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Abstract. This paper is an attempt to investigate the nonlinear free vibration of skew
plates reinforced by carbon nanotubes (CNTs) due to finite strain tensor. The material
properties of the nano-composite are estimated using the molecular dynamic results
and the rule of mixture. Also, the differential equations governing the motions are
derived on the basis of Classical Plate Theory (CPT) regarding the nonlinear Green-
Lagrange strain tensor. In order to solve the nonlinear equations, Galerkin’s method,
Frechet derivative and differential quadrature method are used. The effects of volume
fraction of functionally graded materials (FGM), skew angle, distribution of CNTs and
geometrical features of the plate on the nonlinear vibration of system have been stud-
ied. The results of this study have been compared with other researches and a good
agreement has been achieved.

AMS subject classifications: 34A34
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1 Introduction

Skew plates are important structural components in many kinds of high performance
surface and aircraft industry for example, they are used in the construction of wings, tails,
and fins of swept-wing aircrafts, missiles and skew bridges. There is a large number of
papers which focus on the free vibration of thin and thick skew plates. In the following
section, some of the relevant studies will be discussed.

Singha and Daripa [1] studied the nonlinear vibration of laminated composite skew
plates by finite element method. They used von-Karman’s kinematic relations in order to
formulate the problem. By applying the Galerkin’s method and Newmark’s technique,
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the nonlinear frequency ratio has been investigated with respect to the fiber orientation,
skew angle and boundary condition. They found that nonlinear frequency ratio increases
by increasing the skew angle and thickness of plate.

Malekzadeh [2] investigated the nonlinear free vibration of thin composite skew
plates. In order to derive the governing differential equations, he has used von-Karman’s
kinematics relations. Obtained equations were solved by generalized differential quadra-
ture (GDQ) method. Finally, nonlinear frequency ratios of plate by considering the skew
angle, ratio of thickness-to-width, and amplitude ratios, in different tables have been
investigated. Upadhyay and Shukla [3] studied the static and dynamic analysis of func-
tionally graded skew plates under dynamic and static loading. as many published pa-
pers, they used nonlinear von-Karman’s kinematic relations and Hamilton’s principal for
obtaining the equations of motions. After solving the governing equations, the effect of
skew angle and different boundary conditions on the plate deflection and bending mo-
ment have been discussed. Malekzadeh [4] investigated the nonlinear free vibration of
thin to moderately laminated skew plates based on the FSDT and DQ method. He used
direct iteration technique and harmonic balance method for solving the nonlinear gov-
erning equations of motions. At the end, nonlinear frequency ratio in terms of geomet-
rical variables and orientation of fibers have been shown in different figures. Obtained
results indicate that DQ method is a powerful technique in solving nonlinear problems.
Recently Liew et al. [5] analysed the nonlinear behavior of reinforced laminated com-
posite plates by CNTs. For reinforcing the mentioned plates they applied several distri-
butions of CNTs such as UD, FG-V, FG-O and FG-X type. It is obvious from the results
presented in this paper that the non-dimensional central deflections of laminated func-
tionally graded carbon nanotube reinforced (FG- CNTR) plates have been decreased by
increasing the volume fraction of carbon nanotubes, since the stiffness of CNTRC plate
increases when the volume fraction of carbon nanotubes increases.

Asadi et al. [6] investigated the application of piezoelectric materials and CNTs in
nonlinear vibration behaviors of FG-CNTs reinforced composite plates. After solving the
governing differential equations by GDQ method the effects of many parameters such as
volume fractions of CNTs, thickness of piezoelectric layers and electrical boundary condi-
tions on the nonlinear natural frequencies of system have been discussed. Malekzadeh [7]
studied the free vibration of quadrilateral laminated plates with carbon nanotube rein-
forced composite layers. Distributions of CNTs which are selected include UD, FG-X,
FG-V, FG-O and GDQ method used for solving the governing differential equations. Fi-
nally, the first three natural frequencies of system in SSSS and CCCC boundary conditions
have been determined in a numerical example. Liew et al. [8] derived vibration frequen-
cies and mode shapes of carbon nanotube-reinforced composite skew plates. They used
IMLS approximation and Ritz method for solving the problem. At the end of mentioned
paper they obtained mode shapes and natural frequencies of plate in terms of thickness-
to width ratio and skew angle in different kinds of CNTs distributions. Malekzadeh [9]
worked on the low velocity impact of FG-CNT composite skew plates. In this research,
deflection of plate under the impact force formulated based on the FSDT and finite ele-
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ment method. Eventually, central deflection of plate in terms of time in two different sets
of boundary conditions and different kind of CNTs distributions have been obtained.
Following this research, Kiani [10] published a paper about the linear free vibration of
FG-CNT reinforced composite skew plates. He applied the Gram-Schmidt’s process with
suitable shape functions and Ritz method for obtaining the natural frequencies of struc-
ture. After that, the first six natural frequencies of plate in different type of CNTs distri-
butions have been determined. Zhang and Xiao [11] calculated the action of a SWCNT-
reinforced (Mori-Tanaka approach) laminated composite skew plates subjected to im-
pact loading. The solution of the problem has been done by the element-free IMLS-Ritz
method. Finally, mechanical behavior of plate under the effects of skew angle, geometri-
cal features and CNTs orientations have been discussed. To the best of our knowledge no
nonlinear free vibration solution has been published on FG-CNTRC skew plates so far.

