) by E0(x,t) since E0(x,t) is proportional to

T0(x,t) and ρ0(x,t), and ρ0(x,t) can be absorbed into a(x,t). Denote E0(x,t) and E1(x,t)
as the spatial-averaged internal energies before and after cooling, respectively, of which

the latter is assumed to be constant, E1(x,t)=E=const. Let b be the adjustable parameter,
then from (3.10) there is

E1(x,t)=E0(x,t)+
E−E0(x,t)

E0(x,t)b
E0(x,t)b. (3.11)

Now it is clear when negative internal energy could happen: E0(x,t)> E, i.e., heat is

removed from the system. In contrast, if E0(x,t)<E, i.e., heat is added into the system,
then no negative internal energy would appear if E0(x,t)>0.

It is very difficult (if not impossible) to determine all possible values of b such that
E1(x,t) is positivity-preserving, i.e., E1(x,t)> 0 as long as E0(x,t)> 0. This is because
that E0(x,t) can be regarded as a random field to some extent such that its operators of
average and bth-order power can not be interchanged arbitrarily. Nevertheless, there are
indeed some cases that they can be interchanged, say, b = 0 and b = 1. The former is
the uniform cooling as adopted by Wang et al. [33], which indicates a translation of the
reference internal energy. Since E0(x,t) may have very large fluctuations at very large Mt,
this translation may lead some values of E0(x,t) falling below zero, resulting simulation
blow-up. For the latter, (3.11) reduces to

E1(x,t)=
E

E0(x,t)
E0(x,t), (3.12)

which means that the amount of heat removed or added is not a constant but a value
proportional to the local internal energy and the inverse of averaged internal energy be-
fore cooling. Obviously, this operation is positivity-preserving and keeps the averaged
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internal energy constant. Thus, we still adopt the cooling function (3.4), but propose the
value of the parameter b to be 1 rather than 0 or 4 as [33] did.

We remark that although we have only proved that for b = 1 the cooling function
(3.11) is positivity-preserving, numerical results show that with proper initial conditions
the instability phenomenon happens only for b=0, 3 and 4 but not for b=1 and 2. This
fact enables us to study the effect of different cooling functions on the flow statistics of
supersonic turbulence (see § 4.3 below).

4 Numerical results

In this section we consider some numerical simulations of stationary compressible isotropic
turbulence at different resolutions and schemes, as well as different turbulent Mach num-
bers. The velocity field is always forced by fixing the total kinetic energy per unit mass in
the first two wavenumber shells to E(1)=1.242477 and E(2)=E(1)/25/3 =0.391356, and
the forcing field is made incompressible. All simulations are performed by the 3rd-order
Runge-Kutta method [57].

4.1 Dependence on the grid resolution

Three grid resolutions (1283, 2563 and 5123) are considered in order to assess any de-
pendence of small-scale flow statistics on the grid resolution. The initial conditions for
turbulent Mach number Mt =1.01 are the random velocity field and uniform thermody-
namic field, while for Mt=2.05 are the statistically stationary supersonic turbulence with
a slightly smaller Mt. After reaching the stationary state, the time period about 10Te is
used to obtain statistically averages of interested quantities.

The flow statistics of the simulations are compiled in Table 1. The resolution param-
eters kmaxη are, respectively, 1.4, 2.8 and 5.6 for Mt = 1.01, where kmax is the maximum
resolved wavenumber and η is the Kolmogorov length scale. Similar results can be ob-
tained for the case Mt = 2.05. The statistics shown in Table 1 imply that the small-scale
flow is already well resolved in all these three resolutions. We note that in all these simu-
lations the percentage of shock regions is about 10%, which deceases with the increasing

Table 1: Flow statistics of stationary compressible isotropic turbulence obtained by different resolutions.

