
Numer. Math. Theor. Meth. Appl. Vol. 12, No. 1, pp. 98-114

doi: 10.4208/nmtma.OA-2017-0129 February 2019

Weighted Integral of Infinitely Differentiable

Multivariate Functions is Exponentially Convergent

Guiqiao Xu1,∗, Yongping Liu2 and Jie Zhang2

1 Department of Mathematics, Tianjin Normal University, Tianjin, 300387, PRC
2 Department of Mathematics, Beijing Normal University, Beijing, 100875, PRC

Received 27 October 2017; Accepted (in revised version) 26 March 2018

Abstract. We study the problem of a weighted integral of infinitely differentiable mul-

tivariate functions defined on the unit cube with the L∞-norm of partial derivative of all

orders bounded by 1. We consider the algorithms that use finitely many function values

as information (called standard information). On the one hand, we obtained that the

interpolatory quadratures based on the extended Chebyshev nodes of the second kind

have almost the same quadrature weights. On the other hand, by using the Smolyak al-

gorithm with the above interpolatory quadratures, we proved that the weighted integral

problem is of exponential convergence in the worst case setting.
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1. Introduction

A multivariate numerical problem refers to a sequence of solution operators S = {Sd :

Fd → Gd}d∈N, where for each d , Fd is a class of functions with d variables and Gd is an-

other space. Multivariate problems occur in many applications such as in computational

finance, statistics and physics. To solve these solution operators, we often use informa-

tion based algorithms that use finitely many information operations. Due to considering

integral problem, in this paper, we only allow any function values to be an information

operation.

Most of the work on multivariate computational problems has dealt with problems

defined over classes of functions with finite smoothness. For such problem classes, the

corresponding minimal error sequence often converges polynomially. However, there has

been recent work in the worst case setting (see, e.g., [1-4]) on problems having infinite

smoothness, including problems defined over spaces of analytic functions. For such prob-

lem classes, the convergence rate of the minimal error sequence will often be faster than
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polynomial (e.g., supper-polynomial or exponential). Noted that all the problems involved

in above papers are over the weighted reproducing kernel Hilbert spaces, K. Suzuki [5]

focused on the integral problem on a weighted L1-normed space which consists of non-

periodic smooth functions. It used the multivariate QMC rules on digital nets to prove

that the corresponding minimal error sequence converges supper-polynomially. In this pa-

per, we will consider a weighted integral problem on the following infinitely differentiable

function class that was introduced in [6]:

Fd =
n

f : [−1,1]d → R
�

�‖ f ‖Fd
= sup
α=(α1,··· ,αd )∈Nd

0

‖Dα f ‖∞ <∞
o

, (1.1)

and we proved that the corresponding minimal error sequence converges exponentially.

The reason that we use [−1,1] instead of [0,1] in [5, 6] is that we will use the Chebyshev

nodes. We mainly used the Smolyak algorithm and the interpolatory quadratures based on

the extended Chebyshev nodes. We would like to add that our proof is also suitable for

non-weighted integral.

The paper is organized as follows. Section 2 contains some basic concepts and lemmas

that will be needed in the proofs of our main results. In Section 3 we give the main results

and their proofs.

2. Some concepts and lemmas

First, let N, N0 and R respectively denote the sets of all positive integers, non-negative

integers and real numbers.

Now we introduce the related concepts. Assume that each operator Sd : Fd → Gd is a

continuous linear transformation, where Fd is a Banach space of d-variate real functions

defined on Dd ⊂ Rd and Gd is another Banach space.

For each d ∈ N, we consider the approximation of Sd( f ) for f ∈ Fd by using information-

based algorithms of the form

An,d( f ) = φn,d

�

L1( f ), · · · , Ln( f )
�

, (2.1)

where L1, L2, · · · , Ln ∈ Λstd =
�

L|L( f ) = f (t), ∀t ∈ Dd

	

and φn,d : Rn→ Gd is an arbitrary

mapping. As a special case, we define A0,d = 0.

The worst-case error of the algorithm An,d is defined as

e(Sd ,An,d , Fd , Gd) = sup
f ∈Fd ,‖ f ‖Fd

≤1



Sd( f )− An,d( f )




Gd
.

Furthermore, we define the nth minimal worst-case error as

e(n,Sd , Fd , Gd) = inf
An,d

e(Sd ,An,d , Fd , Gd),

where the infimum is taken over all algorithms of the form (2.1).



100 G. Q. Xu, Y. P. Liu and J. Zhang

Traditionally we consider the problems for which smoothness of functions is finite. In

this case, the corresponding minimal error sequence is often of polynomial convergence

rate. Recently, some authors considered some multivariate linear problems defined over

classes of infinitely differentiable functions and find that the corresponding minimal error

sequence is probably of exponential convergence rate rather than polynomial convergence

rate. Now we introduce the notion of exponential convergence as follow.

