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Abstract. In this paper we propose a mixed regularization method for ill-posed prob-
lems. This method combines iterative regularization methods and continuous regular-
ization methods effectively. First it applies iterative regularization methods in which
there is no continuous regularization parameter to solve the normal equation of the ill-
posed problem. Then continuous regularization methods are applied to solve its residual
problem. The presented mixed regularization algorithm is a general framework. Any
iterative regularization method and continuous regularization method can be combined
together to construct a mixed regularization method. Our theoretical analysis shows
that the new mixed regularization method is with optimal order of error estimation and
can reach the optimal order under a much wider range of the regularization parameter
than the continuous regularization method such as Tikhobov regularization. Moreover,
the new mixed regularization method can reduce the sensitivity of the regularization
parameter and improve the solution of continuous regularization methods or iterative
regularization methods. This advantage is helpful when the optimal regularization pa-
rameter is hard to choose. The numerical computations illustrate the effectiveness of
our new mixed regularization method.
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1. Introduction

Suppose that T : X → Y is a bounded linear operator, here X and Y are two Hilbert
spaces. The inverse problem is that y ∈ Y is known and we seek x ∈ X such that T x =

y. Ill-posedness always appears in inverse problems if T is compact, i.e., the solution x
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may not satisfy existence, uniqueness or continuity. Even if we can ensure the existence
and uniqueness of the solution x in some sense, the non-continuity still leads to difficulty
in computations. The non-continuity means that the solution x is very sensitive to any
perturbation of the right-hand side y, i.e., small perturbations of y can produce arbitrarily
large perturbations of the solution x . The perturbation of y usually represents the noises
in the data. The method to overcome the ill-posedness is known as the regularization
[3, 14, 42]. Generally speaking, the regularization methods can be classified into two
categories: continuous regularization methods and iterative regularization methods. In
this article we try to combine the two types of regularization methods together and we
name it the mixed regularization method.

The typical continuous regularization methods include the truncated singular value
decomposition (TSVD) method and Tikhonov regularization method. Among these meth-
ods, Tikhonov regularization method is the widely used method. It is proposed firstly
by Tikhonov [37, 38] in 1963 and then is applied in solving ill-posed problems [39, 40].
Other methods include the stationary and non-stationary iterated Tikhonov method and
so on [13]. In the continuous regularization methods, one important step is the choice
of the regularization parameter. If the parameter is too small, the ill-posedness of the
original problem can not be overcome effectively and the error from the ill-posedness is
dominated. On the contrary, if the parameter is too large, the consistency between the
original problem and the regularized problem become large and the error from this fac-
tor is dominated. Therefore, it is crucial to balance these two kinds of errors. Many
methods on how to choose the optimal parameter are investigated, for example, the dis-
crepancy principle [18,27,33,41,44], the L-curve criterion [15,16], the generalized cross-
validation [1,6,43], and so on. However, how to choose a optimal regularization parameter
effectively is still worth studying in solving real problems when we have little knowledge
about the exact solution.

Iterative regularization methods are another type of frequently-used regularization
methods. In iterative regularization methods, the stopping index is regularization pa-
rameter and there is no continuous regularization parameter. For well-posed problems,
the iterative solution usually convergences to the exact solution as the number of itera-
tions increases. However, for ill-posed problems, there exists a phenomenon called semi-
convergence, i.e., the iterative solution converges to the exact solution in first several iter-
ations, but it goes away from the exact solution after a certain step. Thus, some stopping
rules must be used so that the iteration can stop at certain iteration which is closest to
the exact solution. The popular iterative regularization methods include the Landweber
method [2,9,12,21,26,30,32], the conjugate gradient (CG) method [5,10,11,25,28,29]
and so on [14].

In iterative regularization methods, the number of iterations or the stopping index is a
regularization parameter and this parameter is on the set of natural number. In contrast,
the regularization parameter in continuous regularization methods is on the set of real
numbers. Therefore, in iterative regularization methods, the parameter (i.e., the number
of iterations) can not be chosen as precisely as that in continuous regularization meth-
ods. For example, the iterative solution usually does not approximate the exact solution
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enough after some iteration, but goes away from the direction just after the next iteration.
Between these two iterative solutions, we can not obtain the other numerical solutions
which are probably more precise. Although some iterative regularization methods, such as
Landweber methods and conjugate gradient methods, can attain the optimal order under
some stopping rules, the iterative solutions usually could be improved further.

In order to improve the iterative solution, we propose a mixed regularization method
in this paper. First we solve the original problem with an iterative regularization method.
Then we solve the residual equation with a continuous regularization method. Finally we
add the solution of the residual equation to the original iterative solution. The solution of
this mixed regularization method can improve the solution from iteration regularization
methods. This fact is proved by our theoretical analysis (Theorem 3.2) and is confirmed
by the numerical computations.

The new mixed regularization method also can be considered as an improvement of
continuous regularization methods. In continuous regularization methods, the choice of
the parameter is crucial because the accuracy of solutions depends on the regularization
parameter sensitively. Our theory (Theorem 3.1) shows that the new mixed regularization
method reduces the sensitivity of the regularization parameter. Specifically speaking, the
mixed regularization methods can reach the optimal order with a much wider range of the
regularization parameter than the continuous regularization method. This theorem is also
confirmed by our numerical computations.

Another advantage of our mixed regularization method is that it is a general algo-
rithm framework. Any iterative regularization method and any continuous regularization
method can be combined together to construct a mixed regularization method. The mixed
method All these mixed regularization methods can be analyzed in our theoretical frame-
work.

The rest of this article is arranged as follows. In Section 2, we discuss the regularization
methods for ill-posed problems based on the functional framework of [4]. In Section 3, we
present our new mixed regularization method and give the theoretical analysis. In Section
4, we present numerical results to illustrate the theory in Section 3. Finally we give a
conclusion in Section 5.

