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Abstract. This paper proposes a stable and efficient implicit block Lower-Upper
Symmetric-Gauss-Seidel (LU-SGS) algorithm-based lattice Boltzmann flux solver
(LBFS) for simulation of hypersonic flows. In this method, the finite volume method
(FVM) is applied to discretize the Navier-Stokes equations, and the LBFS is utilized to
evaluate the numerical flux at the cell interface. In LBFS, the local solution of discrete
velocity Boltzmann equation (DVBE) with the non-free parameter D1Q4 lattice Boltz-
mann model is adopted to reconstruct the inviscid flux across the cell interface, and the
viscous flux is approximated by conventional smooth function approach. In order to
improve the robustness and convergence rate of the simulation for hypersonic flows,
especially for problems with complex geometry, the implicit block LU-SGS algorithm
is introduced to solve resultant discrete governing equations. A double cone model at
Mach number of Ma= 9.86 is firstly simulated to validate the proposed scheme, and
a hypersonic flight vehicle with wings and rudders at Mach number of Ma = 5.56 is
then calculated to extend the application in practical engineering problems. Numer-
ical results show that the proposed scheme could offer a more accurate and effective
prediction for hypersonic flows.

AMS subject classifications: 76M12
Key words: Hypersonic flows, lattice Boltzmann flux solver, implicit block LU-SGS, finite volume
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1 Introduction

The computational fluid dynamics (CFD) plays an important role in solving flow field
problems due to the prosperous development in numerical algorithms and computa-
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tional facility. CFD provides lower cost than wind tunnel experiment and higher accu-
racy than engineering approximation method, which brings it widely industrial appli-
cation. The finite volume method (FVM) is one of the most popular numerical methods
in CFD due to its good numerical conservation properties and suitability in solving flow
problems with complex geometry [1–3]. The key of FVM is to construct a flux solver to
evaluate the numerical flux at the cell interface. Godunov [4] simplified the Euler equa-
tions to a Riemann problem firstly in 1959 and proposed an accurate Riemann solver
for calculating the inviscid numerical flux. Subsequently, varieties of approximate Rie-
mann solvers [5–9] were developed to improve the efficiency of the original one. Among
them, the upwind schemes such as Roe scheme [5], AUSM (Advection Upstream Split-
ting Method) scheme [7] and van Leer scheme [8] have been widely used in evaluating
the numerical flux for simulating the compressible flows. However, some of them often
exhibit a carbuncle phenomenon and induce numerical instability during the hypersonic
simulation [10].

Boltzmann equation-based flux solver is another popular method for calculation of
the numerical flux. Different from the conventional CFD approaches, which only com-
pute the flux by numerical approximation, the Boltzmann equation-based schemes evalu-
ate the flux through a local reconstruction with the solution for Boltzmann equation at the
cell interface. This feature makes the computation of Boltzmann equation-based schemes
be robustness and effectively prevent unphysical solutions. One of the representative
Boltzmann equation-based flux solvers is the gas-kinetic scheme (GKS) [11–13], which
calculates the numerical flux by the local solution of continuous Boltzmann equation. In
the works of Xu and his coworkers [14–17], the local integral solution of Boltzmann equa-
tion with Maxwellian distribution function is utilized to reconstruct the numerical flux.
To simplify the Maxwellian function-based GKS [14–17], the circular function-based GKS
(CGKS) for two-dimensional cases [18–20] and the sphere function-based GKS (SGKS) for
three-dimensional cases [21–23] have been developed recently by Shu and his coworkers.
Another representative Boltzmann equation-based flux solver is the lattice Boltzmann
flux solver (LBFS), which adopts the local solution of discrete velocity Boltzmann equa-
tion (DVBE) with lattice Boltzmann model to reconstruct the numerical flux at the cell
interface [24–29]. By using the discrete model, the LBFS is more convenient for both
mathematical derivation and coding. It has been proven that the LBFS can provide an
accurate and efficient prediction for both incompressible and compressible flows [28,29].
Nowadays, more applications such as turbomachinery flows [30] and multi-component
flows [31] are implemented by LBFS, which make it becoming a popular solver. How-
ever, the application of LBFS in hypersonic flows, especially for complex geometry, is still
rarely studied. Therefore, a further endeavor is needed to extend the application of LBFS
to hypersonic flows.