We say that a multivariate problem S is of ex ponential conver gence (EXP) if there

exist a number q ∈ (0,1) and functions r, C , C2 : N→ (0,∞) such that

e(n,Sd , Fd , Gd)≤ C(d)q

�

n/C2(d)
�r(d)

for all n, d ∈ N. (2.2)

For the integral problems, papers [1-3] proved that the multivariate integral problems on

some weighted Korobov spaces are of exponential convergence, and [4] proved that the

multivariate integral problems on some weighted Hermite spaces are also of exponential

convergence. Noticed that all the problems are defined on some weighted reproducing

kernel Hilbert spaces and the proofs are heavily depended on the properties of the corre-

sponding reproducing kernels, K. Suzuki [5] introduced the non-Hilbert weighted spaces

Fd,u =

�

f : [0,1]d → R
�

�

�

�

‖ f ‖Fd ,u
= sup
α=(α1,··· ,αd)∈Nd

0

‖Dα f ‖1
∏d

j=1 u
α j

j

<∞
�

with u = {u j} j≥1 a sequence of positive decreasing weights and

Dα f =
∂ α1+α2+···+αd

∂ α1 x1∂
α2 x2 · · ·∂ αd xd

f , ∀ α= (α1, · · · ,αd) ∈ Nd
0 .

He considered the numerical approximation of integrals

IN Td( f ) =

∫

[0,1]d
f (x)dx, ∀ f ∈ Fd,u (2.3)

by using quasi-Monte Carlo rules with digital nets and obtained that there exist positive

C(d) and C2(d) depending on d and u such that

e(n, IN Td , Fd,u,R)≤ C(d)e−C2(d) log2 n for all n, d ∈ N. (2.4)

Noticed that Fd,u are also weighted spaces, in this paper we will consider the weighted

integral problem on the non-weighted spaces Fd (see (1.1)), i.e.,

IN Td( f ) =
1

πd

∫

[−1,1]d
f (x)

d
∏

j=1

1
Æ

1− x2
j

dx, ∀ f ∈ Fd , (2.5)

where x= (x1, · · · , xd). We will prove that the weighted integral problem IN T = {IN Td}∞d=1

is of exponential convergence (see Theorem 3.2).
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Now we show why we consider weighted integral problem (2.5) rather than non-

weighted integral problem. On the one hand, for d = 1, the weighted integral with weight

function 1

π
p

1−x2
is widely studied in the approximation theory, and the corresponding d-

fold tensor product problem is (2.5). On the other hand, the quadrature weights in the

Chenshaw -Curtis algorithm for the non-weighted integral problem are very complicated

(see (2) in [7]), however we proved that the quadrature weights for the weighted integral

problem (2.5) is almost the same (see (2.11)), i.e., the weighted integral (2.5) is easier to

compute. The basic error estimates obtained in this paper are all equality. Moreover, by

combining Chenshaw -Curtis algorithm given in [7] with the same proof used in this paper,

we can easily obtain that the non-weighted integral problem on Fd is also of exponential

convergence.

To obtain our results, we first give the quadrature formulae of weighted integral

I( f ) =
1

π

∫ 1

−1

f (t)
d t

p

1− t2
∀ f ∈ C[−1,1] (2.6)

on the extended Chebyshev nodes of the second kind.

Let

−1= xn+1 < xn < · · · < x1 < x0 = 1 (2.7)

be the zeros of
�

1− x2
�

Vn(x), where Vn(x) is the nth Chebyshev polynomial of the second

kind, i.e.,

Vn(x) =
sin(n+ 1)θ

sinθ
, x = cosθ .

In this case the well-known Lagrange interpolation polynomial is given by (see [8])

Qn+2( f , x) =

n+1
∑

k=0

f (xk)φk(x), (2.8)

where

φk(x) =
(−1)k+1

�

1− x2
�

Vn(x)

(n+ 1)(x − xk)
, k = 1, · · · , n, (2.9a)

φ0(x) =
(1+ x)Vn(x)

2Vn(1)
, φn+1(x) =

(1− x)Vn(x)

2Vn(−1)
. (2.9b)

Lemma 2.1. The interpolatory quadrature of the weighted integral (2.6) on nodes (2.7) is

Tn+2( f ) =
1

π

∫ 1

−1

Qn+2( f , t)
d t

p

1− t2
=

n+1
∑

k=0

ak f (xk), (2.10)

where

a0 = an+1 =
1

2(n+ 1)
, ak =

1

n+ 1
, k = 1, · · · , n. (2.11)
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Proof. Let Pn denote the set of algebraic polynomial of degree at most n. Then by the

nature of the interpolation quadratures we know that for an arbitrary p ∈ Pn+1, one has

