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Abstract. In this paper we develop and analyze the stochastic collocation method for
solving the time-dependent Maxwell’s equations with random coefficients and subject
to random initial conditions. We provide a rigorous regularity analysis of the solution
with respect to the random variables. To our best knowledge, this is the first theoretical
results derived for the standard Maxwell’s equations with random inputs. The rate of
convergence is proved depending on the regularity of the solution. Numerical results
are presented to confirm the theoretical analysis.
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1 Introduction

Uncertainty is ubiquitous in many complex physical systems, such as wave, sound and
heat propagation through random media, and flow and propagation driven by stochastic
forces and stochastic initial conditions. Stochastic partial differential equations (SPDEs)
have played an important role in the study of uncertainty quantification (UQ) in many
branches of science and engineering. In electromagnetics, the fluctuations in the pro-
ducing process (such as during the lithography) of electromagnetic materials allow us to
treat the permittivity and permeability as uncertain parameters (e.g., [4, 7]). Stochastic
Maxwell equations with additive noise were investigated in [13, 14]. Due to the high di-
mensionality of stochastic solutions, it is very challenging to efficiently solve PDEs with
uncertain parameters, and has attracted a great attention in recent years (e.g., [8, 18, 23],
review articles [12, 20] and books [10, 16, 26, 28]).
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Due to the low convergence rate of the traditional Monte Carlo method, the stochas-
tic Galerkin methods [2, 10, 11] have been developed and show faster convergence rates
with increasing order of expansions, provided that the solutions of differential equations
are sufficiently smooth in the random space. However, the system of equations resulting
from the stochastic Galerkin methods is often coupled and quite expensive to solve es-
pecially for problems requiring high-dimensional random spaces. In [26], Xiu and Hes-
thaven proposed a class of stochastic collocation methods by taking advantage of the
strength of Monte Carlo methods and the stochastic Galerkin methods. Their stochastic
collocation method achieves fast convergence when the solutions are sufficiently smooth
in the random space. More importantly, the stochastic collocation method is simple in
implementation and the system of resulting equations is decoupled and hence is effi-
cient to solve. The stochastic collocation methods have been applied to solve various
problems. For example, Babuska et al. [1] proposed and analyzed a stochastic collocation
method to solve elliptic problems with random coefficients and forcing terms. Zhang and
Gunzburger [27] presented a detailed error analysis of a stochastic collocation method
for linear parabolic equations with random coefficients, forcing terms, and initial con-
ditions. Motamed et al. [17] proposed and analyzed a stochastic collocation method
to solve the elastic wave equation with random coefficients. Tang and Zhou [22] pro-
posed some rigorous regularity analysis for the random transport equation with a ran-
dom wave speed and demonstrated the convergence of the stochastic collocation meth-
ods. As for Maxwell’s equations, in 2006, Chauviere et al. [7] solved the time-dependent
Maxwell’s equations by using both the stochastic Galerkin method and stochastic collo-
cation method. Detailed comparisons of both methods are made for uncertainties caused
by physical materials, by the source wave and by the physical domain. In 2015, Ben-
ner and Schneider [4] described several techniques for uncertainty quantification for the
time-harmonic Maxwell’s equations by using stochastic collocation method. In our recent
work [15], we analyzed a stochastic collocation method for the metamaterial Maxwell’s
equations with random input data.

Though stochastic collocation method has been applied to solve Maxwell’s equations
with uncertain parameters [4, 7], it would be interesting to develop a theory that offers
insight to how uncertainty propagates through the dynamical systems and what regular-
ity we can expect as Chauviere et al. pointed out [7, pp. 774]. One of the main purposes
of this paper is to fill this gap.

The rest of the paper is organized as follows. In Section 2, we first present detailed
regularity analysis of the time-dependent Maxwell’s equations with random permittivity
and permeability, then we establish the convergence rate for the stochastic collocation
method applied to the Maxwell’s equations. Numerical results are presented in Section 3
to support our theoretical analysis. Section 4 concludes the paper.

2 Maxwell’s equations with random inputs
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Let x∈D⊂R3 be the spatial coordinate, t be the time variable from set [0,T], and (Ω,A,P)
be a complete probability space, whose event space is Ω (ω ∈Ω is the event) and is
equipped with σ-algebra A, and P is a probability measure. Furthermore, we let ρ(y) :
Γ→ R+ be the probability density function of the random variable y(ω), ω∈Ω, whose
image Γ := y(Ω)∈R is an interval in R. For simplicity, in the rest of the paper, we omit
the symbol ω and assume that Γ=[−1,1].

Consider the stochastic Maxwell’s equations: Find the random electric field E(x,t,y)
and magnetic field H(x,t,y) : D×(0,T)×Ω→R3 such that P-almost everywhere in Ω, i.e.,
almost surely (a.s.) satisfy the following equations:

ε(y(ω))∂tE=∇×H, (2.1a)
µ(y(ω))∂tH=−∇×E, (2.1b)

subject to the initial conditions

E(x,t=0,y(ω))=E0(x,y(ω)), H(x,t=0,y(ω))=H0(x,y(ω)), (2.2)

and the perfect conducting (PEC) boundary condition:

n×E=0 on ∂D, (2.3)

where E0 and H0 are some given functions. To accommodate the uncertainty or random-
ness of the material, we assume that the permittivity ε and permeability µ are random.
Moreover, n denotes the unit outward normal vector on the boundary ∂D, where D⊂R3

is a bounded polyhedral domain with a Lipschitz boundary. Here and below, we denote
∂s the partial derivative with respect to variable s, e.g., s= t and y.

To solve problem (2.1a)-(2.3), we use the Lagrange interpolation approach by follow-
ing [22,26]. We first choose a set of Gauss-Lobatto collocation points {yk}N

k=0∈Γ, where N
denotes the degree of the Lagrange interpolation polynomial. We then solve the problem
(2.1a)-(2.3) at each collocation point yj, j=0,··· ,N, by a Crank-Nicolson scheme described
later. To prove the convergence rate of this stochastic collocation method, we need to es-
tablish the regularity for the solution of our model problem (2.1a)-(2.3). Detailed proofs
are given below.

2.1 Regularity analysis

For the solution of problem (2.1a)-(2.3), we have the following energy conservation prop-
erty.