2. Regularization methods

Consider the equation

T x = y, (2.1)

where X and Y are two Hilbert spaces and T : X → Y is a bounded linear operator.
Because of the ill-posedness, the solution x of (2.1) possibly does not satisfy existence or
uniqueness. However, we can determine a unique x ∈ X in some senses. We call x ∈ X the
least-squares solution of (2.1) if

||T x − y|| = inf
n

||Tz− y||
�

� z ∈ X
o

, (2.2)
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and we call x ∈ X the best-approximate solution of (2.1) if

||x ||= inf
n

||z||
�

� z is least-squares solution of (2.1)
o

. (2.3)

By the theory of Moore-Penrose generalized inverse [4], we can define the Moore-Penrose
generalized inverse T † of operator T on the domain

D(T †) =R(T ) +R(T )⊥, (2.4)

then we obtain a unique x† = T † y for y ∈ D(T †). It can be shown that, for y ∈ D(T †),
(2.1) has a unique best-approximate solution and this solution is exactly the Moore-Penrose
generalized inverse

x† = T † y. (2.5)

Therefore, our goal is to find a numerical solution x sol which is as close as possible to x†.
That is, we want ||x sol− x†|| to be as small as possible.

In most practical problems, the observed data y contains noise, That is to say, the exact
right-hand side yexa = T x† can not be attained. We assume there is a perturbed right-hand
side yδ with a noise level δ, i.e.,

||yδ − yexa|| ¶ δ. (2.6)

Thus, in fact we obtain our solution x sol through the equation

T x = yδ. (2.7)

In order to analyze the error ||x sol − x†|| theoretically, we introduce some notation of
functional calculus. Using the notation of functional calculus, we introduce a set

Xµ,ρ = {x | x = (T ∗T )µw, ||w|| ¶ ρ}, (2.8)

where µ > 0 and T ∗ is the adjoint operator of T . By classical theory in inverse problems
[4,20], for x† ∈ Xµ,ρ, any method can not ensure an error better than

||x sol− x†||¶ δ
2µ

2µ+1ρ
1

2µ+1 . (2.9)

Therefore, if a method ensures the error

||x sol− x†|| ¶ cδ
2µ

2µ+1ρ
1

2µ+1 , (2.10)

we call this method is with optimal order in Xµ,ρ. Notice that c in (2.10) denotes a constant
and we will use the similar notation in the following.
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2.1. Continuous regularization methods

In this subsection, we analyze continuous regularization methods under the framework
in [4]. They are convenient and beneficial for our analysis in the mixed regularization
method in Section 3.

Writing (2.7) in form of normal equation

T ∗T x = T ∗ yδ. (2.11)

Using the exact right-hand side yexa instead of yδ, we solve (2.11) as

x† = (T ∗T )−1T ∗ yexa. (2.12)

However, operator (T ∗T )−1 is usually not well-posed for a perturbed right-hand side yδ.
In continuous regularization methods, we introduce a function gα(λ), which is associated
with α, to express the solution. Here α is the regularization parameter. Then the regular-
ized solution x sol can be formally written as [4,22,34]

x sol = gα(T
∗T )T ∗ yδ. (2.13)

If gα(λ) is at least piecewise continuous on λ ∈ [0, ||T ||2], the operator gα(T
∗T ) is well-

posed.
Now we introduce two famous continuous regularization methods under the above

framework, i.e., the Tikhonov regularization method and the TSVD method. In Tikhonov
regularization method, the operator in the normal equation is perturbed to T ∗T + αI and
we solve

(T ∗T +αI)x = T ∗ yδ. (2.14)

In fact in this case gα(λ) can be expressed by

gα(λ) =
1

λ+α
. (2.15)

For the iterated Tikhonov method [13], we solve

(T ∗T +αI)xm = αxm−1+ T ∗ yδ, (2.16)

where m is the iteration number, and gα(λ) is

gα(λ) =
1

λ

�

1− ( α
α+λ

)m
�

. (2.17)

In TSVD method, the singular values are truncated when the singular value is less than α.
In this case, gα(λ) has the following expression

gα(λ) =

¨

1
λ

, λ¾ α,
0, λ < α.

(2.18)
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In general, we can analyze continuous regularization methods under this functional frame-
work.

We denote the solution x sol in (2.13) by xδα , which represents this solution is depended
on the regularized parameter α and the noise level δ. Similarly, we denote by

xα = gα(T
∗T )T ∗ yexa, (2.19)

the solution under the regularized parameter α and the exact right-hand side yexa. Then
the error between xδα and x† is divided into two parts:

||xδα − x†||¶ ||xδα − xα||+ ||xα− x†||. (2.20)

In the right-hand side of (2.20), the first term is generated by the noise and the ill-
posedness of the problem. The second term is generated by regularization.

For the second term in the right-hand side of (2.20), we have

x†− xα = x†− gα(T
∗T )T ∗ yexa

= (1− gα(T
∗T )T ∗T )x†

= rα(T
∗T )x†, (2.21)

where
rα(λ) = 1−λgα(λ).

In the following discussion, we always assume gα(λ) and rα(λ) satisfy the following two
properties [4]:

Assumption 2.1. On λ ∈ [0, ||T ||2], gα(λ) and rα(λ) satisfy:







|λgα(λ)|¶ 1,
|gα(λ)|¶ 1

α
,

|rα(λ)|¶ 1.
(2.22)

Assumption 2.2. On λ ∈ [0, ||T ||2], rα(λ) satisfies:

|λµrα(λ)|¶ αµ. (2.23)

When estimating the first term in the right-hand side of (2.20), we assume Assumption
2.1 is satisfied. And when estimating the second term in the right-hand side of (2.20), we
assume Assumption 2.2 is satisfied.

Remark 2.1. It can be verified that Assumption 2.1 is always satisfied both for the Tikhonov
method and the TSVD method. For the Tikhonov method with µ ¶ 1 and the TSVD method,
Assumption 2.2 is also satisfied. Assumption 2.2 is often called the qualification of the reg-
ularization method [22,24]. For general source conditions, the related topic can be found
in [4,35].
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The following three Propositions are the main analysis of convergence in continuous
regularization methods. For the mixed regularization method proposed in Section 3, the
similar framework will be used to analyze the convergence.