1

π

∫ 1

−1

p(t)
d t

p

1− t2
=

n+1
∑

k=0

akp(xk). (2.12)

Let p0(x) = 1, p1(x) = x , p2(x) = 2x2−1, ps(x) =
�

1− x2
�

Vs−2(x), s = 3, · · · , n+1. Then

by (2.12) we obtain

n+1
∑

k=0

akps(xk) =
1

π

∫ 1

−1

ps(t)
d t

p

1− t2
for all 0≤ s ≤ n+ 1. (2.13)

Let s = 0,1,2, respectively. Then by (2.13), xk = cos kπ

n+1
and a simple computation it

follows that

n+1
∑

k=0

ak =
1

π

∫ 1

−1

1 · d t
p

1− t2
= 1, (2.14a)

n+1
∑

k=0

ak cos
kπ

n+ 1
=

n+1
∑

k=0

ak xk =
1

π

∫ 1

−1

t · d t
p

1− t2
= 0, (2.14b)

n+1
∑

k=0

ak cos
2kπ

n+ 1
=

n+1
∑

k=0

ak(2x2
k − 1) =

1

π

∫ 1

−1

(2t2 − 1) · d t
p

1− t2
= 0. (2.14c)

For s > 2, by virtue of the orthonormality of {Vn(x)}∞n=1 with respect to the weight function
p

1− x2 we obtain

∫ 1

−1

ps(t) ·
d t

p

1− t2
=

∫ 1

−1

V0(t) · Vs−2(t) ·
p

1− t2d t = 0. (2.15)

Moreover, by a direct computation we obtain

n+1
∑

k=0

akps(xk) =

n+1
∑

k=0

ak(1− x2
k)Vs−2(xk)

=

n+1
∑

k=0

ak sin
kπ

n+ 1
sin
(s− 1)kπ

n+ 1

=
1

2

n+1
∑

k=0

ak

�

cos
(s− 2)kπ

n+ 1
− cos

skπ

n+ 1

�

. (2.16)

From (2.13), (2.15) and (2.16) it follows that

n+1
∑

k=0

ak

�

cos
(s− 2)kπ

n+ 1
− cos

skπ

n+ 1

�

= 0, 3≤ s ≤ n+ 1. (2.17)
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From (2.14b), (2.14c), (2.17) and the induction we obtain

n+1
∑

k=0

ak cos
skπ

n+ 1
=

n+1
∑

k=0

ak cos
(s− 2)kπ

n+ 1
= · · ·= 0, 3≤ s ≤ n+ 1. (2.18)

By a direct computation we obtain

n
∑

k=0

cos
skπ

n+ 1
= Re

 

n
∑

k=0

e
skπi

n+1

!

= Re

�

1− esπi

1− esπi/(n+1)

�

=

(

0, s even,

1, s odd.
(2.19)

From (2.19) we checked that a0 = an+1 =
1

2(n+1)
, ak =

1

n+1
, k = 1,2, · · · , n, satisfies

the system of the linear equations given by (2.14a)-(2.14c) and (2.18) in the variables

a0, a1, · · · , an+1.

On the other hand, from [9, p. 204] we know that for an arbitrary m ∈ N, one has

cos mθ = 2m−1 cosm θ + pm−1(cosθ), (2.20)

where pm−1 ∈ Pm−1. On using (2.20) and the computation of the Vandermonde determi-

nant we obtain that the value of the coefficient determinant of the system of the linear

equations given by (2.14a)-(2.14c) and (2.18) is

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 · · · 1 · · · 1

cos 1·0π
n+1

cos 1·1π
n+1

· · · cos 1kπ

n+1
· · · cos

1(n+1)π

n+1

· · · · · · · · · · · · · · · · · ·
cos s0π

n+1
cos s1π

n+1
· · · cos skπ

n+1
· · · cos

s(n+1)π

n+1

· · · · · · · · · · · · · · · · · ·
cos

(n+1)0π

n+1
cos

(n+1)1π

n+1
· · · cos

(n+1)kπ

n+1
· · · cos

(n+1)(n+1)π

n+1

�

�

�

�

�

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 · · · 1 · · · 1

21−1 cos1 0π

n+1
21−1 cos1 1π

n+1
· · · 21−1 cos1 kπ

n+1
· · · 21−1 cos1 (n+1)π

n+1

· · · · · · · · · · · · · · · · · ·
2s−1 coss 0π

n+1
2s−1 coss 1π

n+1
· · · 2s−1 coss kπ

n+1
· · · 2s−1 coss (n+1)π

n+1

· · · · · · · · · · · · · · · · · ·
2n cosn+1 0π

n+1
2n cosn+1 1π

n+1
· · · 2n cosn+1 kπ

n+1
· · · 2n cosn+1 (n+1)π

n+1

�

�

�

�

�

�

�

�

�

�

�

�

�

=2n(n+1)/2
∏

0≤i< j≤n+1

�

cos
jπ

n+ 1
− cos

iπ

n+ 1

�

6= 0. (2.21)