The present work focuses on the nonlinear free vibration behaviors of skew plate re-
inforced with single wall carbon nanotubes (SWCNTs) due to finite strains tensor. The
effective material properties of nano-composite plates are estimated by the extended
rule of mixture. Using Hamilton’s principle the governing equations are derived based
on the classical plate theory by regarding the nonlinear Green-Lagrange strain tensor.
The Galerkin’s procedure and Frechet derivative technique and differential quadrature
method are employed to solve the nonlinear equations. Because no known results
are available for the nonlinear free vibration of functionally graded carbon nanotube-
reinforced composite (FG-CNTRC) skew plates, we have to simplify the problem to an
isotropic case so that the comparison studies can be carried out. A detailed parametric
study is carried out to investigate the influences of CNTs volume fractions, distribution
of CNTs, skew angle and geometrical parameters on the nonlinear behaviors of nano-
composite skew plate.

2 Modeling properties in skew plate

Consider a CNTRC skew plate with length a, width b, thickness h and skew angle θ
shown in Fig. 1.

UD-CNTRC represents the uniform distribution and FG-V, FG-O and FG-X CNTRC
are the functionally graded distributions of carbon nanotubes in the thickness direction
of the skew plates. The effective material properties of nano-composite skew plate can be
estimated according to the Mori-Tanaka scheme or the rule of mixtures approach. Based
on the aforementioned rule, it can be written as below:

E11=η1VcnEcn
11+VmEm, (2.1a)

η2

E22
=

Vcn

Ecn
22
+

Vm

Em , (2.1b)

η3

G12
=

Vcn

Gcn
12
+

Vm

Gm . (2.1c)
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Fig. 1. Schematic of reinforced skew plate with coordinates axis (FGA CNTRC) 

 

 

 

 

 

 
Fig. 2. Different combinations of carbon nanotubes in thickness direction of plate 

 

Figure 1: Schematic of reinforced skew plate with coordinates axis (FGA CNTRC).

Where Ecn
11 , Ecn

22 and Gcn
12 are the Young’s modulus and shear modulus of the SWCNTs, re-

spectively. Moreover, Em and Gm are the corresponding properties of the polymer matrix.
η1, η2 and η3 are carbon nanotube efficiency parameter and can be determined by

matching the rule of mixture results and molecular dynamic simulation. Also, Vm and
Vcn are matrix and carbon nanotube volume fractions and are related by the following
equation.

Vcn+Vm =1. (2.2)

In above equation, volume fraction and mass ratio of nanotubes are related as below

Vcn =w(z)Vcn
∗. (2.3)

In above relation, w(z) is related to the carbon nanotube distribution in thickness direc-
tion of plate. The different types of w(z) are introduced as follows:

w(z)=1→UD,

w(z)=1+2
z
h
→FGV,

w(z)=4
∣∣∣ z
h

∣∣∣→FGX,

w(z)=2
(

1−2
∣∣∣ z
h

∣∣∣)→FGO,

− h
2
≤ z≤ h

2
. (2.4)

Distribution of carbon nano-tubes in the thickness direction of plate based on the Eq. (2.4)
is shown in Fig. 2.

After selecting the distribution models of nanotubes, the Possion’s ratio of nano-
composite plate is calculated as below

ν12=Vcnνcn
12+Vmνm. (2.5)

In this paper, the PMMA matrix and the single walled carbon nanotubes (10,10) are se-
lected. Material properties of main plate and carbon nano-tubes are listed in Table 1.

Efficiency parameters of carbon nanotubes calculated by molecular dynamic simula-
tion are listed in Table 2.
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 Figure 2: Different combinations of carbon nanotubes in thickness direction of plate.

3 Governing equations

According to Fig. 1, it is assumed that a skew plate with the dimension of a∗b∗h, has
been reinforced by the single walled carbon nanotubes (for example type FGA or FGV).
The main problem is to calculate the linear and non-linear frequencies of plate vibration
under finite strain. In this regard, to achieve the equations of motion, the displacement
field is selected based on classical plate theory and may be written as follows:

u1(x,y,z,t)=u(x,y,t)−z
∂w(x,y,t)

∂x
, (3.1a)

u2(x,y,z,t)=v(x,y,t)−z
∂w(x,y,t)

∂y
, (3.1b)

u3(x,y,z,t)=w(x,y,t). (3.1c)

Where u1, u2, u3 are displacement components in x-y-z directions, respectively and u-v-w
are displacement components of neutral surface of plate.

In the next step, according to the Green’s-Lagrange’s strain-displacement tensor, the
components of displacement tensor are calculated as follows

Eij =
1
2
(
ui,j+uj,i+um,ium,j

)
. (3.2)

By substituting the Eq. (3.1) into the Eq. (3.2), the components of strain tensor can be
written as

ε1= εx = ε0
x+zε1

x+z2ε2
x, (3.3a)

ε2= εy = ε0
y+zε1

y+z2ε2
y, (3.3b)

ε6=γxy =γ0
xy+zγ1

xy+z2γ2
xy. (3.3c)
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Where the terms of aforesaid equations are