Proposition 2.1. When Assumption 2.1 is satisfied, then we have

||xα− xδα || ¶ δ
r

1

α
. (2.24)

Proposition 2.2. When Assumption 2.2 is satisfied, for x† ∈ Xµ,ρ we have

||x†− xα||¶ αµρ. (2.25)

The proofs of Proposition 2.1 and Proposition 2.2 can be found in [4,20,24]. Summa-
rizing the two propositions above, we obtain

Proposition 2.3. When Assumptions 2.1 and 2.2 are satisfied, for x† ∈ Xµ,ρ we have

||xδα − x†|| ¶||xδα − xα||+ ||xα− x†||

¶δ

r

1

α
+αµρ. (2.26)

Now if we choose α such that

c1

�

δ

ρ

�
2

2µ+1

¶ α¶ c2

�

δ

ρ

�
2

2µ+1

, (2.27)

we obtain

||xδα − x†||¶ cδ
2µ

2µ+1ρ
1

2µ+1 , (2.28)

then the method associated with α reaches optimal order.

2.2. Iterative regularization methods

The typical well-known iterative regularization methods are the standard Landweber
method and the CG method. Their algorithms may refer to [4,20]. There is no continuous
regularization parameter in iterative regularization methods. Unlike the well-posed prob-
lems, iterative regularization methods for ill-posed problems are semi-convergent. That is
to say, the iterative solution goes to the exact solution in first several iterations, then it goes
away from the exact solution after a certain iteration. Therefore, some suitable stopping
rules are required. One popular stopping rule is the discrepancy principle [3,27,33,41]

||yδ − T xδk ||¶ τδ, (2.29)

where τ is a parameter and 1 < τ < 2. Another typical stopping rule is the the monotone
error rule (i.e., the ME-rule) [7,8]. The advantage of the ME-rule is that there is no need
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to fix the additional parameter τ. The CG method is widely used in well-posed problems,
and it also can be applied to ill-posed problems. In fact, in our algorithm we have applied
the CG method to the normal equation of (2.7)

T ∗T x = T ∗ yδ, (2.30)

and both the discrepancy principle and the ME-rule are used in our numerical computa-
tions to stop the iteration.

It can be proven that both the Landweber method and the CG method are with optimal
order [4, 20, 25]. Although the iterative solution x it reaches optimal order, we will show
that the solution can be improved in most situations in the next section. Improvements
can be expected in our mixed regularization method.

3. Mixed regularization methods

3.1. Mixed algorithm and optimal convergence order

After (2.7) has been solved by an iterative regularization method, there is still a residual
term yδ − T x it. In order to solve the problem more precisely, we pay attention on the
residual equation

T x = yδ − T x it. (3.1)

To solve (3.1), a continuous regularization method is applied. The final solution is the
summation of the solutions of the iterative regularization method and the continuous reg-
ularization method. More concretely, we have the following algorithm:

Algorithm 3.1 Mixed regularization method

1 To solve (2.7), first we obtain an iterative solution x it by solving its normal equation
(2.30) with a iterative regularization method. Then we use a continuous regularization
method with the function gα(λ) to solve the residual equation (3.1):

T x = yδ − T x it. (3.2)

2 The solution of (3.1) can be written as gα(T
∗T )T ∗(yδ − T x it), therefore

xmix = x it+ gα(T
∗T )T ∗(yδ − T x it) (3.3)

is the final solution of this algorithm.

Note that Algorithm 3.1 is a general framework. Any continuous regularization method
and any iterative regularization method can be combined together to yield a mixed regu-
larization method. Hence the Algorithm 3.1 can be expected to possess wide application.

Now we analyse the convergence of Algorithm 3.1. In Algorithm 3.1, the error between
the numerical solution and the exact solution is ||x†− xmix||. We hope Algorithm 3.1 per-
forms better than continuous regularization methods or iterative regularization methods
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when they are used separately. In fact, this can be guaranteed by the following theoretical
analysis. First we prove the following lemma which is crucial in our theoretical framework.

Lemma 3.1. Suppose Assumption 2.1 is satisfied for gα in Algorithm 3.1, then

||x†− xmix||¶ ||x†− x it||+ δ
r

1

α
. (3.4)

Proof. First we have

x†− xmix =x†− x it− gα(T
∗T )T ∗(yδ − T x it)

=x†− x it− gα(T
∗T )T ∗(yexa − T x it)

+ gα(T
∗T )T ∗ yexa − gα(T

∗T )T ∗ yδ. (3.5)

Note that gα(T
∗T )T ∗ yexa and gα(T

∗T )T ∗ yδ are just xα and xδα respectively in Proposition
2.1. By Proposition 2.1,

||gα(T ∗T )T ∗ yexa − gα(T
∗T )T ∗ yδ||¶ δ
r

1

α
. (3.6)

Therefore, by (3.5) and (3.6), we have



x†− xmix


¶


x†− x it− gα(T
∗T )T ∗(yexa − T x it)



+ δ

r

1

α
. (3.7)

Additionally, we have

x†− x it− gα(T
∗T )T ∗(yexa − T x it)

=x†− x it− gα(T
∗T )T ∗(T x†− T x it)

=(1− gα(T
∗T )T ∗T )(x†− x it)

=rα(T
∗T )(x†− x it),

thus


x†− x it− gα(T
∗T )T ∗(yexa − T x it)





¶ sup
λ∈[0,||T ||2]

|rα(λ)| · ||x†− x it||

¶||x†− x it||. (3.8)

Finally, by (3.7) and (3.8), we obtain



x†− xmix


¶


x†− x it


+ δ

r

1

α
, (3.9)

which is just (3.4). �

Lemma 3.1 is a basic estimate of ||x† − xmix||. From Lemma 3.1, we arrive at the
following optimal convergence theorem, i.e., Theorem 3.1.
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Theorem 3.1. Assume the iterative method in Algorithm 3.1 is with optimal order (e.g., the

standard Landweber method and the CG method), and Assumption 2.1 is satisfied for gα in

Algorithm 3.1. Then for α ¾ c
�

δ/ρ
�

2
2µ+1 , the mixed regularization method in Algorithm 3.1

is with optimal order.