From (2.21) we know that the solution of the system of the linear equations given by

(2.14a)-(2.14c) and (2.18) is unique. Hence we obtain (2.11). This completes the proof

of Lemma 2.1. �
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To give the worst-case error for Tn+2 approximating IN T1, we give two lemmas. Let

hk(x) =
�

1− x2
�

(1− x xk)

�

Vn(x)

(n+ 1)(x − xk)

�2

, k = 1, · · · , n, (2.22a)

σk(x) = (x − xk)
�

1− x2
k

�

(1− x2)

�

Vn(x)

(n+ 1)(x − xk)

�2

, k = 1, · · · , n. (2.22b)

For f ∈ C (1)[−1,1], the quasi-Hermite interpolation polynomial Gn( f , x) based on the

points system (2.7) is of degree at most 2n+ 1 and satisfies conditions

Gn( f , x j) = f (x j), j = 0, · · · , n+ 1, (2.23a)

G′n( f , x j) = f ′(x j), j = 1, · · · , n. (2.23b)

From [10] we know

Gn( f , x) =

�

1+ x

2
f (1)+

1− x

2
f (−1)

�

V 2
n (x)

(n+ 1)2

+

n
∑

k=1

f (xk)hk(x)+

n
∑

k=1

f ′(xk)σk(x). (2.24)

Lemma 2.2. If f ∈ C (1)[−1,1], then

Tn+2( f ) =
1

π

∫ 1

−1

Gn( f , t)
d t

p

1− t2
. (2.25)

Proof. By (2.9a) and a direct computation we obtain

φ′k(x) =
(−1)k(xVn(x)+ (n+ 1)Tn+1(x))

(n+ 1)(x − xk)
+
(−1)k(1− x2)Vn(x)

(n+ 1)(x − xk)
2

, 1≤ k ≤ n, (2.26)

where Tn(x) denotes the nth Chebyshev polynomial of the first kind, i.e., Tn(x) = cos nθ , x =

cosθ . From (2.26) and a simple computation it follows that

φ′k(xk) =
−xk

2
�

1− x2
k

� , 1≤ k ≤ n, (2.27a)

φ′k(x j) =
(−1)k+ j

x j − xk

, 1≤ j 6= k ≤ n. (2.27b)

Similarly, by (2.9b) and a simple computation, one obtains

φ′0(x j) =
(−1) j

2(x j − 1)
, φ′n+1(x j) =

(−1) j+n+1

2(x j + 1)
, 1≤ j ≤ n. (2.28)

By the properties of the Lagrange interpolation we obtain

Qn+2( f , x j) = f (x j), 0≤ j ≤ n+ 1. (2.29)
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From (2.8) and (2.27a)-(2.28) we obtain that for 1≤ j ≤ n,

Q′n+2( f , x j) =

n+1
∑

k=0

f (xk)φ
′
k(x j)

=
(−1) j f (1)

2(x j − 1)
− x j f (x j)

2
�

1− x2
j

� +
∑

1≤k 6= j≤n

f (xk)
(−1)k+ j

x j − xk

+ f (−1)
(−1) j+n+1

2(x j + 1)
. (2.30)

Let C(x) = Qn+2( f , x)−Gn( f , x). Then from (2.23a), (2.23b), (2.29) and (2.30) we obtain

C(x j) = 0, 0≤ j ≤ n+ 1, (2.31)

and for 1≤ j ≤ n,

C ′(x j) =
(−1) j f (1)

2(x j − 1)
− x j f (x j)

2
�

1− x2
j

� +
∑

1≤k 6= j≤n

f (xk)
(−1)k+ j

x j − xk

+ f (−1)
(−1) j+n+1

2(x j + 1)
− f ′(x j). (2.32)

From the interpolation properties of Gn( f , x) and the fact that C(x) is a polynomial of

degree at most 2n+ 1 we obtain

C(x) =Gn(C , x)

=

�

1+ x

2
C(1)+

1− x

2
C(−1)

�

V 2
n (x)

(n+ 1)2
+

n
∑

k=1

C(xk)hk(x)+

n
∑

k=1

C ′(xk)σk(x)

=

n
∑

k=1

C ′(xk)σk(x). (2.33)

For an arbitrary 1≤ k ≤ n, from (2.22b) and the orthonormality of {Vn(x)}∞n=1 with respect

to the weight function
p

1− x2 we obtain

∫ 1

−1

σk(t)
d t

p

1− t2
=

1− x2
k

(n+ 1)2

∫ 1

−1

Vn(t) ·
Vn(t)

t − xk

·
p

1− t2d t = 0. (2.34)

From (2.33) and (2.34) we obtain

∫ 1

−1

C(t)
d t

p

1− t2
= 0,

and which means

∫ 1

−1

Qn+2( f , t)
d t

p

1− t2
=

∫ 1

−1

Gn( f , t)
d t

p

1− t2
. (2.35)
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From (2.10) and (2.35) we obtain (2.25). This completes the proof of Lemma 2.2. �

For f ∈ C (1)[−1,1], denote

Rn( f , x) = f (x)− Gn( f , x).