ε0
x =

∂u
∂x

+
1
2

(
∂u
∂x

)2

+
1
2

(
∂v
∂x

)2

+
1
2

(
∂w
∂x

)2

,

ε1
x =−

∂2w
∂x2 −

∂u
∂x

∂2w
∂x2 −

∂v
∂x

∂2w
∂x∂y

,

ε2
x =

1
2

(
∂2w
∂x2

)2

+
1
2

(
∂2w
∂x∂y

)2

,

(3.4a)



ε0
y =

∂v
∂y

+
1
2

(
∂u
∂y

)2

+
1
2

(
∂v
∂y

)2

+
1
2

(
∂w
∂y

)2

,

ε1
y =−

∂2w
∂y2 −

∂v
∂y

∂2w
∂y2 −

∂u
∂y

∂2w
∂x∂y

,

ε2
y =

1
2

(
∂2w
∂y2

)2

+
1
2

(
∂2w
∂x∂y

)2

,

(3.4b)



γ0
xy =

∂u
∂y

+
∂v
∂x

+
∂u
∂x

∂u
∂y

+
∂v
∂x

∂v
∂y

+
∂w
∂x

∂w
∂y

,

γ1
xy =−2

∂2w
∂x∂y

− ∂u
∂x

∂2w
∂x∂y

− ∂u
∂y

∂2w
∂x2 −

∂v
∂x

∂2w
∂y2 −

∂v
∂y

∂2w
∂x∂y

,

γ2
xy =

∂2w
∂x2

∂2w
∂x∂y

+
∂2w
∂y2

∂2w
∂x∂y

.

(3.4c)

Note that other components of strain tensor are zero.
For calculating the strain energy of system, we assume that the plate would be under

the state of plain stress. The stress-strain relationships will be written as below:
σ1
σ2
σ6

=


σx
σy
τxy

=

Q11 Q12 0
Q21 Q22 0

0 0 Q66


ε1
ε2
ε6

. (3.5)

Where the coefficients of stiffness matrix are given by:

Q11=
E11

1−ν12ν21
, Q12=

ν12E22

1−ν12ν21
, (3.6a)

Q21=
ν21E11

1−ν12ν21
, Q22=

E22

1−ν12ν21
, (3.6b)

Q66=G12. (3.6c)

In the aforementioned relationships, the quantities of E11, E22, G12, ν12, ν21are the effective
properties of material and can be calculated using the Mori-Tanaka scheme and the rule
of mixtures approach.
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By substituting the Eqs. (3.4) in (3.5), the components of plate stress in terms of non-
linear strain will be as follows:

σx =Q11εx+Q11εy =Q11

[
ε0

x+zε1
x+z2ε2

x

]
+Q12

[
ε0

y+zε1
y+z2ε2

y

]
, (3.7a)

σy =Q12εx+Q22εy =Q12

[
ε0

x+zε1
x+z2ε2

x

]
+Q22

[
ε0

y+zε1
y+z2ε2

y

]
, (3.7b)

τxy =Q66γxy =Q66

[
γ0

xy+zγ1
xy+z2γ2

xy

]
, (3.7c)

For the simplicity of results, the resultant forces and moments of plate can be defined as
below

Ni =
∫ h

2

− h
2

σidz, Mi =
∫ h

2

− h
2

zσidz, Pi =
∫ h

2

− h
2

z2σidz, i=1,2,6. (3.8)

Also, we introduce stiffness matrices as follows:

[A]ij =
∫ h

2

− h
2

[Q]ijdz, [B]ij =
∫ h

2

− h
2

[Q]ijzdz, [D]ij =
∫ h

2

− h
2

[Q]ijz
2dz, (3.9a)

[F]ij =
∫ h

2

− h
2

[Q]ijz
3dz, [H]ij =

∫ h
2

− h
2

[Q]ijz
4dz. (3.9b)

Where [A]ij is the extensional stiffness matrix, [B]ij is the bending-extensional coupling
stiffness matrix, and [D]ij is the bending stiffness matrix. [F]ij and [H]ij are higher order
stiffness matrices.

By the above-mentioned matrices, the resultant stresses of M, N, and P can be rewrit-
ten as below

Ni =
∫ h

2

− h
2

σidz=
∫ h

2

− h
2

[Q]ijε jdz=
∫ h

2

− h
2

[Q]ij

[
ε0

j +zε1
j +z2ε2

j

]
dz

=[A]ij

{
ε0

j

}
+[B]ij

{
ε1

j

}
+[D]ij

{
ε2

j

}
, (3.10a)

Mi =
∫ h

2

− h
2

σizdz=
∫ h

2

− h
2

[Q]ijε jzdz=
∫ h

2

− h
2

[Q]ij

[
ε0

j +zε1
j +z2ε2

j

]
zdz

=[B]ij
{

ε0
j

}
+[D]ij

{
ε1

j

}
+[F]ij

{
ε2

j

}
, (3.10b)

Pi =
∫ h

2

− h
2

σiz2dz=
∫ h

2

− h
2

[Q]ijε jz2dz=
∫ h

2

− h
2

[Q]ij

[
ε0

j +zε1
j +z2ε2

j

]
z2dz

=[D]ij

{
ε0

j

}
+[F]ij

{
ε1

j

}
+[H]ij

{
ε2

j

}
. (3.10c)

Since the Hamilton’s principle is to be used, the variation of potential energy of system
is first calculated by the below equation