In the simulation of hypersonic flows, the extreme low-pressure area usually occurrs
behind the object [32,33]. This phenomenon may slow down the convergence rate signif-
icantly or even produce a divergent result with negative density and pressure, especially
for complex geometry. To overcome this defect, during the hypersonic simulation, the
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implicit scheme is often used for temporal discretization due to its high stability and
efficiency. Tlke et al. [34] proposed a fully implicit lattice Boltzmann scheme which is
based on finite difference method (FDM) to improve the computational efficiency in high
Reynolds number. Lee and Lin [35] extended this scheme into the Taylor-Galerkin finite
element method (FEM). Huang et al. [36] further applied it into a general FDM. Recently,
based on the conventional CFD schemes, Chen and Wang [37] developed an implicit
block Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) algorithm for solving flow prob-
lems with arbitrary grids. Subsequently, Li and Luo [38] introduced the implicit block
LU-SGS scheme into the lattice Boltzmann method. It was found that the implicit block
LU-SGS scheme can significantly speed up the efficiency and improve the robustness of
computation, especially for hypersonic problems.

Due to nice features of the implicit block LU-SGS algorithm, it is introduced into the
current LBFS for solving complex hypersonic flow problems. In the method, the Navier-
Stokes equations are discretized by FVM in space and by implicit block LU-SGS scheme
in time, and the numerical flux at the cell interface is computed by LBFS. In addition, in
order to simulate turbulence flows, the Spalart-Allmaras one-equation turbulence model
is adopted to evaluate the turbulent viscosity [39]. To validate the present method, a two-
dimensional double cone model is first computed and compared with the available data.
Subsequently, a hypersonic flight vehicle with wings and rudders in two-dimensional
space is calculated to show the potential of the developed method for simulating prac-
tical engineering problems. Results show that the present scheme can predict the flow
properties with high accuracy and efficiency in simulating the hypersonic flows. Overall,
the developed scheme well combines the fine convergence and high efficiency properties
of implicit block LU-SGS algorithm with the high computational accuracy of LBFS.

2 Methodology

In this section, an implicit block LU-SGS algorithm-based LBFS scheme is revealed. Here,
the Navier-Stokes equations are solved on a macroscopic scale, where the governing
equations are discretized by FVM and the conservative variables are defined at cell cen-
ters. To simulate hypersonic flows accurately and stably, the LBFS is adopted to evaluate
the numerical flux at the cell interface. In LBFS, the flux is reconstructed by the local
solution of DVBE with the non-free parameter D1Q4 lattice Boltzmann model. At the
same time, the numerical dissipation is introduced by the collision term of DVBE and
controlled by a switch function which is defined by the difference of pressure at the left
and the right sides of cell interface. To further improve the robustness and convergent
speed for solving hypersonic flow problems, the implicit block LU-SGS is introduced to
solve resultant governing equations.

2.1 FVM discretization and D1Q4 lattice Boltzmann model
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In general, the discretized form of the Navier-Stokes equations given by FVM can be
written as

dWI

dt
=− 1

ΩI

N f

∑
i=1

(Fci−Fvi)Si, (2.1)

where Wis the vector of conservative variables, Fcis inviscid flux and Fv is viscous flux.
The subscript I denotes the index of the control volume, ΩI is the volume and N f is
the number of faces. It can be seen that the key to evolve the conservative variables
at cell center is to calculate the numerical fluxes at the cell interface. In this work, the
viscous flux Fv is calculated by the central difference scheme [1], and the inviscid flux Fc
is evaluated by LBFS [28, 29]. The details will be discussed in Subsection 2.2.