Lemma 2.3. Let f ∈ C (2n+2)[−1,1]. Then

Rn( f , x) =
f (2n+2)(ξ)

(2n+ 2)!
(x2− 1)

n
∏

j=1

(x − x j)
2, x ∈ [−1,1] (2.36)

for some ξ ∈ (−1,1) depending on x.

Proof. Since (2.36) is trivially satisfied if x coincides with one of the interpolation

points x0, · · · , xn+1, we need be concerned only with the case where x does not coincide

with one of the interpolation points. We define

qn(x) := (x2− 1)

n
∏

j=1

(x − x j)
2, (2.37)

and keeping x fixed, consider g : [−1,1]→ R given by

g(y) := Rn( f , y)− qn(y)
Rn( f , x)

qn(x)
, y ∈ [−1,1]. (2.38)

By the assumption on f we know g ∈ C (2n+2)[−1,1]. From (2.23a) and (2.23b) we know

that g has at least 2n+3 zeros (count multiplicity), namely single zero x , 1,−1 and double

zero {xk}nk=1
. Then, by Rolle’s theorem the derivative g′ has at least 2n+2 zeros. Repeating

the argument, by induction we deduce that the derivative g(2n+2) has at least one zero in

[−1,1], which we denote by ξ. For this zero we have that

0= f (2n+2)(ξ)− (2n+ 2)!
Rn( f , x)

qn(x)
,

and from this we obtain (2.36). This completes the proof of Lemma 2.3. �

Noticed that
∏n

j=1(x− x j) has the same zeros {x j}nj=1
with Vn(x) and this implies that

there exists C such that

Vn(x) = C

n
∏

j=1

(x − x j).

From [11, p. 87] we know that the leading coefficient of Vn is 2n. Hence by comparing the

leading coefficients of Vn with
∏n

j=1(x − x j) we obtain

Vn(x) = 2n
n
∏

j=1

(x − x j). (2.39)
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From (2.36) and (2.39) we know that for f ∈ C (2n+2)[−1,1], one has

Rn( f , x) =
f (2n+2)(ξ)

22n(2n+ 2)!
(x2− 1)V 2

n (x), x ∈ [−1,1] (2.40)

for some ξ ∈ [−1,1] depending on x .

3. Main results and their proofs

For convenience, for any operator S : F → G, we denote

‖S‖F→G = sup
f ∈F,‖ f ‖F≤1

‖S f ‖G .

The first result is for univariate functions. We obtained the following result.

Theorem 3.1. Let Tn+2 be given by (2.10). Then the following equality holds.

e(IN T1, Tn+2, F1,R) = ‖IN T1 − Tn+2‖F1→R =
1

22n+1(2n+ 2)!
. (3.1)

Proof. Note that if f ∈ F1, then IN T1( f ) coincides with I( f ) given by (2.6). Hence for

f ∈ F1 with ‖ f ‖F1
≤ 1, from (2.6), (2.25) and (2.40) it follows that

IN T1( f )− Tn+2( f ) =
1

π

∫ 1

−1

( f (t)− Gn( f , t))
d t

p

1− t2

=
1

22n(2n+ 2)!π

∫ 1

−1

f (2n+2)(ξ)(t2 − 1)V 2
n (t)

d t
p

1− t2

=− 1

22n(2n+ 2)!π

∫ 1

−1

f (2n+2)(ξ)
p

1− t2V 2
n (t)d t. (3.2)

From | f (2n+2)(ξ)| ≤ ‖ f (2n+2)‖∞ ≤ 1 and (3.2) we obtain

|IN T1( f )− Tn+2( f )| =
1

22n(2n+ 2)!π

�

�

�

�

�

∫ 1

−1

f (2n+2)(ξ)
p

1− t2V 2
n (t)d t

�

�

�

�

�

≤ 1

22n(2n+ 2)!π

∫ 1

−1

| f (2n+2)(ξ)|
p

1− t2V 2
n (t)d t

≤ 1

22n(2n+ 2)!π

∫ 1

−1

p

1− t2V 2
n (t)d t

=
1

22n(2n+ 2)!π

∫ π

0

sin2(n+ 1)θdθ =
1

22n+1(2n+ 2)!
. (3.3)
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On the other hand, let g(x) = − x2n+2