U=
1
2

∫
v
(σijε ij)dV⇒δU=

∫
v
(σijδε ij)dV=

∫
v

(
σxδεx+σyδεy+σxyδγxy

)
dV. (3.11)
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By substituting Eq. (3.10) in the aforementioned equation, it yields

δU=
∫

A

{
Nxδε0

x+Mxδε1
x+Pxδε2

x+Nyδε0
y+Myδε1

y

+Pyδε2
y+Nxyδγ0

xy+Mxyδγ1
xy+Pxyδγ2

xy

}
dA. (3.12)

Also the kinetic energy of plate can be written as follows

δT=
∫

v
ρ(u̇1δu̇1+u̇2δu̇2+u̇3δu̇3)dV

=
∫

v
ρ

{(
u̇−z

∂ẇ
∂x

)(
δu̇−z

∂δẇ
∂x

)
+
(

v̇−z
∂ẇ
∂y

)(
δv̇−z

∂δẇ
∂y

)
+ẇδẇ

}
dV. (3.13)

Terms of inertia moments of plates are defined in the following form

(I0, I1, I2)=
∫ h

2

− h
2

ρ(1,z,z2)dz. (3.14)

By substituting the Eq. (3.14) into Eq. (3.13) the following relation is obtained

δT=
∫

A


I0u̇δu̇− I1u̇

∂δẇ
∂x
− I1

∂ẇ
∂x

δu̇+ I2
∂ẇ
∂x

∂δẇ
∂x

+I0v̇δv̇− I1v̇
∂δẇ
∂y
− I1

∂ẇ
∂y

δv̇+ I2
∂ẇ
∂y

∂δẇ
∂y

+ I0ẇδẇ

dA. (3.15)

Using Hamilton’s principal, the following equation will be obtained

∂Nx

∂x
+

∂Nxy

∂y
+

∂

∂x

(
Nx

∂u
∂x

)
+

∂

∂x

(
Nxy

∂u
∂y

)
+

∂

∂y

(
Nxy

∂u
∂x

)
+

∂

∂y

(
Ny

∂u
∂y

)
− ∂

∂x

(
Mx

∂2w
∂x2

)
− ∂

∂x

(
Mxy

∂2w
∂x∂y

)
− ∂

∂y

(
Mxy

∂2w
∂x2

)
− ∂

∂y

(
My

∂2w
∂x∂y

)
= I0

∂2u
∂t2 − I1

∂3w
∂x∂t2 , (3.16a)

∂Ny

∂y
+

∂Nxy

∂x
+

∂

∂x

(
Nx

∂v
∂x

)
+

∂

∂x

(
Nxy

∂v
∂y

)
+

∂

∂y

(
Nxy

∂v
∂x

)
+

∂

∂y

(
Ny

∂v
∂y

)
− ∂

∂x

(
Mx

∂2w
∂x∂y

)
− ∂

∂x

(
Mxy

∂2w
∂y2

)
− ∂

∂y

(
Mxy

∂2w
∂x∂y

)
− ∂

∂y

(
My

∂2w
∂y2

)
= I0

∂2v
∂t2 − I1

∂3w
∂y∂t2 , (3.16b)

∂2Mx

∂x2 +2
∂2Mxy

∂x∂y
+

∂2My

∂y2 +
∂

∂x

(
Nx

∂w
∂x

)
+

∂

∂x

(
Nxy

∂w
∂y

)
+

∂

∂y

(
Nxy

∂w
∂x

)
+

∂

∂y

(
Ny

∂w
∂y

)
+

∂2

∂x2

(
Mx

∂u
∂x

)
+

∂2

∂x∂y

(
Mx

∂v
∂x

)
+

∂2

∂x2

(
Mxy

∂u
∂y

)
+

∂2

∂x∂y

(
Mxy

∂u
∂x

)
+

∂2

∂x∂y

(
Mxy

∂v
∂y

)
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+
∂2

∂y2

(
Mxy

∂v
∂x

)
+

∂2

∂x∂y

(
My

∂u
∂y

)
+

∂2

∂y2

(
My

∂v
∂y

)
− ∂2

∂x2

(
Px

∂2w
∂x2

)
− ∂2

∂x∂y

(
Px

∂2w
∂x∂y

)
− ∂2

∂x2

(
Pxy

∂2w
∂x∂y

)
− ∂2

∂x∂y

(
Pxy

∂2w
∂x2

)
− ∂2

∂x∂y

(
Pxy

∂2w
∂y2

)
− ∂2

∂y2

(
Pxy

∂2w
∂x∂y

)
− ∂2

∂x∂y

(
Py

∂2w
∂x∂y

)
− ∂2

∂y2

(
Py

∂2w
∂y2

)
= I0

∂2w
∂t2 + I1

∂3u
∂x∂t2 + I1

∂3v
∂y∂t2− I2

∂4w
∂x2∂t2− I2

∂4w
∂y2∂t2 . (3.16c)

In order to solve the mentioned equations, we should write those equations in terms
of displacement. For this reason, the resultant forces and moments are first written in
terms of strain components and then, those obtained equations are converted in terms of
displacement components (see Appendix).

Because of the prolongation of motion equations, they have not been written here. It
should be mentioned that the boundary conditions of plate should be written in terms of
displacement components for solving the equations.

2 
 

 
Fig. 3. Converting the rectangular coordinate to the parallelogram one 
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Figure 3: Converting the rectangular coordinate to the parallelogram one.