Grid Mt Rλ ε η LI Te ϑrms ωrms S3 WENO (%)

1283 1.01 117 0.54 0.022 1.56 1.22 3.21 9.64 −0.77 10.8

2563 1.01 112 0.58 0.021 1.55 1.21 3.73 9.82 −1.34 9.33

5123 1.02 107 0.65 0.021 1.53 1.19 4.27 10.1 −2.25 7.94

1283 2.06 128 0.39 0.022 1.69 1.40 4.65 6.79 −2.02 14.3

2563 2.05 123 0.42 0.022 1.71 1.40 4.97 6.80 −3.15 13.5

5123 2.04 117 0.48 0.021 1.69 1.39 5.43 7.07 −4.33 10.7
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Figure 1: Grid convergence of averaged compensated kinetic energy spectra per unit mass of stationary com-
pressible isotropic turbulence.

of grid resolution but increases with the increasing of Mt. On the other hand, the portion
of ROR regions is even much smaller. For example, for Mt=2.06 with 1283 resolution the
percentage of spatial-temporal averaged ROR regions is as small as 1.27×10−6. Thus, the
ROR procedure should have a negligible effect on the formal order of the hybrid scheme.

In Fig. 1 we plot the averaged compensated kinetic energy spectra per unit mass for
different grid resolutions and turbulent Mach numbers. All spectra tend to converge to
that of 5123 resolution. In particular, the energy spectra from 2563 and 5123 resolutions
overlap in almost all resolved scale ranges, implying the convergence of energy spectra
under this grid refinement. A very short inertial range is identified, with a Kolmogrov
constant of about E(1)ε−2/3 = 2.0±0.3. Evidently, this inertial range will extend when
Reynolds number Re increases since η decreases with Re. In addition, the small-scale
range for different Mt behaves very similarly, both having exponential decay tails. How-
ever, next to the exponential decay range, the spectrum decays more slowly for a larger
Mt since the shocklets are stronger and happen more frequently, which can transfer the
energy to smaller scales more easily.

In Fig. 2 we plot the probability density functions (PDFs) of normalized dilatation for
different grid resolutions. The results show that the PDFs of 2563 and 5123 merge to each
other very well, indicating again that the results are already convergent at the resolution
of 2563. Note that the PDFs of the dilatation in both flows have very long negative tails,
which are the direct results of shocklets, the most significant flow structures of compress-
ible turbulence. In particular, the proportion of negative tail of Mt = 2.05 is larger than
that of Mt=1.01, confirming that shocklets appear more frequently in compressible turbulence
with a larger turbulent Mach number.
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Figure 2: Grid convergence of PDFs of normalized dilatation ϑ/ϑrms of stationary compressible isotropic tur-
bulence, where ϑrms denotes the rms value of dilatation.

4.2 Comparison with Wang’s scheme

Next we consider a few simulations for forced subsonic and nearly supersonic turbulence
at 1283 resolutions for both Wang’s scheme and the present scheme (hereafter we call it
Liu’s scheme for short), where an identical initial flow is used and generated by Liu’s
scheme for about 10Te. The velocity field is forced by the same method described before,
while a uniform cooling in space is adopted, namely, b=0 in (3.4). The total computation
time is about 10Te, over which the statistical quantities are averaged.

The flow statistics of the simulations with different schemes are compiled in Table 2.
Evidently, these statistic quantities are all consistent with each other perfectly, indicating
the correctness of our scheme since the validation of Wang’s scheme has been verified
by comparing its result with that obtained by others (e.g., pseudo-spectral method and
compact method [33]).

Table 2: Flow statistics of stationary compressible isotropic turbulence obtained by different schemes.

Scheme Mt Rλ ε η LI Te ϑrms ωrms S3 WENO (%)

Wang 0.80 114 0.67 0.021 1.49 1.14 2.42 11.1 −0.51 8.67

Liu 0.80 114 0.68 0.021 1.48 1.13 2.55 11.2 −0.52 8.82

Wang 1.01 118 0.55 0.021 1.55 1.21 3.31 9.66 −0.81 10.9

Liu 1.02 116 0.55 0.021 1.55 1.21 3.41 9.69 −0.83 11.1

Fig. 3 compares the averaged compensated power spectra of velocity field at different
turbulent Mach numbers obtained by Wang’s and Liu’s schemes. As we expected, there
is no distinguishable difference between the results obtained by these two schemes. For
other quantities, for example, the PDFs of longitudinal velocity increment ∆u(r)=[u(x+
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Figure 3: Comparison of averaged compensated spectra of velocity field in stationary compressible isotropic
turbulence, simulated with 1283 grid resolution.
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Figure 4: Comparison of averaged PDFs of longitudinal velocity increment at a separation equals to ∆x of
stationary compressible isotropic turbulence, simulated with 1283 grid resolution, where σ∆u denotes the standard
deviation of ∆u.