Lemma 2.1. For the problem (2.1a)-(2.3), we have(∫
Γ

∫
D
(ρ(y)ε(y)|E|2+ρ(y)µ(y)|H|2)dxdy

)
(t)

=

(∫
Γ

∫
D
(ρ(y)ε(y)|E|2+ρ(y)µ(y)|H|2)dxdy

)
(0), ∀t∈ [0,T]. (2.4)
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Proof. Multiplying (2.1a) by 2ρ(y)E and integrating over D, we have

d
dt
((ρ(y)ε(y)E,E)D)=2(ρ(y)ε(y)∂tE,E)D =2(ρ(y)∇×H,E)D, (2.5)

here and below, we denote (·,·)D for the inner product over domain D.
Multiplying (2.1b) by 2ρ(y)H, integrating over D and using the PEC boundary con-

dition (2.3), we obtain

d
dt
((ρ(y)µ(y)H,H)D)=2(ρ(y)µ(y)∂tH,H)D

=−2(ρ(y)∇×E,H)D =2(ρ(y)E,∇×H)D. (2.6)

Summing up (2.5) and (2.6), and integrating over the space Γ, we have

d
dt

(∫
Γ

∫
D
(ρ(y)ε(y)|E|2+ρ(y)µ(y)|H|2)dxdy

)
=0,

which concludes the proof.

Similarly, we have the following energy conservation property for the curl of the so-
lution of problem (2.1a)-(2.3).

Lemma 2.2. For the problem (2.1a)-(2.3), we have(∫
Γ

∫
D
(ρ(y)ε(y)|∇×E|2+ρ(y)µ(y)|∇×H|2)dxdy

)
(t)

=

(∫
Γ

∫
D
(ρ(y)ε(y)|∇×E|2+ρ(y)µ(y)|∇×H|2)dxdy

)
(0), ∀t∈ [0,T]. (2.7)

Proof. Taking ∇× of both (2.1a) and (2.1b), we have

ε(y(ω))∂t(∇×E)=∇×∇×H, (2.8a)
µ(y(ω))∂t(∇×H)=−∇×∇×E. (2.8b)

Multiplying (2.8a) by 2ρ(y)∇×E and integrating over D, we have

d
dt
((ρ(y)ε(y)∇×E,∇×E)D)

=2(ρ(y)ε(y)∂t∇×E,∇×E)D

=2(ρ(y)∇×∇×H,∇×E)D. (2.9)

Multiplying (2.8b) by 2ρ(y)∇×H, and integrating over D, we obtain

d
dt
((ρ(y)µ(y)∇×H,∇×H)D)

=−2(ρ(y)∇×∇×E,∇×H)D

=−2〈ρ(y)n×∇×E,∇×H〉∂D−2(ρ(y)∇×E,∇×∇×H)D, (2.10)
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where 〈·,·〉∂D denotes the inner product on the surface ∂D.
Using (2.1a) and the PEC boundary condition (2.3), we see that the boundary integral

is actually zero:

−2〈ρ(y)n×∇×E,∇×H〉∂D

=−2〈ρ(y)n×∇×E,ε(y)∂tE〉∂D

=−2〈ρ(y)ε(y)∇×E,∂t(n×E)〉∂D =0.

Summing up (2.9) and (2.10), and integrating over the space Γ, we have

d
dt

(∫
Γ

∫
D
(ρ(y)ε(y)|∇×E|2+ρ(y)µ(y)|∇×H|2)dxdy

)
=0,

which concludes the proof.

Under some regularity assumptions on the random functions ε and µ, we can prove
that the first derivative of the solution of problem (2.1a)-(2.3) with respective to the ran-
dom variable is bounded in the L2 norm.

Theorem 2.1. Assume that there exist constants Cε and Cµ such that

(lnε(y))′
/√

ε(y)µ(y)≤Cε, (lnµ(y))′
/√

ε(y)µ(y)≤Cµ, almost everywhere in Γ, (2.11)

then for any t∈ [0,T], we have(∫
Γ

∫
D
(ρ(y)ε(y)|∂yE|2+ρ(y)µ(y)|∂yH|2)dxdy

)
(t)

≤etmax(Cε,Cµ)
[(∫

Γ

∫
D
(ρ(y)ε(y)|∂yE|2+ρ(y)µ(y)|∂yH|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×E|2+ρ(y)µ(y)|∇×H|2)dxdy

)
(0)
]
. (2.12)

Proof. Differentiating both sides of (2.1a) with respect to y gives

ε(y)∂t(∂yE)=−ε′(y)∂tE+∇×∂yH, (2.13)

which, along with (2.1a), leads to

d
dt
(ρ(y)ε(y)∂yE,∂yE)D

=−2
(

ρ(y)
ε′(y)
ε(y)

∇×H,∂yE
)

D
+2(ρ(y)∇×∂yH,∂yE)D

=−2
( (lnε(y))′√

ε(y)µ(y)

√
ρ(y)µ(y)∇×H,

√
ρ(y)ε(y)∂yE

)
D
+2(ρ(y)∇×∂yH,∂yE)D

≤Cε

(∫
D

ρ(y)µ(y)|∇×H|2dx+
∫

D
ρ(y)ε(y)|∂yE|2dx

)
+2(ρ(y)∇×∂yH,∂yE)D. (2.14)
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Similarly, differentiating both sides of (2.1b) with respect to y gives

µ(y)∂t(∂yH)=−µ′(y)∂tH−∇×∂yE, (2.15)

from which and (2.1b), we obtain

d
dt
(ρ(y)µ(y)∂yH,∂yH)D

=2
(

ρ(y)
µ′(y)
µ(y)

∇×E,∂yH
)

D
−2(ρ(y)∇×∂yE,∂yH)D

=2
( (lnµ(y))′√

ε(y)µ(y)

√
ρ(y)ε(y)∇×E,

√
ρ(y)µ(y)∂yH

)
D
−2(ρ(y)∇×∂yE,∂yH)D

≤Cµ

(∫
D

ρ(y)ε(y)|∇×E|2dx+
∫

D
ρ(y)µ(y)|∂yH|2dx

)
−2(ρ(y)∇×∂yE,∂yH)D. (2.16)

Adding (2.14) and (2.16) together, and using integration by parts and the PEC boundary
condition (2.3), we have

d
dt

(∫
D
(ρ(y)ε(y)|∂yE|2+ρ(y)µ(y)|∂yH|2)dx

)
≤max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∇×E|2+ρ(y)µ(y)|∇×H|2)dx

)
+max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∂yE|2+ρ(y)µ(y)|∂yH|2)dx

)
. (2.17)

Integrating (2.17) over the space Γ, then using Lemma 2.2 and the Gronwall inequality,
we conclude the proof.