In this work, we focus on solving 2-D hypersonic problems. For the 2-D case, the
conservative variables W at cell center and inviscid flux vector Fc at the cell interface can
be expressed as

W=


ρ

ρ(Unnx+uτx)
ρ(Unny+uτy)

ρ(U2
n/2+e)+ρ|uτ|2/2

, (2.2a)

Fc =


ρUn

(ρU2
n+p)nx+ρUnuτx

(ρU2
n+p)ny+ρUnuτy

(ρ(U2
n/2+e)+p)Un+ρ|uτ|2/2

, (2.2b)

where ρ is the density, p is the pressure, e is the internal energy, Un is the normal velocity,
and uτ =

(
uτx,uτy

)
is the tangential velocity. n=(nx,ny) denotes the unit normal vector

on the control surface in the Cartesian coordinate system.
To use the LBFS for evaluating the numerical flux, the lattice Boltzmann model is

required. Most of the existing lattice Boltzmann models [40–43] involve a number of
user-specified parameters, which could significantly affect the performance of LBFS. To
remove this drawback, Yang et al. [25, 26] proposed a non-free parameter D1Q4 model.
In this model, there are 4 equilibrium distribution functions f eq

1 , f eq
2 , f eq

3 , f eq
4 and 2 lattice

velocities d1, d2, which are derived from conservation forms of moments and given by

f eq
1 =

ρ(−d1d2
2−d2

2u+d1u2+d1c2+u3+3uc2)

2d1(d2
1−d2

2)
,

f eq
2 =

ρ(−d1d2
2+d2

2u+d1u2+d1c2−u3−3uc2)

2d1(d2
1−d2

2)
,

f eq
3 =

ρ(d2
1d2+d2

1u−d2u2−d1c2−u3−3uc2)

2d2(d2
1−d2

2)
,

f eq
4 =

ρ(d2
1d2−d2

1u−d2u2−d2c2+u3+3uc2)

2d2(d2
1−d2

2)
,

(2.3a)
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{
d1=

√
u2+3c2−

√
4u2c2+6c4,

d2=
√

u2+3c2+
√

4u2c2+6c4.
(2.3b)

Here, u is the velocity, c=
√

Dp/ρ represents the particular velocity of particles, and D
is the spatial dimension. D= 1 is used in the D1Q4 model. The distribution of discrete
lattice velocities for D1Q4 model is shown in Fig. 1.
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d_{2}^{2})} \\  

 & f_{4}^{eq}=\frac{\rho (d_{1}^{2}{{d}_{2}}-d_{1}^{2}u-{{d}_{2}}{{u}^{2}}-

{{d}_{2}}{{c}^{2}}+{{u}^{3}}+3u{{c}^{2}})}{2{{d}_{2}}(d_{1}^{2}-

d_{2}^{2})} \\  

\end{align}\] (4a) 

 \[\begin{align} 

  & {{d}_{1}}=\sqrt{{{u}^{2}}+3{{c}^{2}}-

\sqrt{4{{u}^{2}}{{c}^{2}}+6{{c}^{4}}}} \\  

 & 

{{d}_{2}}=\sqrt{{{u}^{2}}+3{{c}^{2}}+\sqrt{4{{u}^{2}}{{c}^{2}}+6{{c}^{4}}

}} \\  

\end{align}\] (4b) 

Here, \[u\] is the velocity, \[c=\sqrt{Dp/\rho }\] represents the particular velocity of 

particles, and \[D\] is the spatial dimension. \[D\text{=}1\] is used in the D1Q4 model. 

The distribution of discrete lattice velocities for D1Q4 model is shown in Fig. 1. 
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Fig. 1. Lattice velocities distribution for non-free parameter D1Q4 model. 
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Figure 1: Lattice velocities distribution for non-free parameter D1Q4 model.

As shown above, the D1Q4 model is actually a one-dimensional model, only the flux
in the normal direction is evaluated from the LBFS. When the multi-dimensional prob-
lems are considered, the D1Q4 model needs to be applied along the normal direction of
cell interface, as shown in Fig. 2. Accordingly, the velocity u in Eq. (2.3) should be re-
placed by the normal velocity Un. Then by defining the unit normal vector at the cell
interface as (nx,ny), the relations between different directions of velocity in Fig. 2 can be
written as

u=Unnx+uτx, v=Unny+uτy. (2.4)

By using the D1Q4 model to the 2-D case, the physical conservation laws can be given by

ρ=
4
∑

i=1
f eq
i ,

ρUn =
4
∑

i=1
f eq
i ξi,

ρU2
n+p=

4
∑

i=1
f eq
i ξiξi,

ρ(U2
n/2+e)=

4
∑

i=1
f eq
i

(1
2

ξiξi+ep

)
,[

ρ(U2
n/2+e)+p

]
Un =

4
∑

i=1
f eq
i

(1
2

ξiξi+ep

)
ξi,

(2.5)

where ξi means particle velocity in i-direction and ep =
[
1− D

2 (γ−1)
]
e is the potential

energy of particles. γ is the specific heat ratio. Following the description in Fig. 1, we
have ξ1=d1, ξ2=−d1, ξ3=d2 and ξ4=−d2.