Afterwards, to achieve the equations of motion for skew plate regarding (Fig. 3), the
transformation relationship of rectangular coordinate to the parallelogram one is pre-
sented using the relation (3.17)

x= ζ+ηsin(θ), y=ηcos(θ). (3.17)

Using the partial differential rule in new coordinate, we will have the following equation


∂

∂x
∂

∂y

=

[
1 0

−tanθ secθ

]
∂

∂ς
∂

∂η

, (3.18a)
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∂2

∂x2

∂2

∂x∂y
∂2

∂y2


=

 1 0 0
−tanθ secθ 0
tan2θ −2secθ tanθ sec2θ




∂2

∂ς2

∂2

∂ς∂η
∂2

∂η2


, (3.18b)



∂4

∂x4

∂4

∂x2∂y2

∂4

∂y4


=

 1 0 0 0 0
tan2θ −2secθ tanθ sec2θ 0 0
−tan4θ −4secθtan3θ 6sec2θtan2θ −4sec3θ tanθ sec4θ



·



∂4

∂ς4

∂4

∂ς3∂η
∂4

∂ς2∂η2

∂4

∂ς∂η3

∂4

∂η4



. (3.18c)

By applying the Eqs. (3.18a) and (3.18c) to those of motion equations and boundary con-
ditions of skew plate, the governing equations and boundary conditions of system in new
coordinate (ζ,η) will be derived. Note that for simplicity, ζ and η were substituted by x
and y, respectively. Now, the following answers of u, v and w are considered for solving
the mentioned equations

u(x,y,t)=U(x,y)cos(ωt), (3.19a)
v(x,y,t)=V(x,y)cos(ωt), (3.19b)
w(x,y,t)=W(x,y)cos(ωt). (3.19c)

Where ω is the natural frequency of plate vibration. Next, the residual of each equa-
tion can be calculated by applying Galerkin’s technique and the system of non-linear
algebraic equations is obtained. Because the analytical solution of aforesaid equations is
impossible, they should be linearized. For this purpose, the Frechet derivative is used
and the mentioned equations are converted with respect to the auxiliary variables of α1,
α2, α3, [16]. Afterwards, the equations of motion will be converted to the system of lin-
ear algebraic equations and will be solved by simple techniques. For the clarification of
solution steps, the operator form of equations will be written and the procedure can be
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explained as follows

L1(U,V,W)=0,
L2(U,V,W)=0,
L3(U,V,W)=0,

0≤ x≤ a,
0≤y≤b.

(3.20)

Where L1, L2, L3 are nonlinear differential operators. These equations can be converted
to Eq. (3.21) using the auxiliary variables of α1, α2, α3,

L′1(α1,α2,α3)+L1(U,V,W)=0, (3.21a)
L′2(α1,α2,α3)+L2(U,V,W)=0, (3.21b)
L′2(α1,α2,α3)+L2(U,V,W)=0. (3.21c)

In the written equations, L′i(α1, α2, α3), i = 1,··· ,3 are the Frechet derivatives that are
linear with regard to α1, α2, α3, and nonlinear in terms of u, v and w [16]

L′i(α1,α2,α3)=
∂(Li (U+εα1,V+εα2,W+εα3))

∂ε

∣∣∣∣
ε=0

, i=1,··· ,3. (3.22)

In order to complete the solution steps, the following repeat-correction process is as-
sumed

U(n+1)=U(n)+α1
(n), (3.23a)

V(n+1)=V(n)+α2
(n), (3.23b)

W(n+1)=W(n)+α3
(n). (3.23c)

In the above equation (3.23), n is the iteration count.
Generally the solving method is in a way that at first the initial guess is considered for

U, V and W and then the linear equations (3.21) are solved using GDQ method and α1,
α2, α3 are obtained. Then using obtained α1, α2, α3, the Eqs. (3.23) are corrected and the
new values of U, V and W are calculated. This cycle is continued to satisfy convergence
criterion. The convergence criterion is in the following form∥∥∥S(n+1)

∥∥∥∥∥S(n)
∥∥ ≤ ε, ‖S‖=

√
n

∑
i=1

(α1
2
i +α2

2
i +α3

2
i ). (3.24)

In the above relation ε is the small convergence tolerance.

4 Results and discussion

To validate the presented approach and demonstrate its usefulness, convergence studies
are carried out, and the results are compared with similar papers in other literatures.
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Table 1: Material properties of plate and carbon nanotubes.

Ecnt
11 =5646.6GPa Em =2.5GPa
Ecnt

22 =7080GPa νm =0.34GPa
Gcnt

12 =1944.5GPa ρm =1150Kg/m3

νcnt
12 =0.175

ρcnt =100Kg/m3

Table 2: Efficiency parameters of carbon nanotubes in different values of volume fraction.

Efficiency parameters Vcnt
0.12 0.17 0.28

η1 0.141 0.142 0.137
η2 1.585 1.626 1.022
η3 1.109 1.138 0.715

Table 3: Non-dimensional natural frequency of reinforced skew plate with UD distribution of SWCN-s and CCCC
boundary conditions (h/a=0.001).