Theorem 2.1 shows that if the following initial conditions are bounded:(∫
Γ

∫
D

(
ρ(y)ε(y)(|∂yE|2+|∇×E|2)+ρ(y)µ(y)(|∂yH|2)+|∇×H|2)

)
dxdy

)
(0)≤C,

then the derivative of the solution with respect to the random variable y is bounded:(∫
Γ

∫
D
(ρ(y)ε(y)|∂yE|2+ρ(y)µ(y)|∂yH|2)dxdy

)
(t)≤C.

To obtain higher order error estimates, we need to prove higher regularity estimates.
First, we can prove the following energy conservation property for curl-curl of the solu-
tion of problem (2.1a)-(2.3).

Lemma 2.3. For the problem (2.1a)-(2.3), we have: for any t∈ [0,T],(∫
Γ

∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dxdy

)
(t)

=

(∫
Γ

∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dxdy

)
(0). (2.18)
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Proof. Taking ∇×∇× of both (2.1a) and (2.1b), we have

ε(y(ω))∂t(∇×∇×E)=∇×(∇×∇×H), (2.19a)
µ(y(ω))∂t(∇×∇×H)=−∇×(∇×∇×E). (2.19b)

Multiplying (2.19a) by 2ρ(y)∇×∇×E and integrating over D, we have

d
dt
((ρ(y)ε(y)∇×∇×E,∇×∇×E)D)=2(ρ(y)∇×(∇×∇×H),∇×∇×E)D. (2.20)

Multiplying (2.19b) by 2ρ(y)∇×∇×H, and integrating over D, we obtain

d
dt
((ρ(y)µ(y)∇×∇×H,∇×∇×H)D)

=−2(ρ(y)∇×(∇×∇×E),∇×∇×H)D

=−2〈ρ(y)n×(∇×∇×E),∇×∇×H〉∂D

−2(ρ(y)∇×∇×E,∇×(∇×∇×H))D. (2.21)

Using both (2.1a) and (2.1b), we have

∇×∇×E=−µ(y)∂t(∇×H)=−µ(y)ε(y)∂ttE,

which leads to

n×(∇×∇×E)=−µ(y)ε(y)∂tt(n×E)=0 on ∂Ω, (2.22)

where the PEC boundary condition (2.3) was used in the last step.
Summing up (2.20) and (2.21), using (2.22), and then integrating over the space Γ, we

have
d
dt

(∫
Γ

∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dxdy

)
=0,

which concludes the proof.

The next theorem proves that the curl of the first derivative of the solution to problem
(2.1a)-(2.3) is bounded in L2 norm.

Theorem 2.2. Under the same assumption as Theorem 2.1, for any t∈ [0,T], we have(∫
Γ

∫
D
(ρ(y)ε(y)|∇×∂yE|2+ρ(y)µ(y)|∇×∂yH|2)dxdy

)
(t)

≤etmax(Cε,Cµ)
[(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∂yE|2+ρ(y)µ(y)|∇×∂yH|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dxdy

)
(0)
]
. (2.23)
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Proof. Taking ∇× of both sides of (2.13), we have

ε(y)∂t(∇×∂yE)=−ε′(y)∂t(∇×E)+∇×∇×∂yH. (2.24)

Multiplying (2.24) by 2ρ(y)∇×∂yE, integrating the resultant over D, and using (2.1a), we
obtain

d
dt
(ρ(y)ε(y)∇×∂yE,∇×∂yE)D

=−2
(

ρ(y)
ε′(y)
ε(y)

∇×∇×H,∇×∂yE
)

D
+2(ρ(y)∇×∇×∂yH,∇×∂yE)D

=−2
( (lnε(y))′√

ε(y)µ(y)

√
ρ(y)µ(y)∇×∇×H,

√
ρ(y)ε(y)∇×∂yE

)
D

+2(ρ(y)∇×∇×∂yH,∇×∂yE)D

≤Cε

(∫
D

ρ(y)µ(y)|∇×∇×H|2dx+
∫

D
ρ(y)ε(y)|∇×∂yE|2dx

)
+2(ρ(y)∇×∇×∂yH,∇×∂yE)D. (2.25)

Similarly, taking ∇× of both sides of (2.15) gives

µ(y)∂t(∇×∂yH)=−µ′(y)∂t(∇×H)−∇×∇×∂yE, (2.26)

from which and (2.1b), we obtain
d
dt
(ρ(y)µ(y)∇×∂yH,∇×∂yH)D

=2
(

ρ(y)
µ′(y)
µ(y)

∇×∇×E,∇×∂yH
)

D
−2(ρ(y)∇×∇×∂yE,∇×∂yH)D

=2
( (lnµ(y))′√

ε(y)µ(y)

√
ρ(y)ε(y)∇×∇×E,

√
ρ(y)µ(y)∇×∂yH

)
D

−2
(

ρ(y)∇×∇×∂yE,∇×∂yH
)

D

≤Cµ

(∫
D

ρ(y)ε(y)|∇×∇×E|2dx+
∫

D
ρ(y)µ(y)|∇×∂yH|2dx

)
−2(ρ(y)∇×∇×∂yE,∇×∂yH)D. (2.27)

From (2.13) and the PEC boundary condition (2.3), we have

n×(∇×∂yH)=ε′(y)∂t(n×E)+ε(y)∂ty(n×E)=0 on ∂Ω. (2.28)

Summing up (2.25) and (2.27), and using integration by parts and (2.28), we have

d
dt

(∫
D
(ρ(y)ε(y)|∇×∂yE|2+ρ(y)µ(y)|∇×∂yH|2)dx

)
≤max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dx

)
+max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∇×∂yE|2+ρ(y)µ(y)|∇×∂yH|2)dx

)
. (2.29)
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Integrating (2.29) over the space Γ, then using Lemma 2.3 and the Gronwall inequality,
we conclude the proof.

The following theorem proves that the second derivative of the solution to problem
(2.1a)-(2.3) is bounded in L2 norm.