r)−u(x)]·r/r and local density as shown in Figs. 4 and 5, respectively, the results are
also consistent with each other, and only very slightly differences exist at the tails, where
the number of sample points are too small to obtain reliable results. Therefore, the good
properties of Wang’s scheme have indeed been inherited by Liu’s scheme. Note that, in
order to display the PDF tails more clearly, the logarithmic coordinate has been used.

In the remaining of this paper, some numerical results of supersonic isotropic tur-
bulence with turbulent Mach number greater than but not close to unity are presented.
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Figure 5: Comparison of averaged PDFs of local density of stationary compressible isotropic turbulence, simu-
lated with 1283 grid resolution, where ρavr denotes the averaged density.

These results can only be obtained by the present scheme but not the original hybrid
scheme since the latter will blow-up at such a high turbulent Mach number. To our
knowledge, this is also the first time that such a high turbulent Mach number ever simu-
lated in the framework of compressible Navier-Stokes equations.

4.3 Effect of different cooling functions

Now we consider a few simulations of forced supersonic turbulence at 2563 resolutions
with different b in the cooling function (3.11). At this turbulent Mach number regime and
grid resolution, the runs with b= 0, 3 and 4 were observed to blow-up. Therefore, the
results of two runs corresponding to the cooling function with b=1 and 2 are presented
here. An identical initial flow is used and generated by the run b=1 for about 10Te. The
time is then reset to zero and the different cooling functions are applied to generate the
corresponding results. The flow statistics of the simulations with different cooling func-
tions are compiled in Table 3. Evidently, there are only very slightly differences between
these two results.

Table 3: Flow statistics of stationary compressible isotropic turbulence obtained by different cooling functions.

b Mt Rλ ε η LI Te ϑrms ωrms S3 WENO (%)

1 2.05 123 0.42 0.022 1.71 1.40 4.97 6.80 −3.15 13.5

2 2.01 124 0.41 0.022 1.71 1.39 4.64 6.91 −2.94 13.2

Fig. 6 compares the time evolution of space-averaged longitudinal velocity derivative
skewness S3 and the dilatation ϑrms. The average S3 for the two runs are −3.15 and −2.94,
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Figure 6: Evolution of (a) longitudinal velocity derivative skewness and (b) dilatation for the forced supersonic

turbulence with Mt=2.05 and Rλ =123, simulated with 2563 grid resolution but different cooling functions.
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Figure 7: Averaged kinetic energy spectra per unit mass of the forced supersonic turbulence with Mt=2.05 and
Rλ =123, simulated with 2563 grid resolution but different cooling functions

respectively. Such a large magnitude of S3 is not possible for incompressible turbulence,
and results from very strong compression across the shocklets. In particular, the stronger
the non-uniformity in the cooling rate (i.e., the larger b), the weaker the jumps across the
shocklets as indicated by the somewhat smaller magnitudes in dilatation and skewness
(similar results in subsonic isotropic turbulence has also been obtained by Wang et al.
[33]). Nevertheless, the kinetic energy spectra per unit mass obtained by different cooling
functions are almost identical (see Fig. 7), indicating that the flow statistics are not very
sensitive to the exact form of the cooling function used.
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4.4 Preliminary study of supersonic isotropic turbulence

Finally, we give a preliminary study about the statistics of supersonic isotropic turbulence
at turbulent Mach number Mt = 2.08 and Taylor-microscale Reynolds number Rλ = 200,
using 5123 grid resolution and the cooling function (3.11) with b = 1. The main flow
statistics are complied in Table 4.

Table 4: Flow statistics of stationary supersonic isotropic turbulence.