Ω= ωa2

π2

√
ρmh
Dm

Vcnt =0.12 Vcnt =0.17 Vcnt =0.28
present Enrique Garcı́a et al. (2015) Zhang et al. (2014) present Enrique Garcı́a et al. (2015) Zhang et al. (2014) present Enrique Garcı́a et al. (2015) Zhang et al. (2014)

θ=0 Ω1 13.054 13.304 13.249 15.792 16.027 15.771 19.745 20.017 19.223
Ω2 21.472 21.848 20.951 17.714 18.087 17.761 14.382 14.803 14.715
Ω3 26.017 26.734 25.424 22.600 23.327 22.680 17.853 18.686 18.403
Ω4 34.652 35.729 33.383 31.432 32.514 31.033 23.172 25.623 24.780

θ=30 Ω1 20.160 20.550 19.733 16.264 16.625 16.357 13.447 13.741 13.683
Ω2 22.934 23.809 22.806 19.278 20.164 19.775 15.672 16.351 16.234
Ω3 29.132 31.369 29.738 25.693 27.931 27.077 20.498 22.205 21.802
Ω4 39.190 43.849 40.814 35.593 40.080 38.157 28.091 31.566 30.431

θ=45 Ω1 21.321 21.999 21.120 17.559 18.194 17.895 14.395 14.901 14.833
Ω2 26.801 28.389 27.139 23.211 24.770 24.239 18.648 19.853 19.669
Ω3 37.565 40.720 38.445 33.674 36.695 35.440 26.713 29.062 28.425
Ω4 53.004 57.205 53.565 45.698 47.034 45.846 37.401 38.750 38.183

θ=60 Ω1 27.144 27.984 26.831 23.390 24.306 23.868 18.708 19.519 19.402
Ω2 40.691 42.701 40.628 36.180 38.184 37.166 28.584 30.336 29.903
Ω3 60.238 63.394 59.556 53.285 56.232 54.087 41.961 44.851 43.674
Ω4 68.432 68.706 65.323 58.026 58.847 57.295 46.437 47.506 46.823

For this object, the governing equations (3.16) are solved in the case of linear free
vibration of clamped carbon nanotube reinforced (CNTR) skew plates with mechanical
specification inserted in Tables 1 and 2, then the obtained results are compared with sim-
ilar papers in Table 3.

From the data prepared in the above table, Close agreement between the results of
the present approach and other papers is considerable.

Also for validating the present nonlinear solving method, the nonlinear free vibra-
tion analysis of isotropic square plate is carried out with simply supported and clamp
boundary conditions.

The obtained results are compared with other references in Tables 4 and 5. It is found
from obtained results that a good agreement is existed between the results of the present
approach.

In the following, the nonlinear free vibration analysis of CNTR skew plate is carried
out for different boundary conditions, different distribution of carbon nano tubes and
skew angle of plate.

Based on Table 6, it can be said that the maximum nonlinear frequency ratio is related
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Table 4: Comparing the aspect ratio of ωNI/ωL for isotropic square plate with SSSS boundary conditions
(h/a=0.001).

References Wmax/h
0.2 0.4 0.6 0.8 1

Present 1.0145 1.0568 1.1239 1.2116 1.3158
Rao et al. (1976) 1.0149 1.0583 1.1270 1.2166 1.3230

Error (%) 0.039% 0.141% 0.275% 0.412% 0.547%
Mei (1973) and Rao et al. (1993) 1.0134 1.0518 1.1154 1.1946 1.2967

Error (%) 0.108% 0.473% 0.756% 1.403% 1.451%
Singah and Daripa (2007) 1.0080 1.0610 1.1498 1.2641 1.3958

Error(%) 0.640% 0.397% 2.304% 4.333% 6.079%
Shih and Blotter (1993) 1.020 1.076 1.164 1.277 1.410

Error (%) 0.542% 1.816% 3.567% 5.397% 7.159%

Table 5: Comparing the aspect ratio of ωNI/ωL for isotropic square plate with CCCC boundary conditions
(h/a=0.001).

References Wmax/h
0.2 0.4 0.6 0.8 1

Present 1.0078 1.0310 1.0686 1.1189 1.1806
Rao and Sheikh (1993) 1.0095 1.0375 1.0285 1.1424 1.2149

Error (%) 0.170% 0.630% 1.300% 2.101% 2.905%
Singah and Daripa (2007) 1.0091 1.0297 1.0582 1.0987 1.1537

Error (%) 0.128% 0.126% 0.972% 1.805% 2.278%
Lau et al. (1984) 1.0073 1.0291 1.0648 1.1138 1.1762

Error (%) 0.049 0,184% 0.355% 0.455% 0.372%

to the square plate and decreases with the increased skew angle. Moreover, in all studied
plates, the nonlinear frequency ratio increases by increasing the amplitude of vibration,
indicating hardening type of nonlinear behavior. Unlike the linear analysis in FGO type
of distribution of CNTs, the nonlinear frequency ratio is maximum and UD, FGV and
FGX models are put in the next category.

In Table 7, we can see that in case of Vcnt =0.12, the nonlinear frequency ratio would
be maximum and the nonlinear frequency ratio decreases by increasing the CNTs volume
fraction. Also, the square plate has the maximum nonlinear frequency ratio and this ratio
will be decreased by increasing the skew angle. The behavior, in general, is qualitatively
similar to those of simply supported case (Table 6). It can be further concluded that
although the type of nonlinear behavior is hardening, the degree of nonlinearity is less
compared to those of simply supported skew plates.