Theorem 2.3. Assume that there exist constants C∗ε and C∗µ such that

2(ε′(y))2−ε(y)ε′′(y)
ε2(y)

√
ε(y)µ(y)

≤C∗ε ,
2(µ′(y))2−µ(y)µ′′(y)

µ2(y)
√

ε(y)µ(y)
≤C∗µ, almost everywhere in Γ. (2.30)

Then under the same assumption as Theorem 2.1 and for any t∈ [0,T], we have(∫
Γ

∫
D
(ρ(y)ε(y)|∂y2 E|2+ρ(y)µ(y)|∂y2 H|2)dxdy

)
(t)

≤etmax(2Cε+C∗ε ,2Cµ+C∗µ)
[(∫

Γ

∫
D
(ρ(y)ε(y)|∂y2 E|2+ρ(y)µ(y)|∂y2 H|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×E|2+ρ(y)µ(y)|∇×H|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∂yE|2+ρ(y)µ(y)|∇×∂yH|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dxdy

)
(0)
]
. (2.31)

Proof. Differentiating both sides of (2.1a) with respect to y twice gives

ε(y)∂t(∂y2 E)=−ε′′(y)∂tE−2ε′(y)∂tyE+∇×∂y2 H, (2.32)

multiplying which by 2ρ(y)∂y2 E, then integrating over D and using (2.1a) to replace ∂tE,
we obtain

d
dt

(∫
D

ρ(y)ε(y)|∂y2 E|2dx
)

=−2
(

ρ(y)
ε′′(y)
ε(y)

∇×H,∂y2 E
)

D
+4
(

ρ(y)ε′(y)
( ε′(y)

ε2(y)
∇×H− 1

ε(y)
∇×∂yH

)
,∂y2 E

)
D

+2(ρ(y)∇×∂y2 H,∂y2 E)D

=2
(2(ε′(y))2−ε(y)ε′′(y)

ε2(y)
√

ε(y)µ(y)

√
ρ(y)µ(y)∇×H,

√
ρ(y)ε(y)∂y2 E

)
D

−4
( (lnε(y))′√

ε(y)µ(y)

√
ρ(y)µ(y)∇×∂yH,

√
ρ(y)ε(y)∂y2 E

)
D
+2(ρ(y)∇×∂y2 H,∂y2 E)D

≤C∗ε
(∫

D
ρ(y)µ(y)|∇×H|2dx+

∫
D

ρ(y)ε(y)|∂y2 E|2dx
)
+2(ρ(y)∇×∂y2 H,∂y2 E)D

+2Cε

(∫
D

ρ(y)µ(y)|∇×∂yH|2dx+
∫

D
ρ(y)ε(y)|∂y2 E|2dx

)
. (2.33)
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Similarly, differentiating both sides of (2.1b) with respect to y twice yields

µ(y)∂t(∂y2 H)=−µ′′(y)∂tH−2µ′(y)∂tyH−∇×∂y2 E, (2.34)

multiplying which by 2ρ(y)∂y2 H, then integrating over D and using (2.1b) to replace ∂tH,
we obtain

d
dt

(∫
D

ρ(y)µ(y)|∂y2 H|2dx
)

=2
(

ρ(y)
µ′′(y)
µ(y)

∇×E,∂y2 H
)

D

−4
(

ρ(y)µ′(y)
( µ′(y)

µ2(y)
∇×E− 1

µ(y)
∇×∂yE

)
,∂y2 H

)
D
−2(ρ(y)∇×∂y2 E,∂y2 H)D

=−2
(2(µ′(y))2−µ(y)µ′′(y)

µ2(y)
√

ε(y)µ(y)

√
ρ(y)ε(y)∇×E,

√
ρ(y)µ(y)∂y2 H

)
D

+4
( (lnµ(y))′√

ε(y)µ(y)

√
ρ(y)ε(y)∇×∂yE,

√
ρ(y)µ(y)∂y2 H

)
D
−2(ρ(y)∇×∂y2 E,∂y2 H)D

≤C∗µ
(∫

D
ρ(y)ε(y)|∇×E|2dx+

∫
D

ρ(y)µ(y)|∂y2 H|2dx
)
−2(ρ(y)∇×∂y2 E,∂y2 H)D

+2Cµ

(∫
D

ρ(y)ε(y)|∇×∂yE|2dx+
∫

D
ρ(y)µ(y)|∂y2 H|2dx

)
. (2.35)

Adding (2.33) and (2.35) together, and using integration by parts and the PEC boundary
condition (2.3), we have

d
dt

(∫
D
(ρ(y)ε(y)|∂y2 E|2+ρ(y)µ(y)|∂y2 H|2)dx

)
≤max(C∗ε +2Cε,C∗µ+2Cµ)

(∫
D
(ρ(y)ε(y)|∂y2 E|2+ρ(y)µ(y)|∂y2 H|2)dx

)
+max(C∗ε ,C∗µ)

(∫
D
(ρ(y)ε(y)|∇×E|2+ρ(y)µ(y)|∇×H|2)dx

)
+2max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∇×∂yE|2+ρ(y)µ(y)|∇×∂yH|2)dx

)
. (2.36)

Integrating (2.36) over the space Γ, then using Lemma 2.2, Theorem 2.2 and the Gronwall
inequality, we conclude the proof.

Below we show that the curl-curl-curl of the solution to problem (2.1a)-(2.3) is energy
conserved.

Lemma 2.4. For the problem (2.1a)-(2.3), we have: for any t∈ [0,T],(∫
Γ

∫
D
(ρ(y)ε(y)|∇×∇×∇×E|2+ρ(y)µ(y)|∇×∇×∇×H|2)dxdy

)
(t)

=

(∫
Γ

∫
D
(ρ(y)ε(y)|∇×∇×∇×E|2+ρ(y)µ(y)|∇×∇×∇×H|2)dxdy

)
(0). (2.37)
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Proof. Taking∇×∇×∇× of (2.1a), then multiplying the resultant by 2ρ(y)∇×∇×∇×E
and integrating over D, we have

d
dt

(ρ(y)ε(y)∇×∇×∇×E,∇×∇×∇×E)D

=2(ρ(y)∇×∇×∇×(∇×H),∇×∇×∇×E)D. (2.38)

Similarly, taking ∇×∇×∇× of (2.1b), then multiplying the resultant by 2ρ(y)∇×∇×
∇×H and integrating over D, we have

d
dt

(ρ(y)µ(y)∇×∇×∇×H,∇×∇×∇×H)D

=−2(ρ(y)∇×∇×∇×(∇×E),∇×∇×∇×H)D. (2.39)

Using (2.1a) and (2.1b), we have

n×∇×∇×(∇×H)=n×ε(y)∂t(∇×∇×E)
=n×ε(y)∂t(∇×(−µ(y)∂tH))=−n×ε(y)µ(y)∂tt(ε(y)∂tE)

=−ε2(y)µ(y)∂t3(n×E)=0 on ∂Ω, (2.40)

where we used the PEC boundary condition (2.3) in the last step.
Summing up (2.38) and (2.39), using integration by parts and (2.40), then integrating

over the space Γ, we complete the proof.

Now we can show that the curl-curl of the first random derivative of the solution to
problem (2.1a)-(2.3) is bounded in the L2 norm.