Proof. Because of the optimal order of the iterative method in Algorithm 3.1, we have

||x†− x it|| ¶ c1δ
2µ

2µ+1ρ
1

2µ+1 . (3.10)

Therefore, by Lemma 3.1, for α ¾ c
�

δ/ρ
�

2
2µ+1 we obtain

||x†− xmix|| ¶||x†− x it||+ δ
r

1

α

¶c1δ
2µ

2µ+1ρ
1

2µ+1 + c2δ
2µ

2µ+1ρ
1

2µ+1

¶c3δ
2µ

2µ+1ρ
1

2µ+1 , (3.11)

where c1, c2 and c3 are constants. (3.11) indicates that the solution xmix is with optimal
order. �

Remark 3.1. When the continuous regularization method is applied separately, Assump-
tion 2.2 is required. Moreover, by Proposition 2.3, the optimal order can reach only when
α satisfies

c1

�

δ

ρ

�
2

2µ+1

¶ α¶ c2

�

δ

ρ

�
2

2µ+1

. (3.12)

In our mixed regularization method, Assumption 2.2 is not necessary and the optimal order
can reach for a wider range of α. For instance, the Tikhonov regularization method with
µ > 1 does not satisfy Assumption 2.2, thus it can not reach the optimal order. However,
it can reach optimal order in our mixed regularization method. We remark that for the
iterated Tikhobov method, Theorem 3.1 still holds only c is substituted by cm. Here m is
the iteration number in the iterated Tikhobov method.

Remark 3.2. The wider range of α in Theorem 3.1, i.e. α ¾ c
�

δ/ρ
�

2
2µ+1 , allows as to

choose a more flexible α. The choice of α is important in continuous regularization meth-
ods. Sometimes tiny variation of α could cause large variation in the error. Theorem 3.1
tells us we can choose a more larger α . In the numerical computations in Section 4, we
see that no matter how big α is, the error is almost on the same level with the optimal
one. On the contrary, the large α usually causes large error when the continuous regular-
ization method is applied separately to solve the problem. We remark that although the
mixed regularization has this advantage it is still useful and significant to choose a proper
regularization parameter in the second stage of the mixed method.
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3.2. Mixed regularization method with the ME-rule

When the noise level δ is known, we can choose the regularization parameter by a pos-
terior method such as the ME-rule [7,8]. The ME-rule chooses the smallest regularization
parameter α = αM E for which we can guarantee the ME-property: the error ||x sol − x†||
is monotonically increasing for α ∈ [αM E ,∞). For the mixed regularization method, this
means

d

dα
||xα+ x i t − x†||2 ≥ 0, ∀α ∈ [αM E ,∞), (3.13)

where x i t is the iterative solution in the first stage, and xα = gα(T
∗T )T ∗ yδ,i t is the solution

by continuous parameter regularization methods in the second stage. Assuming xα =

T ∗wα and zα := d

dα
wα, in order to guarantee the property (3.13) we make the following

estimation under the condition ||yδ − T x†||¶ δ:

1

2

d

dα
||xα+ x i t − x†||2 = (xα+ x i t − x†, T ∗zα)

=(T xα+ T x i t − yδ + yδ − T x†, zα)¾ (T xα− yδ,i t , zα)− δ||zα||, (3.14)

and we solve the largest α = αM E satisfying

(T xα− yδ,i t , zα)

||zα||
= δ, (3.15)

where yδ,i t := yδ − T x i t is the residual from the first stage. We remark that (3.15) has a
solution α if the following condition [36]



P(T xm,α− yδ,i t )


< δ <


T xm,α− yδ,i t


 (3.16)

is satisfied. Here P is the orthoprojection of Y onto N (A∗). We also remark that if in
the second phase of regularization the m times iterated Tikhonov approximation xm,α in
(2.16) (m = 1 in (2.14) ) is used, then zα = T xm+1,α − yδ,i t . In the case of nonexistence
of solution to (3.15), i.e., (3.16) is violated, αM E = ∞ and in fact the second phase of
regularization is cancelled. In numerical computations, we will see the occurrence of this
phenomenon. Therefore, we propose the following new Algorithm 3.2:

Algorithm 3.2 Mixed regularization with the ME-rule
The solution α to (3.15) includes two cases:

Case 1: If α does not exist, then the solution xmix by the mixed regularization method is
xmix = x i t .

Case 2: If α exists, then the solution xmix by the mixed regularization method is xmix =

x i t + xαM E
.

Based on the algorithm above, we have the following result:
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Theorem 3.2. When Case 2 in Algorithm 3.2 is satisfied, the solution xmix obtained by the

mixed regularization method is better than x i t by the iterative regularization method in the

first stage.

Proof. Since

x i t = lim
α→∞(xα+ x i t) (3.17a)

d

dα
||xα+ x i t − x†||2 ¾ 0, ∀α ∈ [αM E ,∞), (3.17b)

then we have

||xαM E
+ x i t − x†||¶ ||x∞+ x i t − x†|| = ||x i t − x†||, (3.18)

which means the solution xmix by the mixed regularization method with the ME-rule is better

than x i t by the iterative regularization method in the first stage. �

Note that ||x†− x it|| is the error in the corresponding iterative regularization method.
Theorem 3.2 shows that using Algorithm 3.2 we can improve the solution from the it-
erative regularization method in the first stage. This is also confirmed by the numerical
computations in Section 4. And in most situations the improvement is obvious. Note that
for the (iterative) Tikhonov methods, (3.15) becomes [7]

(ρm,α,ρm+1,α)

||ρm+1,α||
= δ, (3.19)

where ρm,α := yδ,i t − T xm,α.
Theorem 3.2 indicates that the mixed regularization method presented in this paper is

effective theoretically. It behaves more precisely than the iterative regularization method.
Next we will give some numerical tests to illustrate the theoretical aspects.