Grid Mt Rλ ε η LI Te ϑrms ωrms S3 WENO (%)

5123 2.08 200 0.40 0.013 1.63 1.31 7.91 10.3 −4.06 11.3

Before proceeding, we introduce the well-known Helmholtz decomposition, which
can split the total velocity u into a solenoidal part and a compressive part, namely,

u=uc+us =∇φ+∇×ψ, ∇·ψ=0, (4.1)

where uc=∇φ is the compressive velocity and us=∇×ψ is the solenoidal velocity. There-
fore, the corresponding spectrum of velocity field can also be split into a solenoidal part
and a compressive part, i.e.,

E(k)=Es(k)+Ec(k), (4.2)

where
1

2
〈us ·us〉=

∫ ∞

0
Es(k)dk,

1

2
〈uc ·uc〉=

∫ ∞

0
Ec(k)dk. (4.3)

Because this decomposition does not rely on any assumption dealing with the amplitude
of the turbulent fluctuations, it is a very useful tool to handle flows in which nonlinear
mechanisms are dominant. Finally, we rewrite the dissipation (2.18) as

〈ε〉= 〈εc〉+〈εs〉−〈2µ∇·(B·u)〉, (4.4)

where εc ≡µθϑ2 and εs ≡µω2 are called compressive and solenoidal dissipations, respec-
tively, and the last term is usually negligible. Actually, our numerical results show that
〈ε〉= 0.584, 〈εc〉= 0.092 and 〈εs〉= 0.486 when Mt = 1.01 and Rλ = 107, while 〈ε〉= 0.420,
〈εc〉=0.174 and 〈εs〉=0.244 when Mt=2.05 and Rλ=123. In all these two cases the ratio
of the last term over the total dissipation is no more than 1%.

Fig. 8(a) shows the normalized PDFs of longitudinal velocity increments, ∆us(r) =
∆us(r)·r/r, of the solenoidal component at different separations, where r is the sepa-
ration vector and r = |r|. The PDFs exhibit stretched exponential tails at small spatial
separations and approach Gaussian as the separation increases. Fig. 8(b) shows the nor-
malized PDFs of the longitudinal velocity increments, ∆uc(r)=∆uc(r)·r/r, of the com-
pressive component. The shapes of the PDFs are highly skewed at small separations
but also tends to Gaussian as the separation increases. These trends are very similar to
those found in subsonic isotropic turbulence [67], where the skewnesses of solenoidal
velocity and compressive velocity are attributed to the vortex filaments and shocklets,



206 L. Liu et al. / Commun. Comput. Phys., 25 (2019), pp. 189-217

-15 -10 -5 0 5 10
10-5

10-4

10-3

10-2

10-1

100
 r=1
 r=8
 r=16
 r=32
 r=256
 Gauss

PD
F

us/ us

(a) Solenoidal velocity

-30 -25 -20 -15 -10 -5 0 5 10
10-5

10-4

10-3

10-2

10-1

100
 r=1
 r=8
 r=16
 r=32
 r=256
 Gauss

PD
F

uc/ uc

(b) Compressive velocity

Figure 8: Normalized PDFs of longitudinal velocity increments at separations equal to r∆x of stationary super-
sonic turbulence with Mt = 2.08 and Rλ = 200, simulated with 5123 grid resolution. Here σ∆u is the standard
deviation of ∆u. (a) Solenoidal velocity increments ∆us; (b) compressive velocity increments ∆uc.
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Figure 9: Spectra for kinetic energy per unit mass and its solenoidal and compressive components of stationary
supersonic turbulence with Mt =2.08 and Rλ =200, simulated with 5123 grid resolution.

respectively. Since the skewness magnitude of compressive velocity is much larger than
that of the solenoidal velocity, it is supposed that the shocklets can strongly strengthen
the intermittency of turbulence. In addition, the corresponding spectra for kinetic energy
per unit mass and its solenoidal and compressive components are shown in Fig. 9, where
at large scales the solenoidal spectrum holds a dominant role, while at small scales the
compressive spectrum overrides the former.

Fig. 10 shows the normalized PDFs of pressure increments at different separations. In
sharp contrast to the subsonic turbulence [68], the shapes of the PDFs deviate Gaussian
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turbulence with Mt=2.08 and Rλ=200, simulated with 5123 grid resolution. Here σ∆p is the standard deviation
of pressure increment ∆p.

significantly even for the largest possible separation. This is an indication that the ther-
modynamic process will take a very important role in the dynamics of turbulence, such
as the energy transfer between the internal energy and kinetic energy. Actually, our nu-
merical results show that 〈pϑ〉=−0.021 when Mt=1.01 and Rλ=107, while 〈pϑ〉=−0.174
when Mt =2.05 and Rλ =123 or 〈pϑ〉=−0.204 when Mt =2.08 and Rλ =200. This huge
increment in the magnitude of 〈pϑ〉 is an indication of strong coupling among various
dynamic processes.