Theorem 2.4. Under the same assumption as Theorem 2.1, we have: for any t∈ [0,T],(∫
Γ

∫
D
(ρ(y)ε(y)|∇×∇×∂yE|2+ρ(y)µ(y)|∇×∇×∂yH|2)dxdy

)
(t)

≤etmax(Cε,Cµ)
[(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∇×∂yE|2+ρ(y)µ(y)|∇×∇×∂yH|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∇×∇×E|2+ρ(y)µ(y)|∇×∇×∇×H|2)dxdy

)
(0)
]
. (2.41)

Proof. Taking ∇×∇× of both sides of (2.1a) gives

ε(y)∂t(∇×∇×∂yE)=−ε′(y)∂t(∇×∇×E)+∇×∇×(∇×∂yH). (2.42)

Using (2.42) and (2.1a), and following the proof of (2.14), we obtain

d
dt
(ρ(y)ε(y)∇×∇×∂yE,∇×∇×∂yE)D

=−2
(

ρ(y)
ε′(y)
ε(y)

∇×∇×∇×H,∇×∇×∂yE
)

D

+2(ρ(y)∇×∇×(∇×∂yH),∇×∇×∂yE)D
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≤Cε

(∫
D

ρ(y)µ(y)|∇×∇×∇×H|2dx+
∫

D
ρ(y)ε(y)|∇×∇×∂yE|2dx

)
+2(ρ(y)∇×∇×(∇×∂yH),∇×∇×∂yE)D. (2.43)

Similarly, taking ∇×∇× of both sides of (2.1b), we have

µ(y)∂t(∇×∇×∂yH)=−µ′(y)∂t(∇×∇×H)−∇×∇×(∇×∂yE). (2.44)

Using (2.44) and (2.1b), and following the proof of (2.16), we can obtain

d
dt
(ρ(y)µ(y)∇×∇×∂yH,∇×∇×∂yH)D

=2
(

ρ(y)
µ′(y)
µ(y)

∇×∇×∇×E,∇×∇×∂yH
)

D

−2(ρ(y)∇×∇×(∇×∂yE),∇×∇×∂yH)D

≤Cµ

(∫
D

ρ(y)ε(y)|∇×∇×∇×E|2dx+
∫

D
ρ(y)µ(y)|∇×∇×∂yH|2dx

)
−2(ρ(y)∇×∇×(∇×∂yE),∇×∇×∂yH)D. (2.45)

Note that

−n×∇×(∇×∂yE)=n×
[
µ′(y)∂t(∇×H)+µ(y)∂ty(∇×H)

]
=n×

[
µ′(y)ε(y)∂ttE+µ(y)(ε′(y)∂ttE+ε(y)∂ttyE)

]
=(µ(y)ε(y))′∂tt(n×E)+µ(y)ε(y)∂tty(n×E)=0 on ∂Ω, (2.46)

where in the first equality we used the∇× of (2.15), in the second equality we used (2.1a)
and ∂t of (2.13), and in the last step we used the PEC boundary condition (2.3).

Adding (2.44) and (2.45) together, and using integration by parts and (2.46), we have

d
dt

(∫
D
(ρ(y)ε(y)|∇×∇×∂yE|2+ρ(y)µ(y)|∇×∇×∂yH|2)dx

)
≤max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∇×∇×∇×E|2+ρ(y)µ(y)|∇×∇×∇×H|2)dx

)
+max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∇×∇×∂yE|2+ρ(y)µ(y)|∇×∇×∂yH|2)dx

)
. (2.47)

Integrating (2.47) over the space Γ, then using Lemma 2.4 and the Gronwall inequality,
we conclude the proof.

With the above results, we can show that the curl of the second random derivative of
the solution to problem (2.1a)-(2.3) is bounded in the L2 norm.
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Theorem 2.5. Under the same assumptions as Theorems 2.1 and 2.3, the following estimate holds
for any t∈ [0,T]:(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∂y2 E|2+ρ(y)µ(y)|∇×∂y2 H|2)dxdy

)
(t)

≤etmax(2Cε+C∗ε ,2Cµ+C∗µ)
[(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∂y2 E|2+ρ(y)µ(y)|∇×∂y2 H|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∇×∂yE|2+ρ(y)µ(y)|∇×∇×∂yH|2)dxdy

)
(0)

+
(∫

Γ

∫
D
(ρ(y)ε(y)|∇×∇×∇×E|2+ρ(y)µ(y)|∇×∇×∇×H|2)dxdy

)
(0)
]
. (2.48)

Proof. Taking ∇× of both sides of (2.32), we have

ε(y)∂t(∇×∂y2 E)=−ε′′(y)∂t(∇×E)−2ε′(y)∂t(∇×∂yE)+∇×∇×∂y2 H. (2.49)

Using (2.49), and following the similar proof of (2.33), we can obtain

d
dt

(∫
D

ρ(y)ε(y)|∇×∂y2 E|2dx
)

=2
(2(ε′(y))2−ε(y)ε′′(y)

ε2(y)
√

ε(y)µ(y)

√
ρ(y)µ(y)∇×∇×H,

√
ρ(y)ε(y)∇×∂y2 E

)
D

−4
( (lnε(y))′√

ε(y)µ(y)

√
ρ(y)µ(y)∇×∇×∂yH,

√
ρ(y)ε(y)∇×∂y2 E

)
D

+2(ρ(y)∇×∇×∂y2 H,∇×∂y2 E)D

≤C∗ε
(∫

D
ρ(y)µ(y)|∇×∇×H|2dx+

∫
D

ρ(y)ε(y)|∇×∂y2 E|2dx
)

+2Cε

(∫
D

ρ(y)µ(y)|∇×∇×∂yH|2dx+
∫

D
ρ(y)ε(y)|∇×∂y2 E|2dx

)
+2(ρ(y)∇×∇×∂y2 H,∇×∂y2 E)D. (2.50)

Similarly, taking ∇× of both sides of (2.34) yields

µ(y)∂t(∇×∂y2 H)=−µ′′(y)∂t(∇×H)−2µ′(y)∂t(∇×∂yH)−∇×∇×∂y2 E. (2.51)

Using (2.51), and following the similar proof of (2.35), we have

d
dt

(∫
D

ρ(y)µ(y)|∇×∂y2 H|2dx
)

=−2
(2(µ′(y))2−µ(y)µ′′(y)

µ2(y)
√

ε(y)µ(y)

√
ρ(y)ε(y)∇×∇×E,

√
ρ(y)µ(y)∇×∂y2 H

)
D

+2
( (lnµ(y))′√

ε(y)µ(y)