4. Numerical computations

The Fredholm integral equation of the first kind is a typical ill-posed problem. It arises
in many applications in science and technology. For example, the gravity prospecting in
geophysics is essential to solve the integral equation of the first kind. In this section,
in order to illustrate our new algorithm, we solve three examples numerically by three
different algorithms and compare the corresponding results.

The Fredholm integral equation of the first kind with the kernel κ(s, t) can be written
as:

y(t) = T x(t) =

∫ b

a

κ(s, t)x(s)ds, ∀c ¶ t ¶ d . (4.1)

In the following we obtain three different examples by choosing the different kernels and
the parameters a, b, c, d in (4.1).
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Example 4.1. We choose a = c = 0, b = d = 1, and the integral kernel is defined as

κ(s, t) =







0, t ¶ s,

e
− 1

4(t−s)p
π(t−s)

, t > s.
(4.2)

The exact solution x† is chosen as

x†(s) =

¨

0, s < 0.25, or s > 0.75,
1, 0.25¶ s ¶ 0.75,

(4.3)

then the exact right-hand side yexa(t) = f (0.75− t)− f (0.25− t), where

f (t) =

¨

0, t ¶ 0,
2p
π
(
p

te−1/(4t) −
∫∞

1/(2
p

t)
e−z2

dz), t > 0.
(4.4)

Example 4.2. We choose a = c = −6, b = d = 6, and the exact solution x† is defined as

x†(s) =

¨

0, |s| ¾ 3,
1+ cos(π

3
s), |s| < 3.

(4.5)

We choose
κ(s, t) = x†(t − s), (4.6)

and the exact right-hand side is

yexa(t) = (6− |t|)
�

1+
1

2
cos
�

π

3
t

�
�

+
9

2π
sin
�

π

3
|t|
�

. (4.7)

Example 4.3. We choose a = c = 0, b = d = π, and the integral kernel is defined as

κ(s, t) = et cos(s). (4.8)

The exact solution x† is
x†(s) = sin(s), (4.9)

and the exact right-hand side is

yexa(t) =
2 sinh(t)

t
. (4.10)

In the discretization we use the mesh size 210 = 1024. We compute numerical solu-
tions x sol with the following three different algorithms, named Algorithm I, II and III, and
compute their corresponding L2 norm of the errors, i.e. ||x sol− x†||.
• Algorithm I: Using the Tikhonov regularization method separately. The numerical

solution is denoted by xTik;
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Table 1: L2 errors obtained by Algorithms I, II and III respectively for Example 4.1 with exact data.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−7 8.9920e-02 Nit = 30, 8.6525e-02 5.9438e-02
10−8 7.7390e-02 Nit = 50, 7.6598e-02 5.9410e-02
10−9 6.7789e-02 Nit = 100, 6.5674e-02 5.9166e-02
10−10 6.0214e-02 Nit = 150, 6.1940e-02 5.7662e-02
10−11 5.4094e-02 Nit = 200, 5.9441e-02 5.3711e-02

• Algorithm II: Using the CG iterative method separately. The numerical solution is
denoted by xcg;

• Algorithm III: Using the mixed regularization method. i.e. Algorithm 3.1. We apply
the CG iterative method as the iterative regularization method and the Tikhonov reg-
ularization method as the continuous regularization method. The numerical solution
is denoted by xmix.

4.1. Exact data

In this section, we consider the case of exact data. Namely, we do not add the noise to
right-hand side y ex t . There only exit the discretization errors in numerical computations.
We remark Algorithm I and Algorithm III requires the regularization parameter α. We
choose a series of regularization parameters α and compute the L2 errors. The results are
listed in Tables 1-3 for Examples 4.1-4.3 respectively. For Algorithm II, since there is no
noise in the data, the CG iteration is stopped at some fixed iteration step Nit and then the
L2 errors are yielded. The stopping iterations are set Nit = 30, 50, 100, 150 and 200. In
Tables 1-3, the solutions xmix in column 4 are obtained by using the values x cg at iteration
number Ni t = 200 in the first stage.

From Tables 1-3, we can see that the minimal L2 errors for Algorithm I are 5.4094e−02,
1.8663e−05 and 2.3240e−02 while they are 5.3711e−02, 1.8784e−06 and 1.0666e−02
for Algorithm III. Obviously, Algorithm III behaves better than Algorithm I does. It is
obvious that our mixed regularization method has better robustness to the regularization
parameter α than the Algorithm I. From the third columns of Tables 1-3, we can see that the
minimal L2 errors obtained by Algorithm II are 5.9441e−02, 5.3048e−05 and 1.0666e−
02, which are not better than the corresponding results obtained by Algorithm III obviously.

We remark that in the case of exact data errors in Tikhonov method are monotonically
decreasing for decreasing α values and the optimal α is zero theoretically [7,8]. However,
this monotonicity can not be guaranteed due to discretization errors from numerical com-
putations such as integral approximation. We can see this phenomenon in Table 2, which
the errors in Tikhonov method for α= 10−10 and α = 10−11 are larger than for α= 10−9.
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Table 2: L2 errors obtained by Algorithms I, II and III respectively for Example 4.2 with exact data.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−7 8.8187e-05 Nit = 30, 5.2804e-04 4.5452e-05
10−8 3.3808e-05 Nit = 50, 2.6486e-04 2.8142e-05
10−9 1.8663e-05 Nit = 100, 1.0063e-04 1.2512e-05
10−10 1.2356e-04 Nit = 150, 7.0209e-05 4.9243e-06
10−11 1.1635e-03 Nit = 200, 5.3048e-05 1.8784e-06

Table 3: L2 errors obtained by Algorithms I, II and III respectively for Example 4.3 with exact data.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−7 4.1783e-02 Nit = 30, 2.1799e-02 1.0666e-02
10−8 3.8338e-02 Nit = 50, 1.5000e-02 1.0666e-02
10−9 3.0019e-02 Nit = 100, 1.4376e-02 1.0666e-02
10−10 2.4122e-02 Nit = 150, 1.4323e-02 1.0666e-02
10−11 2.3240e-02 Nit = 200, 1.0666e-02 1.0666e-02