Fig. 11(a) shows the instantaneous contour of vortices. Like incompressible turbu-
lence, the main structures of solenoidal field are tubulike surfaces, which are obtained
by the iso-surface of Q-criteria with Q= 30. In comparison, Fig. 11(b) shows the instan-
taneous contour of shocklets. The shocklets contour is obtained by the iso-surface of di-
latation field with ϑ/ϑrms=−3, in which the main structures are sheetlike surfaces. This
is in consistent with the fact that shocklets are very small shocks that form when turbu-
lent eddies allow for the local steepening of pressure waves [45]. Therefore they should
have all the characteristics of a typical shock wave, such as proper jumps in pressure and
density along with a local entropy peak inside the high-compression zone [46].

A direct consequence of more and stronger shocklets is that the thermodynamic quan-
tities have much larger fluctuations, which means that very small, as well as very large,
density and pressure could appear. To see this conclusion more clearly, Fig. 12 shows the
instantaneous contours of logarithmic values of density and pressure on the same slice.
Note that the contours of density and pressure are very similar with each other, although
significant differences indeed exist especially in strong shock regions. Nevertheless, we
found that the ratio of the largest density or pressure over the smallest density or pressure
is larger than hundreds. It is the appearance of such large fluctuations of thermodynamic
quantities that may lead the numerical simulation to blow-up.
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(a) Vortices (b) Shocklets

Figure 11: Instantaneous contours of vortices (a) and shocklets (b) of stationary supersonic isotropic turbulence

with Mt = 2.08 and Rλ = 200, simulated with 5123 grid resolution. Note that the tubelike vortices are the
iso-surface of Q-criteria with Q= 30, while the sheetlike shocklets are the iso-surface of dilatation field with
ϑ/ϑrms=−3.

(a) Density (b) Pressure

Figure 12: Instantaneous contours of density (a) and pressure (b) on the same slice of stationary supersonic

isotropic turbulence with Mt =2.08 and Rλ =200, simulated with 5123 grid resolution.
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5 Conclusions

In this paper, the hybrid scheme proposed by [33] has been extended to the simulation
of supersonic isotropic turbulence with turbulent Mach number greater than unity. To
achieve this goal, some techniques have been utilized. Firstly, in order to reduce non-
physical oscillations, the original hybrid scheme has been modified to the conservation
form and the characteristic-wise reconstruction has been adopted. The latter is necessary
to obtain a monotonic flux. Secondly, the recursive-order-reduction (ROR) method has
been applied to the WENO sub-scheme, where a positivity-preserving reconstruction-
failure-detection criterion is constructed. This sub-scheme is very effective to capture
shocklets/shocks with sufficient resolution and accuracy. Finally, a new cooling func-
tion has been proposed, which has been further proved also to be positivity-preserving.
The validation and effectiveness of the new scheme has been verified by numerical sim-
ulations of compressible isotropic turbulence with different grid resolutions, different
schemes, and different turbulent Mach numbers.

With the present scheme, one can obtain numerical data of supersonic turbulence
of viscous fluid and make detailed flow analyses, which can help us to understand the
compressible turbulence in supersonic regime.
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Appendix

A Some details involved in the present hybrid scheme

A.1 The 7th-order WENO scheme

Consider the scalar hyperbolic conservation law given by

∂u

∂t
+

∂ f (u)

∂x
=0. (A.1)
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Let {Ij} be a uniform grid, where Ij={xj−1/2, xj+1/2} and xj+1/2−xj−1/2=∆x. The semi-
discrete conservative finite difference scheme of (A.1) can be written as

∂u

∂t
+

f̂ j+1/2− f̂ j−1/2

∆x
=0, (A.2)

where f̂ j+1/2 is the numerical flux function.