(2n+2)!
. Then g ∈ F1,‖g‖F1

= 1 and by the computation of

(3.3) we obtain

IN T1(g)− Tn+2(g) =
1

22n+1(2n+ 2)!
. (3.4)

From (3.3) and (3.4) we obtain (3.1). This completes the proof of Theorem 3.1. �

Now we begin to consider multivariate functions. The Smolyak algorithm based on

the Lagrange interpolation was introduced in [12]. Afterwards, [7] and [13] used this

algorithm to consider the tractability of the non-weighted integral problem and the non-

weighted Lp-approximation problems for 1 ≤ p < ∞ of an infinitely differentiable mul-

tivariate function class, respectively. In this paper we used the corresponding Smolyak

algorithm to approximate the integral IN Td . Now we introduce specific algorithms.

For d = 1, we define the sequence of quadrature rules {U l}∞
l=1

, where for l = 1 there is

only one node x1
1 = 0 with weight a1

1 = 1, and for l > 1 we define

U l( f ) = T2l−1+1( f ) =

2l−1
∑

j=0

al
j f (x l

j) (3.5)

with the nodes and weights given by

x l
j = cos

jπ

2l−1
, j = 0,1, · · · , 2l−1 and al

j =

(

1

2l , j = 0,2l−1;
1

2l−1 , j = 1,2, · · · , 2l−1− 1.
(3.6)

Observe that the nodes of the U l are nested, since

x l+1
2 j
= x l

j for j = 0,1, · · · , 2l−1.

For d > 1 we first define tensor product formulas as follow: for i= (i1, · · · , id) ∈ Nd ,

�

U i1 ⊗ · · · ⊗ U id
�

( f ) =

mi1
∑

j1=0

· · ·
mid
∑

jd=0

d
∏

s=1

a
is
js
· f �x

i1
j1

, · · · , x
id
jd

�

,

where m1 = 0 and mi = 2i−1 for i > 1.

With U0 = 0, we define

∆i = U i − U i−1 (3.7)

for i ∈ N. Moreover, we put |i| = i1 + · · ·+ id for i = (i1, · · · , id) ∈ Nd . Then the Smolyak

algorithm is given by

A(q, d) =
∑

|i|≤q

�

∆i1 ⊗ · · · ⊗∆id
�

(3.8)

for integers q ≥ d . To compute A(q, d)( f ), from [7] we know that one only needs to know

function values at the points set

H(q, d) =
⋃

|i|=q

�

X i1 × · · · × X id
�

,
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where X i = {x i
0, · · · , x i

mi
} ⊂ [−1,1] denotes the set of points used by U i . The points

x ∈ H(q, d) are called hyperbolic cross and H(q, d) is also called a sparse grid. Let

Nd(k) := |H(d + k, d)|
be the number of points used by A(d + k, d). We use t to denote the strong equivalence

of sequences, i.e., un t vn iff limn→∞ un/vn = 1. Then, for k → ∞ and fixed d , from Th.

Műller-Gronbach [14, Lemma 1] we know

Nd(k)t
2kkd−1

(d − 1)! · 2d−1
. (3.9)

Lemma 3.1. Let ∆i for i ∈ N be given by (3.7). Then the following relations hold.

‖∆i‖F1→R =
2

22i−1
2i−1!

for i ∈ N. (3.10)

Proof. For i = 1, by the definition of ∆1 we know that if f ∈ F1 with ‖ f ‖F1
≤ 1, then

one has

|∆1 f | = | f (0)| ≤ ‖ f ‖∞ ≤ 1. (3.11)

On the other hand, let g(x) = 1. Then g ∈ F1,‖g‖F1
= 1 and

∆1 g = g(0) = 1. (3.12)

From (3.11) and (3.12) we obtain (3.10) for i = 1.

For i = 2 and f ∈ F1 with ‖ f ‖F1
≤ 1, from (3.5)-(3.7) we know that

∆2( f ) =
f (1) + 2 f (0)+ f (−1)

4
− f (0) =

f (1)− 2 f (0)+ f (−1)

4
. (3.13)

From the properties of difference we know that there exists a ξ ∈ [−1,1] such that

| f (1)− 2 f (0)+ f (−1)|= | f ′′(ξ)|. (3.14)

From (3.13), (3.14) and ‖ f ′′‖∞ ≤ 1 one obtains

|∆2 f | ≤ 1

4
. (3.15)

On the other hand, let g = x2

2
. Then g ∈ F1 with ‖g‖F1

= 1 and from (3.13) we obtain

∆2 g = 1/4. (3.16)

From (3.15) and (3.16) we obtain (3.10) for i = 2.