4.2. Noisy data with δ = 10−4 and δ = 10−2

Now we turn to the case of adding noise. We add noise, which is uniformly distributed
random error, to the exact right-hand side yexa. The upper bound of noise is denoted by δ,
i.e.,

||yexa − yδ|| :=

√

√

√

√

1

Nt + 1

Nt
∑

i=0

(yexa
i
− yδ

i
)2 = δ, (4.11)

where Nt = 1024 is the discretization number. We consider two noise levels, i.e, δ = 10−4

and δ = 10−2. The noises added to the exact data are the random data following normal
distribution with the mean square deviation δ. The computational results are shown in
Table 4 to Table 9. For Algorithm I and Algorithm III, we choose a series of regularization
parameters and compute their L2 errors which are listed in the second and fourth column
of the tables respectively. For Algorithm II, two stopping rules, i.e., the ME-rule [7] and
the discrepancy principle (DP) with τ = 1.01 are applied. In column 3 in Tables 4-9, the
corresponding τ := ||T x cg− yδ||/δ and the number of iteration steps nM E according to the
ME-rule are given in parentheses. Tables 4-6 are the results with noise level δ = 10−4 for
Examples 4.1-4.3 respectively while Tables 7-9 with noise level δ = 10−2. From the results
in Tables 4-9, we can clear see that the solutions xmix by the mixed regularization method
are all better that the solutions x cg by the CG method. The mixed regularization method is
more robust than the Tikhonov regularization method. The minimum errors for Tikhonov
regularization method in Tables 4-6 are 8.3464e − 02, 1.4673e − 03 and 4.2458e − 02
respectively while they are 8.3465e− 02, 1.4276e− 03 and 4.2449e− 02 respectively for
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Table 4: L2 errors obtained by Algorithms I, II and III respectively for Example 4.1 with δ = 10−4.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−2 3.7827e-01 1.0855e− 01 by ME-rule

(τ = 1.0723, nM E = 13)

9.8386e− 02 by DP
with τ = 1.01

1.0855e-01
10−5 1.3078e-01 1.0727e-01

5× 10−8 8.8707e-02 8.8516e-02
10−8 8.3464e-02 8.3465e-02

5× 10−9 8.5713e-02 8.5749e-02

Table 5: L2 errors obtained by Algorithms I, II and III respectively for Example 4.2 with δ = 10−4.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−2 1.0878e-02 2.8784e− 03 by ME-rule

(τ = 1.0891, nM E = 13)

1.5313e− 03 by DP
with τ = 1.01

2.8210e-03
10−4 1.7124e-03 1.5430e-03

6× 10−5 1.5233e-03 1.4411e-03
4× 10−5 1.4673e-03 1.4276e-03
2× 10−5 1.5634e-03 1.5594e-03

Table 6: L2 errors obtained by Algorithms I, II and III respectively for Example 4.3 with δ = 10−4.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−3 1.1511e-01 5.2643e− 02 by ME-rule

(τ= 1.0072, nM E = 8)

5.2652e− 02 by DP
with τ = 1.01

5.2639e-02
10−6 4.9792e-02 4.9531e-02
10−7 4.2790e-02 4.2764e-02

5× 10−8 4.2458e-02 4.2449e-02
2× 10−8 4.4331e-02 4.4332e-02

the mixed regularization method. We can clearly see the mixed regularization method
performs better.

Tables 7-9 are the results of L2 errors for noise level δ = 10−2 for Examples 4.1-4.3
respectively. And we can see the minimum error for Tikhonov regularization method in
Tables 7-9 are 1.6184e− 01, 1.1357e− 02 and 7.8204e− 02 respectively while they are
1.5373e − 01, 1.1114e − 02 and 7.8199e − 02 respectively for the mixed regularization
method. Obviously, we get the same conclusion again like the case of noise level δ = 10−4.

From Tables 2-6 we can see the effectiveness of the new mixed regularization method
obviously. Firstly, we compare Algorithm II and Algorithm III. When α is large, the results
of Algorithm III (i.e., column 2) are better than the iterative solutions of Algorithm II
(i.e., column 4) obviously. In fact, these three tables show that the iterative solutions of
Algorithm II is just the limitation of the solution of Algorithm III while α becomes big. The
optimal α usually is not so big, thus a smaller α usually brings a better result than the
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Table 7: L2 errors obtained by Algorithms I, II and III respectively for Example 4.1 with δ = 10−2.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−2 3.7930e-01 1.7793e− 01 by ME-rule

(τ= 1.0012, nM E = 4)

2.1963e− 01 by DP
with τ= 1.01

1.7745e-01
10−3 2.2166e-01 1.7399e-01
10−4 1.7450e-01 1.5958e-01

5× 10−5 1.6184e-01 1.5373e-01
10−5 1.6428e-01 1.6587e-01

Table 8: L2 errors obtained by Algorithms I, II and III respectively for Example 4.2 with δ = 10−2.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10 2.9421e-01 2.1085e− 02 by ME-rule

(τ= 1.1432, nM E = 4)

8.2690e− 03 by DP
with τ= 1.01

2.1031e-02
1 7.5369e-02 2.0782e-02

10−1 2.2814e-02 1.8696e-02
10−2 1.1357e-02 1.1114e-02
10−3 1.4457e-02 1.4467e-02

Table 9: L2 errors obtained by Algorithms I, II and III respectively for Example 4.3 with δ = 10−2.