√
ρ(y)ε(y)∇×∇×∂yE,

√
ρ(y)µ(y)∇×∂y2 H

)
D

−2(ρ(y)∇×∇×∂y2 E,∇×∂y2 H)D
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≤C∗µ
(∫

D
ρ(y)ε(y)|∇×∇×E|2dx+

∫
D

ρ(y)µ(y)|∇×∂y2 H|2dx
)

+2Cµ

(∫
D

ρ(y)ε(y)|∇×∇×∂yE|2dx+
∫

D
ρ(y)µ(y)|∇×∂y2 H|2dx

)
−2(ρ(y)∇×∇×∂y2 E,∇×∂y2 H)D. (2.52)

Using (2.32) and the PEC boundary condition (2.3), we see that

n×(∇×∂y2 H)

=ε′′(y)∂t(n×E)+2ε′(y)∂ty(n×E)+ε(y)∂ty2(n×E)=0 on ∂Ω. (2.53)

Adding (2.50) and (2.52) together, and using integration by parts and (2.53), we have

d
dt

(∫
D
(ρ(y)ε(y)|∇×∂y2 E|2+ρ(y)µ(y)|∇×∂y2 H|2)dx

)
≤max(C∗ε +2Cε,C∗µ+2Cµ)

(∫
D
(ρ(y)ε(y)|∇×∂y2 E|2+ρ(y)µ(y)|∇×∂y2 H|2)dx

)
+max(C∗ε ,C∗µ)

(∫
D
(ρ(y)ε(y)|∇×∇×E|2+ρ(y)µ(y)|∇×∇×H|2)dx

)
+2max(Cε,Cµ)

(∫
D
(ρ(y)ε(y)|∇×∇×∂yE|2+ρ(y)µ(y)|∇×∇×∂yH|2)dx

)
. (2.54)

Integrating (2.54) over the space Γ, then using Lemma 2.4, Theorem 2.4 and the Gronwall
inequality, we conclude the proof.

Remark 2.1. We would like to mention that similar regularity analysis can be extended
to random vectors (cf. our recent work for more complicated metamaterial Maxwell’s
equations [15]). If the random parameters are smooth enough, then the boundness of
higher derivatives can be proved similarly.

2.2 Convergence analysis

To prove the convergence estimate for the collocation method, let us first recall the fol-
lowing interpolation error estimates.

Lemma 2.5 (see [6]). Let INu denote the polynomial of degree N that interpolates u at the (N+1)
Gauss, or Gauss-Radau, or Gauss-Lobatto points {yj}N

j=0, i.e., INu(y)=∑N
j=0 u(yj)Lj(y). Then

we have the interpolation error in the L2-norm:

||u− INu||L2(−1,1)≤CN−m|u|Hm(−1,1), ∀u∈Hm(−1,1) with m≥1, (2.55)

and the interpolation error in the Hl-norm:

||u− INu||Hl(−1,1)≤CN2l− 1
2−m|u|Hm(−1,1), ∀u∈Hm(−1,1) with m≥ l≥1. (2.56)

For the Gauss-Lobatto interpolation, we have the following optimal error estimate:

||(u− INu)′||L2(−1,1)≤CN1−m|u|Hm(−1,1), ∀u∈Hm(−1,1) with m≥1. (2.57)
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To present the error estimate, recall the mean (or expectation) of a function u is defined
by

E[u]=
∫

Γ

∫
D

ρ(y)u(x,y)dxdy, (2.58)

and its mean square is defined by

M[u]=
(∫

Γ

∫
D

ρ(y)|u(x,y)|2dxdy
)1/2

. (2.59)

Theorem 2.6. Let (E,H) be the solution of (2.1a)-(2.3), and

EN := Iy
NE(x,t;y)=

N

∑
k=0

E(x,t;yk)Lk(y), HN := Iy
N H(x,t;y)=

N

∑
k=0

H(x,t;yk)Lk(y),

be the Gauss-Lobatto interpolation of the solution (E,H). If the assumptions of Theorems 2.1 and
2.2 are satisfied, then the following mean and mean square errors hold: For any 0< t≤T,

M[E−EN ]+M[H−HN ]+M[∇×(E−EN)]+M[∇×(H−HN)]≤CT N−1, (2.60a)

E[|E−EN |]+E[|H−HN |]+E[∇×(E−EN)]+E[∇×(H−HN)]≤CT N−1. (2.60b)

Here and below CT is a constant depending on T but independent of N. Furthermore, if the as-
sumptions of Theorems 2.3 and 2.5 are satisfied, then we have the following higher error estimates:
For any 0< t≤T,

M[E−EN ]+M[H−HN ]+M[∇×(E−EN)]+M[∇×(H−HN)]≤CT N−2, (2.61a)

E[|E−EN |]+E[|H−HN |]+E[∇×(E−EN)]+E[∇×(H−HN)]≤CT N−2. (2.61b)

Finally, if the assumptions of Theorems 2.3 and 2.5 are satisfied, for the Gauss-Lobatto interpola-
tion, we have the error estimate for the derivative of the solution with respect to random variable:
For any 0< t≤T,

M[(E−EN)′]+M[(H−HN)′]+M[∇×(E−EN)′]+M[∇×(H−HN)′]≤CT N−1, (2.62a)

E[|(E−EN)′|]+E[|(H−HN)′|]+E[∇×(E−EN)′]+E[∇×(H−HN)′]≤CT N−1. (2.62b)

Proof. For any fixed x, using (2.55) of Lemma 2.5 for u=E and u=H with m=1, respec-
tively, we have∫

Γ

(
ρ(y)ε(y)|E(x,t;y)−EN(x,t;y)|2+ρ(y)µ(y)|H(x,t;y)−HN(x,t;y)|2

)
dy

≤CN−2
∫

Γ

(
ρ(y)ε(y)|∂yE|2+ρ(y)µ(y)|∂yH|2

)
dy. (2.63)
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Similarly, using (2.55) of Lemma 2.5 for u=∇×E and u=∇×H with m=1, respectively,
we have ∫

Γ

(
ρ(y)ε(y)|∇×(E(x,t;y)−EN(x,t;y))|2

+ρ(y)µ(y)|∇×(H(x,t;y)−HN(x,t;y))|2
)

dy

≤CN−2
∫

Γ

(
ρ(y)ε(y)|∂y(∇×E)|2+ρ(y)µ(y)|∂y(∇×H)|2

)
dy. (2.64)

Adding (2.63) and (2.64) together, then integrating the resultant with respect to x over D
and using Theorems 2.1 and 2.2, we complete the proof of (2.60a).