Based on Table 8, it can be said that the nonlinear frequency ratio increases as the
aspect ratio of Wmax/h increases. Regarding all the values of skew angle, the maximum
and minimum nonlinear frequency ratio are related to the FGO and FGX type of CNTs
distributions, respectively. Note that, specifying the mode shapes in all cases is uncom-
plicated. By substituting the frequencies of vibration into equations of motion the mode
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Table 6: Values of aspect ratio of ωNI/ωL for reinforced skew plate with SSSS boundary conditions (h/a=0.001
& a=b & Vcnt =0.12.)

Wmax/h
0.2 0.4 0.6 0.8 1

θ=0 UD 1.1898 1.6224 2.1677 2.7564 3.3860
FGV 1.1897 1.6222 2.1674 2.7559 3.3854
FGO 1.3166 1.9834 2.9670 3.5687 4.3974
FGX 1.1403 1.5085 1.8456 2.6973 2.9919

θ=30 UD 1.1892 1.6205 2.1645 2.7519 3.3802
FGV 1.1890 1.6201 2.1639 2.7510 3.3791
FGO 1.3074 1.9588 2.7172 3.5139 4.3279
FGX 1.1396 1.5012 1.9602 2.6938 2.9804

θ=45 UD 1.1858 1.6199 2.1574 2.7380 3.3393
FGV 1.1855 1.6191 2.1560 2.7360 3.3368
FGO 1.3001 1.9392 2.6854 3.4702 4.2725
FGX 1.1386 1.4961 1.9538 2.6661 2.9609

θ=60 UD 1.1748 1.5877 2.1027 2.6613 3.2410
FGV 1.1742 1.5859 2.0997 2.6571 3.2356
FGO 1.2468 1.7940 2.4478 3.1423 3.8556
FGX 1.1352 1.4680 1.8970 2.3706 2.8667

θ=75 UD 1.0250 1.0966 1.2065 1.3454 1.5053
FGV 1.0248 1.0958 1.2048 1.3427 1.5015
FGO 1.0286 1.1098 1.2334 1.3881 1.5646
FGX 1.0221 1.0858 1.1843 1.3098 1.4553

shapes can be specified. For example in Fig. 4 the 3D vibration mode shapes of fully
clamped UD-CNTRC skew plate (Vcnt =0.12, a= b=1 and h/a=0.01) for different skew
angles are plotted.

5 Conclusions

In this paper, nonlinear free vibration behaviors of skew plates reinforced with single
wall carbon nanotubes (SWCNTs) are presented.

Using Hamilton principle the governing equations are derived based on the classi-
cal plate theory by regarding the nonlinear Green-Lagrange strain tensor. The Galerkin
procedure and Frechet derivative technique with differential quadrature method are em-
ployed to solve the nonlinear equations.

The accuracy of the GDQ method with Frechet derivative technique is demonstrated
by convergence and comparison studies. A close agreement is achieved for the com-
parison studies of these skew and square plates. These comparison studies in nonlinear
analysis are possible only for the isotropic plates because no existing results are available
for the nonlinear free vibration of FG-CNTRC skew plates.

The influences of carbon nanotube volume fraction, skew angles, and distribution of
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Table 7: Aspect ratio of ωNl/ωL for reinforced skew plate with UD distribution of CNT-s and CCCC boundary
conditions (h/a=0.001 & a=b).

Skew angle & volume fraction Wmax/h
0.2 0.4 0.6 0.8 1

Vcnt =0.12 1.0474 1.1781 1.3685 1.5974 1.8505
θ=0 Vcnt =0.17 1.0471 1.1771 1.3666 1.5945 1.8466

Vvnt =0.28 1.0468 1.1766 1.3645 1.5913 1.8414
Vcnt =0.12 1.0458 1.1725 1.3576 1.5808 1.8281

θ=30 Vcnt =0.17 1.0452 1.1705 1.3538 1.5749 1.8202
Vvnt =0.28 1.0446 1.1693 1.3481 1.5692 1.8117
Vcnt =0.12 1.0448 1.1690 1.3508 1.5703 1.8139

θ=45 Vcnt =0.17 1.0439 1.1657 1.3443 1.5605 1.8006
Vcnt =0.28 1.0428 1.1623 1.3376 1.5513 1.7884
Vcnt =0.12 1.0368 1.1402 1.2942 1.4832 1.6955

θ=60 Vcnt =0.17 1.0359 1.1369 1.2877 1.4731 1.6817
Vcnt =0.28 1.0338 1.1346 1.2851 1.4701 1.6783
Vcnt =0.12 1.0159 1.0621 1.1350 1.2298 1.3419

θ=75 Vcnt =0.17 1.0158 1.0618 1.1343 1.2287 1.3403
Vcnt =0.28 1.0138 1.0597 1.1321 1.2262 1.3376

Table 8: Values of aspect ratio ωNl/ωL for reinforced skew plate with SCSC boundary conditions (h/a=0.001
& a=b).