α ||xTik− x†|| ||xcg− x†|| ||xmix− x†||
10−3 1.1499e-01 1.1326e− 01 by ME-rule

(τ= 9.9832e− 01, nM E = 4)

1.1326e− 01 by DP
with τ= 1.01

1.1200e-01
10−4 1.0344e-01 1.0329e-01
10−5 8.1882e-02 8.1816e-02
10−6 7.8204e-02 7.8199e-02
10−7 1.6959e-01 1.6959e-01

limitation. Secondly, we compare Algorithm I and Algorithm III. Almost for all the same
α, the results in Algorithm III (i.e., column 4) are better than those of Algorithm I (i.e.,
column 1). Especially when α is bigger than the optimal one. This is in accordance with
Theorem 3.1. Only in the case when the regularization parameter α is close to the optimal
value the results of Algorithm I are comparable with those of Algorithm III. However, the
optimal α is depending on problem and is usually hard to choose in many applications.
Algorithm III allows us to choose a bigger α. Moreover, the error for the big α is on the
same order of magnitude as the optimal one, which is both confirmed by Theorem 3.1.
Thirdly, the mixed regularization method is not sensitive to the regularization parameter
like the continuous regularization method.

4.3. Choosing regularization parameter based on the ME-rule

In Section 4.1 and Section 4.2, we have chosen a group of regularization parameters
and compared the solutions. In this subsection, we choose regularization parameter based
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Table 10: L2 errors and regularization parameters α obtained based on the ME-rule for three examples.

Exs.
δ = 10−4 δ = 10−2

Tikhonov CG stage Mixed Tikhonov CG stage Mixed

Ex. 4.1
9.53e-02 1.09e-01 9.55e-02 1.77e-01 1.78e-01 1.73e-01

(2.00e-07) nM E = 13 (2.64e-07) (1.16e-04) nM E = 4 (8.01e-04)

Ex. 4.2
1.72e-03 2.88e-03 1.67e-03 1.13e-02 2.11e-02 1.12e-02

(1.02e-04) nM E = 13 (1.49e-04) (9.72e-03) nM E = 4 (1.02e-02)

Ex. 4.3
4.47e-02 5.26e-02 4.47e-02 1.12e-01 1.13e-01 1.13e-01

(2.18e-07) nM E = 8 (2.18e-07) (5.67e-04) nM E = 4 (∞)

Table 11: L2 errors and regularization parameters α obtained based on the ME-rule for three examples.

Exs.
δ = 10−4 δ = 10−2

Tikhonov CG stage Mixed Tikhonov CG stage Mixed

Ex. 4.1′ 3.00e-04 7.04e-05 7.04e-05 5.73e-03 3.41e-03 3.41e-03
(3.73e-04) nM E = 2 (∞) (9.26e-03) nM E = 1 (∞)

Ex. 4.2′ 4.23e-04 2.24e-04 8.51e-05 7.54e-03 1.56e-03 1.05e-03
(4.28e-04) nM E = 7 (8.64e-03) (7.69e-03) nM E = 4 (4.90e+00)

Ex. 4.3′ 2.34e-04 3.25e-04 7.45e-05 4.98e-03 5.51e-03 8.45e-04
(3.35e-04) nM E = 4 (1.64e-03) (6.83e-03) nM E = 2 (5.77e-02)

Table 12: L2 errors and regularization parameters α obtained based on the ME-rule for three examples.

Exs.
δ = 10−4 δ = 10−2

Tikhonov CG stage Mixed Tikhonov CG stage Mixed

Ex. 4.1′ 1.36e-04 7.042e-05 7.04e-05 4.18e-03 3.41e-03 3.41e-03
(1.43e-02) nM E = 2 (∞) (1.95e-01) nM E = 1 (∞)

Ex. 4.2′ 6.60e-05 2.24e-04 6.51e-05 1.28e-03 1.56e-03 1.07e-03
(9.06e-02) nM E = 7 (1.07e-01) (1.34e+00) nM E = 4 (9.04e+01)

Ex. 4.3′ 4.73e-05 3.25e-04 4.41e-05 3.23e-04 5.51e-03 3.23e-04
(2.15e-02) nM E = 4 (2.15e-02) ( 8.01e-01) nM E = 2 (8.40e-01)

on the ME-rule. In Table 10, the L2 errors of the Tikhonov method and our mixed Tikhonov
method for three examples (Ex. 4.1, Ex. 4.2 and Ex. 4.3) with two noise levels (δ = 10−4

and 10−2 ) are presented. There is no iteration in Tikhonov method. The number in
parentheses in Table 10 is the regularization parameter according to the ME-rule. The
errors of CG and the corresponding iteration number nM E according to the ME-rule are
also listed in the third column and the sixth column in Table 10. In the case of noise level
δ = 10−4, the errors of the mixed Tikhonov method are smaller than those of the Tikhonov
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method for Example 4.2 and Example 4.3, and for Example 4.1 it is only very little bigger.
In the case of noise level δ = 10−2, the errors of the mixed Tikhonov method are all smaller
than those of the Tikhonov method for the three examples.

Since the performance of methods and the ME-rule generally depends on the smooth-
ness of µ of the exact solutions, we complemented the solutions x† of three examples
with smoothened solutions (T ∗T x†) and correspondingly compute the right-hand side as
T (T ∗T )x†. This operation has guaranteed the smoothness of solutions µ > 1. Correspond-
ing to the original three examples, we name the resulting three examples as Ex. 4.1′, Ex.
4.2′ and Ex. 4.3′ respectively. The computational results of L2 errors are shown in Table
11 and Table 12. The difference between Table 11 and Table 12 is that there is no iteration
in Tikhonov method (m = 1) in Table 11 while the iterated Tikhonov method is adopted
(m= 10) in Table 12. Similarly, in Table 11 and Table 12 the number in parentheses is the
regularization parameters. And the errors of CG and the corresponding iteration number
nM E according to the ME-rule are also listed in the third column and the sixth column.
Comparisons show that the L2 errors of the mixed regularization method are much small-
er than those of the Tikhonov method both in Table 11 and Table 12. Thus the advantage
of the mixed regularization method is more obvious if the solution is more smoother. We
remark that the larger errors in the Tikhonov method than the mixed method are due to
the fact that the Tikhonov method is order optimal only for the smoothness index µ ≤ 1.
Moreover, we can see the iterated Tikhonov method (m = 10) in Table 12 performs better
than the non-iterated Tikhonov method (m = 1) in Table 11.