The estimates (2.61a) can be proved similarly by using (2.55) of Lemma 2.5 with m=2
and the higher regularity proved in Theorems 2.3 and 2.5.

Similarly, using (2.57) of Lemma 2.5 with m= 2, and the higher regularity proved in
Theorems 2.3 and 2.5, we obtain the proof of (2.62a).

Finally, the mean errors (2.60b), (2.61b) and (2.62b) follow from the standard inequal-
ity ||u||L1≤C||u||L2 and the estimates (2.60a), (2.61a) and (2.62a).

With the above interpolation estimate, we can show that the overall errors for solv-
ing the Maxwell’s equations by the Crank-Nicolson scheme (cf. [24]) can be estimated as
follows. Denote (EN

h,∆t,H
N
h,∆t) for the numerical solution of the fully-discrete solution ob-

tained with the Crank-Nicolson scheme with mesh size h, time step size ∆t and the Gauss-
Lobatto interpolation of degree N. Using the interpolation, the numerical solution can be
written as a function of the random variable, i.e., we treat EN

h,∆t(y)=∑N
k=0 Eh,∆t(yk)Lk(y)

and HN
h,∆t(y)=∑N

k=0 Hh,∆t(yk)Lk(y), where Eh,∆t(yk) and Hh,∆t(yk) are the numerical so-
lution at each collocation point yk. Denote the discrete L2-norm over the physical space
D as |·|l2(D) (cf. [24]). Then we can obtain the discrete mean square error as following:

(∫
Γ

ρε|E−EN
h,∆t|2l2(D)dy

)1/2

≤
(∫

Γ
2ρε(|E−EN |2l2(D)+|E

N−EN
h,∆t|2l2(D))dy

)1/2

≤C[N−m+(h2+(∆t)2)], (2.65)

where we used the error estimate of Crank-Nicolson scheme and Theorem 2.6. The error
estimate for H can be bounded similarly. Same error bounds can be extened to random
vector case (see our recent work [15]).

3 Numerical results

To justify our theoretical analysis, here we present some numerical results carried out for
the two-dimensional (2D) Maxwell’s equations in TEz mode, whose governing equations



J. C. Li and Z. W. Fang / Adv. Appl. Math. Mech., 10 (2018), pp. 1305-1326 1321

are:

ε(y)
∂Ex1

∂t
=

∂H
∂x2

+g1, ε(y)
∂Ex2

∂t
=− ∂H

∂x1
+g2, (3.1a)

µ(y)
∂H
∂t

=−
(

∂Ex2

∂x1
− ∂Ex1

∂x2

)
+g3, (3.1b)

where g1, g2 and g3 are added source terms in order to construct an exact solution to
check convergence rate.

First, we would like to mention that the theoretical analysis of Section 2 carries di-
rectly to 2D by interpreting the curl operators carefully. For the TEz mode, the electric
field E=(Ex1 ,Ex2)

′ is a 2D vector, the magnetic field H is a scalar, and the 2D curl opera-
tors become as

∇×E=
∂Ex2

∂x1
− ∂Ex1

∂x2
, ∇×H=

(
∂H
∂x2

,− ∂H
∂x1

)′
.

In our numerical tests, we solve the TEz model (3.1a)-(3.1b) on physical domain [0,1]2
and time domain [0,1] by the following Crank-Nicolson scheme:

ε(y(ω))
En+1

x1
−En

x1

∆t

∣∣∣∣
i+1/2,j

=
1

∆x2

(
Hn+1+Hn

2

∣∣∣∣
i+1/2,j+1/2

− Hn+1+Hn

2

∣∣∣∣
i+1/2,j−1/2

)
+g1

∣∣∣∣
i+1/2,j

,

ε(y(ω))
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,

where ∆t, ∆x1, ∆x2 denote the time step size, and mesh size in x1 and x2 directions,
respectively.

Example 3.1. Here we choose random parameters: µ=U(0.9,1) and ε=U(0.9,1), where
U(a,b) denotes the uniform distribution on [a,b]. To test the convergence rate, we con-
struct the exact solution of (3.1a)-(3.1b) as follows:

Ex1 =cos(π(x1+ε(y)))sin(πx2)e−πt, (3.2a)

Ex2 =−sin(πx1)cos(π(x2+ε(y)))e−πt, (3.2b)

H=cos(π(x1+µ(y)))cos(π(x2+µ(y)))e−πt, (3.2c)

which satisfies the 2D PEC boundary condition and results in the added source terms in
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Table 1: Errors of (Ex1 ,Ex2 ,H) on the uniform grids.

Mesh 1/4 1/8 Rate 1/16 Rate 1/32 Rate
E[|Ex1−Eh

x1
|] 8.784989E−03 1.178593E−03 2.8980 4.474686E−04 2.1476 1.177626E−04 2.0060

M[|Ex1−Eh
x1
|] 8.791081E−03 1.205826E−03 2.8660 4.507609E−04 2.1428 1.184576E−04 2.0060

E[|Ex2−Eh
x2
|] 8.784989E−03 1.178593E−03 2.8980 4.474686E−04 2.1476 1.177626E−04 2.0060

M[|Ex2−Eh
x2
|] 8.791081E−03 1.205826E−03 2.8660 4.507609E−04 2.1428 1.184576E−04 2.0060

E[|H−Hh
x1
|] 7.575140E−03 3.164382E−03 1.2593 6.988307E−04 1.7191 1.687477E−04 1.8644

M[|H−Hh
x1
|] 7.602439E−03 3.166105E−03 1.2638 7.014300E−04 1.7190 1.696368E−04 1.8632

Table 2: Errors of ∇×E and ∇×H on uniform grids.

Mesh 1/4 1/8 Rate 1/16 Rate 1/32 Rate
E[|∇×(E−Eh)|] 2.719848E−02 6.000992E−03 2.1803 2.529191E−03 1.7134 6.990969E−04 1.7092
M[|∇×(E−Eh)|] 6.468009E−02 9.273281E−03 2.8022 3.424586E−03 2.1197 9.116299E−04 1.9883
E[|∇×(H−Hh)|] 4.240936E−02 2.251843E−02 0.9133 4.762980E−03 1.5772 1.110742E−03 1.8006
M[|∇×(H−Hh)|] 8.433797E−02 2.392789E−02 1.8175 4.549261E−03 2.1062 1.027735E−03 2.1471

CPUtime(s) 0.095223 2.865157 128.771754 10128.262903

(3.1a)-(3.1b) as follows:

g1= e−πtπcos(π(x1+ε(y)))[−ε(y)sin(πx2)+sin(π(x2+µ0(y)))],

g2=−e−πtπcos(π(x2+ε(y)))[−ε(y)sin(πx1)+sin(π(x1+ε(y)))],

g3=−e−πtπ[cos(π(x2+µ(y)))cos(π(x1+µ(y)))µ(y)
+cos(πx1)cos(π(x2+µ(y)))+cos(πx2)cos(π(x1+µ(y)))].