For the 7th-order WENO scheme, f̂ j+1/2 can be reconstructed as [54]

f̂ j+1/2=
3

∑
k=0

ωkqk(xj+1/2; f j+k−3,··· , f j+k), (A.3)

where

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
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
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











q0(xj+1/2)=
1

12
(−3 f j−3+13 f j−2−23 f j−1+25 f j),

q1(xj+1/2)=
1

12
( f j−2−5 f j−1+13 f j+3 f j+1),

q2(xj+1/2)=
1

12
(− f j−1+7 f j+7 f j+1− f j+2),

q3(xj+1/2)=
1

12
(3 f j+13 f j+1−5 f j+2+ f j+3),

(A.4)

and

ωk=
αk

∑
3
n=0αn

, αk =
Ck

(ǫ+ISk)p
. (A.5)

Here,

p=2, ǫ=10−6, C0=
1

35
, C1=

12

35
, C2=

18

35
, C3=

4

35
, (A.6)

and

ISk =
[

q
(1)
k (xj)

]2
+

13

12

[

q
(2)
k (xj)

]2
+

1043

960

[

q
(3)
k (xj)

]2
+

1

12
q
(1)
k (xj)q

(3)
k (xj), (A.7)

where k=0,1,2,3 and


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q
(1)
0 (xj)=

1

6
(−2 f j−3+9 f j−2−18 f j−1+11 f j),

q
(1)
1 (xj)=

1

6
( f j−2−6 f j−1+3 f j+2 f j+1),

q
(1)
2 (xj)=

1

6
(−2 f j−1−3 f j+6 f j+1− f j+2),

q
(1)
3 (xj)=

1

6
(−11 f j+18 f j+1−9 f j+2+2 f j+3),

(A.8)
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q
(2)
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(2)
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q
(2)
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q
(2)
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2 (xj)=− f j−1+3 f j−3 f j+1+ f j+2,

q
(3)
3 (xj)=− f j+3 f j+1−3 f j+2+ f j+3.

(A.10)

We remark that the above arguments are only suitable for positive flux. Nevertheless,
the negative flux is the same as the positive one but with j+k replaced by j+1−k.

A.2 The 8th-order compact scheme with built-in hyperviscosity

The compact schemes were first proposed by Lele [55], of which the 8th-order approxi-
mation of the 1st-order spatial derivative in (A.1) can be expressed as

α1 f ′j−1+ f ′j +α1 f ′j+1= a1

f j+1− f j−1

∆x
+b1

f j+2− f j−2

∆x
+c1

f j+3− f j−3

∆x
, (A.11)

where ∆x is the grid spacing and

α1=
3

8
, a1 =

25

32
, b1=

1

20
, c1=− 1

480
. (A.12)

Since the central schemes are not stable due to the existence of alias error [69], a nat-
ural numerical viscosity treatment called hyperviscosity has been proposed by Wang et
al. [33]. In practice, it is simply implemented as

∂u

∂t
=νn[u

′′
n−(u′

n)
′
n], (A.13)

where u is the primary variable, νn is the hyperviscosity coefficient, the subscript n de-
notes numerical approximation, and the prime ′ denotes spatial derivative. The first
term in the right-hand side of (A.13) is accomplished by applying the 8th-order compact
scheme directly to the 2nd-order derivative,

β3u′′
j−2+α3u′′

j−1+u′′
j +α3u′′

j+1+β3u′′
j+2= a3

uj+1−2uj+uj−1

∆x2
+b3

uj+2−2uj+uj−2

∆x2
, (A.14)

where

α3=
344

1179
, β3=

23

2358
, a3=

320

393
, b3=

155

786
. (A.15)
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In contrast, the second term is computed by applying the 8th-order compact scheme
twice to the 1st-order derivative but with the same stencil width,

β2u′
j−2+α2u′

j−1+u′
j+α2u′

j+1+β2u′
j+2= a2

uj+1−uj−1

∆x
+b2

uj+2−uj−2

∆x
, (A.16)

where

α2=
4

9
, β2=

1

36
, a2 =

20

27
, b2=

25

216
. (A.17)

For better numerical stability, the first term u′′
n in (A.13) is handled by the implicit Euler

scheme, while the second term −(u′
n)

′
n is time-advanced by an explicit Euler scheme.