Now we consider i ≥ 3. Assume that f ∈ F1 with ‖ f ‖F1
≤ 1. Let

�

tk = cos

�

2k− 1

2(n+ 1)
π

��n+1

k=1
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be the zeros of the nth Chebyshev polynomials Tn+1(x). Then from (3.5)-(3.7) it follows

that

∆i( f ) =
1

2i−1

2i−2
∑

k=1

f

�

cos
2k− 1

2i−1
π

�

− U i−1( f )

2

=
IN T1( f )− U i−1( f )

2
− 1

2






IN T1( f )−

1

2i−2

2i−2
∑

k=1

f
�

tk

�






. (3.17)

Let n= 2i−2 − 1 in (3.1). Then one has

�

�IN T1( f )− U i−1( f )
�

� ≤ 2

22i−1
2i−1!

. (3.18)

From [9, p. 106] we obtain that there exists a ξ ∈ [−1,1] such that

IN T1( f )−
1

2i−2

2i−2
∑

k=1

f
�

tk

�

=
f (2

i−1)(ξ)

22i−1−12i−1!
. (3.19)

From (3.17)-(3.19) and
�

� f (2
i−1)(ξ)

�

� ≤ 1 it follows that

|∆i( f )| ≤ 2

22i−1
2i−1!

. (3.20)

On the other hand, let g(x) = − x2i−1

2i−1!
. Then g ∈ F1 with ‖g‖F1

= 1 and from (3.4), (3.17)

and (3.19) it follows that

∆i(g) =
2

22i−1
2i−1!

. (3.21)

From (3.20) and (3.21) we obtain (3.10) for i ≥ 3. This completes the proof of Lemma

3.1. �

From the well known inequality

n!>

�

n+ 1

e

�n

,

we obtain that for i ≥ 2, one has (where we used ln 10> 2)

22i

2i!≥ 22i

�

2i + 1

e

�2i

=

�

2i+1 + 2

e

�2i

=e2i(ln(2i+1+2)−1) ≥ e2i−1 ln(2i+1+2) ≥ e2i−1 ln2i+1

= 2(i+1)2i−1

.

From above relation and a direct inspection for i = 0,1 we obtain that for i ∈ N0, one has

22i

2i!≥ 2(i+1)2i−1

. (3.22)
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From (3.10) and (3.22) it follows that



∆i




F1→R =
2

22i−1
2i−1!

≤ 2

2i2i−2
= 2 · 2− i2i

4 for i ∈ N. (3.23)

From (3.23) we obtain that for an arbitrary i= (i1, i2, · · · , id) ∈ Nd , one has



∆i1 ⊗ · · · ⊗∆id




Fd→R ≤
d
∏

k=1



∆ik




F1→R ≤ 2d2−
1

4

∑d
k=1 ik2ik

. (3.24)

Using Lagrangian multiplier method to compute the minimum value of the function

f (x1, · · · , xd) =

d
∑

i=1

x i2
xi

under the constraint conditions x i ≥ 1,1≤ i ≤ d , |x |=∑d

i=1 x i = A≥ d , we find that

d
∑

i=1

x i2
xi ≥ A2

A

d for all x i ≥ 1, 1≤ i ≤ d , |x |=
d
∑

i=1

x i = A. (3.25)

From (3.25) we obtain that for all i= (i1, · · · , id) ∈ Nd , one has

d
∑

k=1

ik2ik ≥ |i|2|i|/d ≥ 1

4
(|i|+ d)2|i|/d+1. (3.26)

From (3.24) and (3.26) we obtain



∆i1 ⊗ · · · ⊗∆id




Fd→R ≤ 2d2−
1

16
(|i|+d)2|i|/d+1

. (3.27)

The second result is for multivariate functions. We obtained the following result.

Theorem 3.2. Let Fd be defined by (1.1). Then the integral problem IN T = {IN Td}∞d=1
is of

exponential convergence, i.e., there exist positive C(d) and C2(d) depending on d such that

e(n, IN Td , Fd ,R) ≤ C(d)2−(n/C2(d))
1/d

for all n, d ∈ N. (3.28)

Proof. From

IN Td =
∑

i∈Nd

�

∆i1 ⊗ · · · ⊗∆id
�

and (3.8) it follows that

IN Td − A(q, d) =
∑

|i|>q

�

∆i1 ⊗ · · · ⊗∆id
�

. (3.29)



112 G. Q. Xu, Y. P. Liu and J. Zhang

From (3.29) and (3.27) it follows that

‖IN Td − A(q, d)‖Fd→R

≤
∑

|i|>q



∆i1 ⊗ · · · ⊗∆id




Fd→R ≤ 2d
∑

|i|>q

2−
1

16
(|i|+d)2|i|/d+1

. (3.30)

For an arbitrary i= (i1, i2, · · · , id) ∈ Nd , let

D(i) = ⊗d
j=1[i j , i j + 1).