2.2 LBFS for evaluation of numerical flux

Suppose that the cell interface is located at x=0, then the distribution function at the cell
interface can be written as

fi(0,t)= f eq
i (0,t)− f neq

i (0,t), (2.6)
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Fig. 2. Application of D1Q4 model in 2-D case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2: Application of D1Q4 model in 2-D case.

where f neq
i (0,t) is the non-equilibrium part of the distribution function. According to

Chapman-Enskog analysis, the Boltzmann equation can recover the Navier-Stokes equa-
tions [44, 45], and the non-equilibrium part can be expressed as

f neq
i (0,t)= −τ

(
∂ f eq

i
∂t

+ξi
∂ f eq

i
∂x

)∣∣∣∣∣
(0,t)

. (2.7)

By applying Taylor series expansion along the characteristic direction of Boltzmann equa-
tion, the non-equilibrium part could be further approximated by

f neq
i (0,t)=− τ

δt
[

f eq
i (0,t)− f eq

i (−ξiδt,t−δt)
]
+O(ξi

2δt2,τδt). (2.8)

Here, f eq
i (0,t) is equal to equilibrium distribution function at the cell interface and

f eq
i (−ξiδt,t−δt) is the equilibrium distribution function at the surrounding point of the

cell interface. Substituting Eq. (2.8) into Eq. (2.6), we have

fi(0,t)= f eq
i (0,t)−τ0

[
f eq
i (0,t)− f eq

i (−ξiδt,t−δt)
]
+O(ξi

2δt2,τδt), (2.9)

where τ0 = τ/δt is the dimensionless collision time, which will be determined subse-
quently.

In the present scheme, the LBFS is only used to evaluate inviscid flux. Thus, the non-
equilibrium part can be viewed as numerical dissipation, and τ0 can be treated as the
weight of numerical dissipation. According to relationships (2.5), at the cell interface, the
inviscid flux can be computed by

Fc =
4

∑
i=1

ξi ϕa f eq
i (0,t)+τ0

[
4

∑
i=1

ξi ϕa f eq
i (−ξiδt,t−δt)−

4

∑
i=1

ξi ϕa f eq
i (0,t)

]
=Fc+τ0(Fc−Fc). (2.10)

It should be noticed that the moments ϕa is consists of three terms when applying the
D1Q4 model. But if a global 2-D coordinate system is considered, the moments ϕa will
include four terms, because the normal velocity in 1-D case is decomposed into two parts
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\sum\limits_{i=1}^{4}{{{\xi }_{i}}{{\varphi }_{a}}}f_{i}^{eq}(0,t) \right] \\  

 & =F_{c}^{ }+{{\tau }_{0}}(F_{c}^{}-F_{c}^{ })   

\end{align}\] (11) 

It should be noticed that the moments \[{{\varphi }_{a}}\] is consists of three terms 

when applying the D1Q4 model. But if a global 2-D coordinate system is considered, 

the moments \[{{\varphi }_{a}}\] will include four terms, because the normal velocity 

in 1-D case is decomposed into two parts of the \[x\] and \[y\] directions. By applying 

the expressions in Eq. (5), the moments \[{{\varphi }_{a}}\] are given by 

\[{{\varphi }_{a}}={{\left[ 1,{{\xi }_{i}}{{n}_{x}}+{{u}_{\tau 

x}},{{\xi }_{i}}{{n}_{y}}+{{u}_{\tau y}},\frac{1}{2}\left( \xi _{i}^{2}+{{\left| 

{{u}_{\tau }} \right|}^{2}} \right)+{{e}_{p}} \right]}^{T}}\] (12) 