5. Conclusions

We have described a new mixed regularization method for ill-posed problems. It is a
combination of iterative regularization methods and continuous regularization methods.
The iterative regularization methods do not need continuous regularization parameters
while the continuous regularization methods do. The mixed regularization method can
be considered as an improvement of the continuous regularization method. In continu-
ous regularization methods, the choice of the regularization parameter is crucial because
the solution depends on the parameter sensitively. Our theoretical analysis shows that the
new mixed regularization method can reduce the sensitivity of regularization parameter
and improve the solution of iterative regularization methods. It can reach the optimal
convergence order under a much wider range of the parameter than the continuous reg-
ularization method. Moreover, our mixed regularization method is a general algorithm
framework. Any iterative regularization method and continuous regularization method
can be combined together. The numerical experiments illustrate that the mixed regulariza-
tion method is more effective than continuous regularization methods or iterative regular-
ization methods, which fits to our theoretical analysis. Some further theoretical analysis
will be our future research topic.

Acknowledgments We appreciate the anonymous reviewers very much for their very
valuable comments and helps. This research is supported by the National Natural Science



A Mixed Tegularization Method 231

Foundation of China under the grant number 11471328. It is also partially supported by
the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of
Sciences.

References

[1] P. CRAVEN AND G. WAHBA, Smoothing noisy data with spline functions–estimating the correct

degree of smoothing by the method of generalized cross-validation, Numer. Math., 31 (1979),
pp. 377–403.

[2] H. EGGER AND A. NEUBAUER, Preconditioning Landweber iteration in Hilbert scales, Numer.
Math., 101 (2005), pp. 643–662.

[3] H. W. ENGL, Discrepancy principles for Tikhonov regularization of ill-posed problems leading to

optimal convergence rates, J. Optimiz. Theory App., 52(2) (1987), pp. 209–215.
[4] H. W. ENGL, M. HANKE AND A. NEUBAUER, Regularization of Inverse Problems, Kluwer, Dor-

drecht, 1996.
[5] S. F. GILYAZOV, Regularizing conjugate-direction methods, Comp. Math. Math. Phys., 35(4)

(1995), pp. 385–394.
[6] G. H. GOLUB, M. HEATH AND G. WAHBA, Generalized cross-validation as a method for choosing

a good ridge parameter, Technometrics, 21(2) (1979), pp. 215–223.
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[24] P. MATHé, AND S. V. PEREVERZEV, Geometry of linear ill-posed problems in variable Hilbert scales,

Inverse Probl., 19(3) (2003), pp. 789–803.
[25] A. S. NEMIROVSKII, The regularization properties of the adjoint gradient method in ill-posed

problems, USSR Comput. Math. Math. Phys., 26(2) (1986), pp. 7–16.
[26] A. NEUBAUER, On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer.

Math., 85 (2000), pp. 309–328.
[27] R. PLATO, On the discrepancy principle for iterative and parametric methods to solve linear ill-

posed equations, Numer. Math., 75(1) (1996), pp. 99–120.
[28] R. PLATO, The method of conjugate residuals for solving the Galerkin equations associated with

symmetric positive semidefinite ill-posed problems, SIAM J. Numer. Anal., 35(4) (1998), p-
p. 1621–1645.

[29] R. PLATO, The conjugate gradient method for linear ill-posed problems with operator perturba-

tions, Numer. Algorithms, 20(1) (1999), pp. 1–22.
[30] R. RAMLAU, A modified Landweber method for inverse problems, Numer. Func. Anal. Opt., 20(1-

2) (1999), pp. 79–98.
[31] L. REICHEL, AND A. SHYSHKOV, Cascadic multilevel methods for ill-posed problems, J. Computat.

Appl. Math., 233(5) (2010), pp. 1314–1325.
[32] O. SCHERZER, Convergence criteria of iterative methods based on Landweber iteration for solving

nonlinear problems, J. Math. Anal. Appl., 194 (1995), pp. 911–933.
[33] E. SCHOCK, Parameter choice by discrepancy principles for the approximate solution of ill-posed

problems, Integr. Equat. Oper. Th., 7(6) (1984), pp. 895–898.
[34] U. TAUTENHAHN, On a general regularization scheme for nonlinear ill-posed problems, Inverse

Probl., 13 (1997), pp. 1427–1437.
[35] U. TAUTENHAHN, Optimality for ill-posed problems under general source conditions, Numer.

Funct. Anal. Optim., 19 (1998), pp. 377–398.
[36] U. TAUTENHAHN, AND U. HÄMARIK, The use of monotonicity for choosing the regularization pa-

rameter in ill-posed problems, Inverse Probl., 15 (1999), pp. 1487–1505.
[37] A. N. TIKHONOV, Solution of incorrectly formulated problems and regularization method, Dok-

lady Akademii Nauk SSSR, 151 (1963), pp. 501–504.
[38] A. N. TIKHONOV, Regularization of incorrectly posed problems, Dokl. Akad. Nauk SSSR, 153

(1963), pp. 49–52.
[39] A. N. TIKHONOV, AND V. Y. ARSENIN, Solutions of Ill-posed Problems, Wiley, New York, 1977.
[40] A. N. TIKHONOV, AND V. B. GLASKO, On the approximate solution of Fredholm integral equations

of the first kind, USSR Comput. Math. Math. Phys., 4 (1964), pp. 564–571.
[41] G. M. VAINIKKO, The discrepancy principle for a class of regularization methods, USSR Comput.

Math. Math. Phys., 22 (1982), pp. 1–19.
[42] C. R. VOGEL, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.
[43] G. WAHBA, Practical approximate solutions of linear operator equations when the data are noisy,

SIAM J. Numer. Anal., 14(4) (1977), pp. 651–667.
[44] J. XIE, AND J. ZOU, An improved model function method for choosing regularization parameters

in linear inverse problems, Inverse Probl., 18 (2002), pp. 631–643.