For simplicity, in our simulation we chose uniform grids with ∆t=∆x1 =∆x2 =1/N
varying from 1/4 to 1/32. The obtained errors of the solution (Ex1 ,Ex2 ,H) in terms of E[·]
and M[·] are presented in Table 1, which shows clearly that the solution converges in the
rate of O(N−2) as our theoretical analysis proves.

The CPU time (in seconds) and errors of ∇×E and ∇×H are present in Table 2.
The results show that the convergence rate is also O(N−2), which is consistent with the
theoretical analysis.

We also presented a sample of the electric field in Fig. 1 to compare with the mean
electric field. The sample is obtained by solving the problem on a 20×20 spatial uniform
partition of [0,1]2 with random variables ε =U(0.5,1.5) and µ =U(0.5,1.5). We set the
initial value by using (3.2a)-(3.2c) and zero sources g1=g2=g3=0. In Fig. 1(a), the electric
field E obtained with the random sample ε=0.8093 and µ=1.2145 is shown. In Fig. 1(b),
the mean value of E is shown. The difference of the mean and the sample E is presented
in Fig. 1(c).

Example 3.2. This example is aimed at checking the applicability and efficiency of sparse
grid method in solving the stochastic Maxwell’s equations. The sparse grid method was
introduced in [21] and has been widely studied and used in stochastic collocation meth-
ods (e.g., [3,5,19]). We use all the same parameters and algorithm as Example 3.1 but the
numerical quadrature. Smolyak sparse grid quadrature has been used in this example.
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(a) The sample field E: ε=0.8093 and µ=1.2145 (b) The mean field E
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Figure 1: Comparison of the mean value and a random sample of electric fields E.

To employ the Smolyak sparse quadrature, a Gaussian quadrature formula has been used
for each sub-quadrature. The numerical results obtained are presented in Table 3 and Ta-
ble 4. The errors demonstrate again the second order convergence rates O(N−2) for the
solution and curl of the solution by Tables 3 and 4, respectively. In the last row of Table 4,
we also presented the CPU time, which shows that there is a big saving of the CPU time

Table 3: Errors of (Ex1 ,Ex2 ,H) on sparse grid.

Mesh 1/4 1/8 Rate 1/16 Rate 1/32 Rate
E[|Ex1−Eh

x1
|] 2.778348E−02 7.076639E−03 1.9731 2.627963E−03 1.7011 6.561562E−04 1.7641

M[|Ex1−Eh
x1
|] 1.582512E−02 3.424850E−03 2.2081 1.364815E−03 1.7677 3.411260E−04 1.7935

E[|Ex2−Eh
x2
|] 2.778346E−02 7.076638E−03 1.9731 2.627963E−03 1.7011 6.561562E−04 1.7641

M[|Ex2−Eh
x2
|] 1.582513E−02 3.424852E−03 2.2081 1.364815E−03 1.7677 3.411260E−04 1.7935

E[|H−Hh
x1
|] 2.453646E−02 7.204936E−03 1.7679 2.400917E−03 1.6766 6.125183E−04 1.7557

M[|H−Hh
x1
|] 1.398775E−02 4.251030E−03 1.7183 1.257310E−03 1.7379 3.141627E−04 1.8187
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Table 4: Errors of ∇×E and ∇×H on sparse grid.

Mesh 1/4 1/8 Rate 1/16 Rate 1/32 Rate
E[|∇×(E−Eh)|] 8.657887E−02 2.169993E−02 1.9963 5.064740E−03 2.0477 1.165036E−03 2.0746
M[|∇×(E−Eh)|] 1.104523E−01 2.653268E−02 2.0576 5.034825E−03 2.2277 1.051978E−03 2.2540
E[|∇×(H−Hh)|] 1.354196E−01 3.217606E−02 2.0734 9.996672E−03 1.8799 2.845675E−03 1.8404
M[|∇×(H−Hh)|] 1.508790E−01 5.451798E−02 1.4686 1.114706E−02 1.8793 2.824012E−03 1.9509

CPU time (s) 0.020172 0.923809 19.367562 4724.081671

Table 5: Errors of E and H.

Mesh 1/4 1/8 Rate 1/16 Rate 1/32 Rate
E[|E−Eh|] 1.224574e−01 3.080085E−02 1.9912 7.690579E−03 1.9965 1.991338E−03 1.9829
M[|E−Eh|] 4.076265e−02 1.025696e−02 1.9928 2.559606e−03 1.9957 6.634349e−04 1.9825
E[|H−Hh|] 3.497023e−02 8.512993E−03 2.0384 2.012699E−03 2.0595 5.063236E−04 2.0410
M[|H−Hh|] 1.167481e−02 2.834366e−03 2.0423 6.699305e−04 2.0616 1.686740e−04 2.0420
CPU time (s) 4.986498 52.183323 283.131567 6745.458795

by using the sparse grid quadrature compared to the uniform grid quadrature. Note that
our simulations are done on a 2017 MacBook Pro laptop with processor of 2.8GHz Intel
Core i7, and memory of 16GB 2133MHz LPDDR3.

Example 3.3. Upon the suggestion of the reviewer, we added this example for a sim-
ple comparison of stochastic collocation method with the generalized polynomial chaos
(gPC) method we are working on [9]. We used the 5th order chaotic polynomial to ap-
proximate the random ε and µ. We repeated the same numerical example and the numer-
ical result obtained by the gPC method is shown in Table 5 with the CPU time presented
in the last row of Table 5. The results shows that the gPC method leads to similar accuracy
but costs more CPU time compared to the sparse grid method (cf. Table 3).

4 Conclusions

For the first time, we established the rigorous regularity of the solution of the stochastic
time-dependent Maxwell’s equations with random coefficients and random initial condi-
tions. The stochastic collocation method originally introduced by Xiu and Hesthaven [26]
is applied to solve the stochastic Maxwell’s equations. The convergence of the method
is proved by using the regularity results obtained. Numerical results are presented and
justify the theoretical analysis. In the future, we will explore more efficient stochastic
methods such as Quasi Monte Carlo method and Mutli-Level Monte Carlo for solving
Maxwell’s equations.
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