It can be seen from Eq. (11) that the inviscid flux consists of two parts: 

\[F_{c}^{ }\] is produced by the equilibrium distribution function at the cell interface 

\[f_{i}^{eq}(0,t)\], and \[F_{c}^{}\] is attributed to the equilibrium distribution 

function at the surrounding points of the interface \[f_{i}^{eq}(-{{\xi }_{i}}\delta t,t-

\delta t)\]. 
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Figure 3: Streaming process of non-free parameter D1Q4 model at the cell interface.

of the x and y directions. By applying the expressions in Eq. (2.4), the moments ϕa are
given by

ϕa =

[
1,ξinx+uτx,ξiny+uτy,

1
2

(
ξ2

i +|uτ|2
)
+ep

]T

. (2.11)

It can be seen from Eq. (2.10) that the inviscid flux consists of two parts: Fc is pro-
duced by the equilibrium distribution function at the cell interface f eq

i (0,t), and Fc is
attributed to the equilibrium distribution function at the surrounding points of the inter-
face f eq

i (−ξiδt,t−δt).
Like the conventional upwind schemes, it is assumed that a Riemann problem with

the pricewise constant distribution of the distribution functions is formed at the cell in-
terface, as shown in the left side of Fig. 3. Thus, the equilibrium distribution function
f eq
i (−ξiδt,t−δt) can be given according to the location of −ξiδt as follows:

f eq
i (−ξiδt,t−δt)=

{
f eq,L
i −ξiδt≤0,

f eq,R
i −ξiδt>0.

(2.12)

More specifically, for D1Q4 model, Eq. (2.12) can be rewritten as

f eq
i (−ξiδt,t−δt)=

{
f eq,L
i , i=1,3,

f eq,R
i , i=2,4.

(2.13)

This process is depicted in Fig. 3. In fact, it is equivalent to solve the collisionless Boltz-
mann equation at the cell interface.

To calculate the equilibrium distribution function f eq
i (0,t), the conservative variables

at the cell interface should be computed in advance.
According to the compatibility condition [28], the non-equilibrium part of distribu-

tion function does not contribute to the conservative variables. As a result, the conserva-
tive variables at the cell interface can be computed by

Wj+1/2=
4

∑
i=1

ϕa f eq
i (0,t)=

4

∑
i=1

ϕa f eq
i (−ξiδt,t−δt). (2.14)
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By substituting Eq. (2.13) into Eq. (2.14), we have

Wj+1/2= ∑
i=1,3

ϕa f eq,L
i + ∑

i=2,4
ϕa f eq,R

i . (2.15)

Once Wj+1/2 is obtained, the equilibrium distribution function at the cell interface f eq
i (0,t)

can be calculated by substituting the flow variables into Eq. (2.3) and the flux Fc can be
computed by substituting f eq

i (0,t) into Eq. (2.10).
Finally, the two parts of inviscid flux at the cell interface can be computed by

Fc =


ρUn

(ρU2
n+p)nx+ρUnuτx

(ρU2
n+p)ny+ρUnuτy

(ρ(Un
2/2+e)+p)Un+ρUn|uτ|2/2


j+1/2

, (2.16a)

Fc = ∑
i=1,3

ξi ϕa f eq,L
i + ∑

i=2,4
ξi ϕa f eq,R

i , (2.16b)

where the flow variables with subscript ”j+1/2” are determined by Wj+1/2. In addition,
the viscous flux at the cell interface is calculated by the central difference method. The
details can be referred to [28, 46].

In Eq. (2.10), an undetermined variable is the dimensionless collision time τ0. The
influence of the value of τ0 has been discussed by Yang et al. in [28]. For the hypersonic
simulation here, τ0 can be treated as a switch function defined by:

τ0=max
{

τL,τR
}

, (2.17a)

τL = max
j=1,N f L

{
τj
}

, τR = max
j=1,N f R

{
τj
}

, (2.17b)

τj = tanh

(
C

∣∣pL−pR
∣∣

pL+pR

)
, (2.17c)

where C is the amplification factor, pL and pR are the pressure at left and right sides of
the cell interface. N f L and N f R are the number of faces of control volume on left and right
sides of the cell interface respectively.