Then for x= (x1, · · · , xd) ∈ D(i), one has |i|+ d ≥ |x| and hence one has

2−
1

16
(|i|+d)2|i|/d+1 ≤ 2−

1

16
|x|2|x|/d for x ∈ D(i). (3.31)

(3.31) means that

2−
1

16
(|i|+d)2|i|/d+1

=

∫

D(i)

2−
1

16
(|i|+d)2|i|/d+1

dx≤
∫

D(i)

2−
1

16
|x|2|x|/d dx. (3.32)

From (3.30) and (3.32) one obtains

‖IN Td − A(q, d)‖Fd→R

≤2d
∑

|i|>q

∫

D(i)

2−
1

16
|x|2|x|/d dx= 2d

∫

⋃

|i|>q D(i)

2−
1

16
|x|2|x|/d dx. (3.33)

It is easily checked that x ∈ D(i) for |i| > q implies |x| > q. This implies
⋃

|i|>q D(i) ⊂
{x||x| ≥ q}. Hence (3.33) means

‖IN Td −A(q, d)‖Fd→R ≤ 2d

∫

|x|≥q

2−
1

16
|x|2|x|/d dx. (3.34)

Let t = |x|. Then by a variable transformation we obtain

∫

|x|≥q

2−
1

16
|x|2|x|/d dx=

1

(d − 1)!

∫ +∞

q

td−12−
t

16
2t/d

d t, (3.35)

where we used the fact that the volume of d-dimensional simplex is (d!)−1. It is easy to

check that
∫ +∞

q

td−12−
t

16
2t/d

d t

=16d

∫ +∞

q

td−1

2t/d(d + t ln2)
· 2

t/d(d + t ln2)

16d
2−

t

16
2t/d

d t

≤16d

ln2

∫ +∞

q

td−2

2t/d
· 2

t/d(d + t ln 2)

16d
2−

t

16
2t/d

d t. (3.36)
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For d = 1,2, it is easy to see that td−2

2t/d ≤ 1 on [d ,+∞). Hence by (3.36) we obtain

∫ +∞

q

td−12−
t

16
2t/d

d t ≤ 16d

ln 2

∫ +∞

q

2t/d(d + t ln 2)

16d
2−

t

16
2t/d

d t =
16d

(ln2)2
2−

q

16
2q/d

. (3.37)

For d ≥ 3, by a direct computation we obtain that the maximum value point of td−2

2t/d on

[d ,+∞) is t = d2−2d

ln2
, and its value is

�

d2−2d

e ln 2

�d−2

. Hence (3.36) means

∫ +∞

q

td−12−
t

16
2t/d

d t

≤16d

ln 2
·
�

d2 − 2d

e ln 2

�d−2 ∫ +∞

q

2t/d(d + t ln 2)

16d
2−

t

16
2t/d

d t

=
16d

(ln 2)2
·
�

d2− 2d

e ln 2

�d−2

2−
q

16
2q/d

. (3.38)

Denote C(d) = max
n

2d+4d

(d−1)!(ln 2)2
, 2d+4d

(d−1)!(ln 2)2
·
�

d2−2d

e ln2

�d−2o

. Then from (3.34)-(3.38) it

follows that

‖IN Td − A(q, d)‖Fd→R ≤ C(d)2−
q

16
2q/d

. (3.39)

Let q = k+ d . Then from (3.9) it follows that

Nd(k)t
(k+ d)d−12k+d

(d − 1)! · 22d−1
=

qd−12q

(d − 1)! · 22d−1
≤ qd2q

d! · 22d−1
. (3.40)

From (3.40) we know that there exists C1(d) such that

qd2q ≥ C1(d) ·Nd(k). (3.41)

Denote C2(d) =
16d

C1(d)
. Then (3.41) implies that

q2q/d ≥ 16
�

Nd(k)/C2(d)
�1/d

. (3.42)

From (3.39) and (3.42) it follows that

‖IN Td − A(q, d)‖Fd→R ≤ C(d)2−(Nd(k)/C2(d))
1/d

. (3.43)

It is obviously that (3.43) leads to (3.28). This completes the proof of Theorem 3.2. �

Remark 3.1. The result (3.28) is obviously better than (2.4). The quadrature nodes

and weights used by Smolyak algorithm have explicit expressions (see (3.6)), while the

so-called digital nets used by [5] involved in a very complicated computation. Further-

more, the Smolyak algorithm is constructive, however the algorithms used by [5] are non-

constructive.
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Remark 3.2. The error estimates in [12] are obtained by a proof of induction. The error

estimates in [7, 13] are based on the operator norms and the best polynomial approxima-

tion errors. In this paper we used a completely different method and obtained a completely

different result with that of [7, 12-13].
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