A.3 Characteristic-wise reconstruction

Consider the vector hyperbolic conservation law given by [32]

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
+

∂H(U)

∂z
=0, (A.18)

where

U=













ρ
ρu
ρv
ρw
E













, F=













ρu
ρu2+p

ρuv
ρuw

u(E+p)













, G=













ρv
ρvu

ρv2+p
ρvw

v(E+p)













, H=













ρw
ρwu
ρwv

ρw2+p
w(E+p)













. (A.19)

To illustrate the idea of characteristic-wise reconstruction, we take F as an example.

First, define

H= k+
a2

γ̂
, k=

1

2
(u2+v2+w2), a=

√

γp

ρ
, γ̂=γ−1. (A.20)

Then we have [16]

A≡ ∂F

∂U
=













0 1 0 0 0
γ̂k−u2 (3−γ)u −γ̂v −γ̂w γ̂
−uv v u 0 0
−uw w 0 u 0

(γ̂k−H)u H−γ̂u2 −γ̂uv −γ̂uw γu













, (A.21)

of which the eigenvalues are

λA
1 =u−a, λA

2,3,4=u, λA
5 =u+a, (A.22)
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and the corresponding right and left eigenvectors are

RA =













1 1 0 0 1
u−a u 0 0 u+a

v v 1 0 v
w w 0 1 w

H−ua k v w H+ua













, (A.23)

LA =
γ̂

2a2

















k+ a
γ̂ u −u− a

γ̂ −v −w 1
2a2

γ̂ −2k 2u 2v 2w −2

− 2a2

γ̂ v 0 2a2

γ̂ 0 0

− 2a2

γ̂ w 0 0 2a2

γ̂ 0

k− a
γ̂ u −u+ a

γ̂ −v −w 1

















. (A.24)

Next, we adopt the local characteristic decompositions,

Aj+1/2=
∂F(U)

∂U

∣

∣

∣

∣

j+1/2

, (A.25)

where U j+1/2 is the Roe average [70],











































uj+1/2=

√
ρjuj+

√
ρj+1uj+1√

ρj+
√

ρj+1
, vj+1/2=

√
ρjvj+

√
ρj+1vj+1√

ρj+
√

ρj+1
,

wj+1/2=

√
ρjwj+

√
ρj+1wj+1√

ρj+
√

ρj+1
, Hj+1/2=

√
ρj Hj+

√
ρj+1Hj+1√

ρj+
√

ρj+1
,

aj+1/2 =

√

(γ−1)

[

Hj+1/2−
1

2

(

u2
j+1/2+v2

j+1/2+w2
j+1/2

)

]

.

(A.26)

Then, by projecting the fluxes onto the characteristic plane, there is

F±
s;j+k=

1

2
ls,j+1/2 ·F±

j+k, s=1,··· ,5, (A.27)

where the local Lax-Friedrichs flux is used as the building blocks,

F=F++F−, F±=
1

2
(F±λ̂sU), (A.28)

and

λ̂s =χmax(|λs;j+1/2|, |λs;j−r+1|, ··· , |λs;j+r−1|), s=1,··· ,5. (A.29)

Here, χ=1.2 is adopted to control the amount of dissipation introduced into the numeri-
cal scheme, λs is given by (A.22), and 2r−1 is the order of the WENO scheme.
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Applying the (2r−1)th-order scalar WENO scheme to each of the characteristic field,
we have for the s-th field of positive flux,

F̂+
s,j+1/2=

r−1

∑
k=0

ωs,kqk(F+
s,j+k−2,F+

s,j+k−1,F+
s,j+k), (A.30)

F̂−
s,j+1/2=

r−1

∑
k=0

ωs,kqk(F−
s,j−k−1,F−

s,j−k,F−
s,j−k+1). (A.31)

Details about this reconstruction with r=4 can be found in Appendix A.1.
Finally, the numerical fluxes obtained in each characteristic field can then be projected

back to the physical space by

F̂ j+1/2=
5

∑
s=1

(F̂+
s,j+1/2+ F̂−

s,j+1/2)rs,j+1/2. (A.32)

Similar procedures can be similarly applied to the fluxes G and H.
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