Wmax/h
0.2 0.4 0.6 0.8 1

θ=0 UD 1.1529 1.5222 1.9908 2.5037 3.0384
FGV 1.1521 1.5196 1.9864 2.4974 3.0303
FGO 1.2453 1.7897 2.4407 3.1324 3.8430
FGX 1.1107 1.3909 1.7616 2.1769 2.6157

θ=30 UD 1.1449 1.4976 1.9484 2.4437 2.9611
FGV 1.1438 1.4943 1.9428 2.4356 2.9507
FGO 1.2228 1.7266 2.3361 2.9873 3.6580
FGX 1.1068 1.3783 1.7390 2.1444 2.5734

θ=45 UD 1.1363 1.4714 1.9029 2.3790 2.8776
FGV 1.1349 1.4669 1.8952 2.3680 2.8635
FGO 1.1944 1.6450 2.1997 2.7972 3.4151
FGX 1.1041 1.3698 1.7238 2.1225 2.5449

θ=60 UD 1.1192 1.4180 1.8095 2.2458 2.7052
FGV 1.1177 1.4130 1.8007 2.2331 2.6888
FGO 1.1541 1.5256 1.9967 2.5119 3.0490
FGX 1.0963 1.3445 1.6785 2.0569 2.4592

θ=75 UD 1.0876 1.3160 1.6268 1.9816 2.3608
FGV 1.0874 1.3152 1.6254 1.9797 2.3582
FGO 1.1185 1.4158 1.8055 2.2400 2.6976
FGX 1.0699 1.2563 1.5171 1.8203 2.1482



S. J. Mehrabadi and S. M. N. Farahani / Adv. Appl. Math. Mech., 10 (2018), pp. 1344-1364 1359

2 
 

 
Fig. 3. Converting the rectangular coordinate to the parallelogram one 
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Fig 4.  3D vibration mode shapes of UD-CNTRC skew plate in fully clamped boundary conditions.  

 

 
 

Figure 4: 3D vibration mode shapes of UD-CNTRC skew plate in fully clamped boundary conditions.
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CNT on the nonlinear plate’s vibration behavior are examined. Solving the problem leads
to the following results.

1. The Differential quadrature method accompanying Frechet derivative Technique is
an efficient method for solving the nonlinear couple differential equations.

2. For a skew plate reinforced with uniformly distributed carbon nanotubes, increase
in skew angle of the plate result an increase in dimensionless frequency of the sys-
tem.

3. In the reinforced skew plate with uniform distributions of carbon nanotubes, non-
dimensional natural frequencies have been increased by increasing the volume frac-
tion of carbon nanotubes.

4. In the linear analysis of FG-CNTRC skew plate in accordance with the FGO model,
the non-dimensional natural frequencies are the minimum ones. UD, FGV, and
FGX models result in higher frequencies. This happens for all kinds of boundary
conditions.

5. Like other references in this study, it is concluded that for isotropic square plate and
FG-CNTRC skew plate, the nonlinear frequency ratio increases with higher ampli-
tudes of plate’s vibration. This indicates hardening type of nonlinear behavior.

6. In nonlinear analysis of FG-CNTRC skew plate, the maximum nonlinear frequency
ratio is related to the square plate. Its ratio decreases with the increased skew angle.

7. Nonlinear analysis of FG-CNTRC skew plate based on the FGO model results in
the highest nonlinear frequency ratio. This ratio will be lower using UD, FGV and
FGX models, respectively.

8. In case of Vcnt = 0.12, the nonlinear frequency ratio would be maximum and by
increasing the CNTs volume fraction the nonlinear frequency ratio decreases.

9. The degree of hardening type of non-linearity is less for clamped boundary condi-
tion compared to those of simply supported boundary condition.

Appendix: Equations of force, moment and stress resultants in
terms of displacement
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[12] ENRIQUE GARCÍA, RAFAEL CASTRO AND ERICK I. SAAVEDRA FLORES, Static and free vibra-
tion analysis of functionally graded carbon nanotube reinforced skew plates, Composite Structures.

[13] L. W. ZHANG, Z. X. LEI AND K. M. LIEW, Vibration characteristic of moderately thick function-
ally graded carbon nanotube reinforced composite skew plates, Composite Structures, (2014).

[14] Y. S. SHIH AND P. T. BLOTTER, Nonlinear vibration analysis of arbitrarily laminated thin rectan-
gular plates on elastic foundations, J. Sound Vib., 167 (1993), pp. 433–459.

[15] M. K. SINGHA AND RUPESH DARIPA, Nonlinear vibration of symmetrically laminated composite
skewplates byfinite element method, Int. J. Nonlinear Mech., 42 (2007), pp. 1144–1152.

[16] C. W. BERT AND M. MALIK, Differential quadrature method in computational mechanics, are-
view, Appl. Mech. Rev., 49 (1996), pp. 1–27.

[17] S. L. LAU, Y. K. CHEUNG AND S. Y. WU, Nonlinear vibration of thin-elastic plates, Part 1:
Generalized incremental Hamilton’s principle and element formulation, ASME J. Appl. Mech., 51
(1984), pp. 837–844.

[18] MALOY K. SINGHA AND M. GANAPATHI, Large amplitude free flexural vibrations of laminated
composite skew plates, Int. J. Nonlinear Mech., 39 (2004), pp. 1709–1720.

[19] H. N. CHU AND G. HERRMANN, Influence of large amplitudes on free flexural vibrations of rect-
angular plates, ASME, J. Appl. Mech., 23 (1956), pp. 532–540.

[20] S. R. RAO, A. H. SHEIKH AND M. MUKHOPADHYAY, Large amplitude finite element flexural
vibration of plates/stiffened plate, J. Acoust. Society Am., 93 (1993), pp. 3250–3257.