2.3 Implicit block LU-SGS algorithm for temporal discretization

The simulation of hypersonic flow field is always time consuming due to slow conver-
gent rate, especially for some complex geometries. Complex conditions such as strong
shock waves, boundary layer interactions and large viscosity gradient may occur in such
problems, which will lead to computation unstable or even divergent. In addition, the
huge quantities of mesh points used in the simulation of hypersonic flows request a much
stricter convergence condition. Therefore, an implicit block LU-SGS algorithm is intro-
duced to the above mentioned LBFS to improve its convergence and stability in this work.
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An implicit scheme-based LBFS for steady flows can be written as

Ω
∆Wn

∆t
+
∮

Γ
(Fn+1

c −Fn+1
v )dS=0, (2.18)

where ∆Wn=Wn+1−Wn and the superscript ”n” denotes the n-th time step. For simplic-
ity, we introduce the following definition of the residual

R(W)=
∮

Γ
(Fc−Fv)dS. (2.19)

Since the viscous and inviscid fluxes at the (n+1)-th time step are unknown, Eq. (2.18)
cannot be solved directly. However, the residual at (n+1)-th time step can be linearized
to that at n-th time step as

R(Wn+1)=R(Wn)+
∂R(Wn)

∂W
∆Wn =R(Wn)+A∆Wn, (2.20)

where A is the flux Jacobian. By substituting Eq. (2.20) into Eq. (2.18) and according to
the LU-SGS scheme, we have

(L+D+U)∆Wn =−R(Wn). (2.21)

Here, L, D and U are strictly the lower, diagonal and upper matrices. For structured grid,
these matrices have the expressions of

L=−(A+
i−1+A+

j−1),

D=
Ω
∆t

I+A+
i −A−i +A+

j −A−j ,

U=A−i+1+A−j+1,

(2.22)

where

A±=
1
2
(A±ωσA I). (2.23)

ω is the overrelaxation parameter, which would increase stability but may result in slow
convergence with a higher value. In this work, ω is taken as 1. σA is the spectral radius
of the flux Jacobian. Furthermore, to construct a matrix-free method, Eq. (2.21) can be
approximated by

(D+L)D−1(D+U)∆Wn =−R(Wn). (2.24)

Note that, in Eq. (2.24), the residual at n-th time step R(Wn) is computed by the LBFS as
illustrated in Subsection 2.2.

Different from the conventional LU-SGS scheme, in the implicit block LU-SGS
scheme, the forward and backward sweep processes are executed more than once in each
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time step to well approximate the original block diagonal matrix. Specifically, the sweep
process of the implicit block LU-SGS scheme can be written as{

D∆W∗=−R(Wn)−L∆W∗−U∆Wn,k−1, forward sweep,
D∆Wn,k =−R(Wn)−L∆W∗−U∆Wn,k, backward sweep.

(2.25)

where k is the iteration number in a single calculation loop, which is generally called the
inner iteration. This whole process is to replace the unknowns in the upper diagonal part
by the values obtained in the last iteration step in the forward sweep, and the unknowns
in lower diagonal part of the backward sweep are replaced by the values calculated in
the forward step. Once the inner iteration is completed, the macroscopic variables can
be updated by Wn+1=Wn+∆Wn. The full implementation of the implicit block LU-SGS
algorithm-based LBFS is shown in Algorithm 1.

3 Numerical examples

The biconics model is firstly used to validate the present scheme and a hypersonic flight
vehicle outline with wings and rudders is then calculated to extend its applications in
complex hypersonic problems. In this work, all the computations were done on a per-
sonal computer (PC) with a processor of 3.3GHz.

3.1 Case 1: Biconics model

Experimental data in the wind tunnel test of biconics model is used to validate the present
method. The total length of this test case is 122.24mm, and the detailed geometric infor-
mation is shown in reference [47]. The free stream Mach number is Ma=9.86, the pressure
is P= 59.92Pa and the temperature is T = 48.88K. To capture shock waves and describe
boundary layer accurately in hypersonic flows, structured, as shown in Fig. 4, is applied
for numerical simulation.

To demonstrate the computational efficiency of the proposed scheme, we depict the
convergence histories of residuals with different values of k= 1,2,3,5,12 in Fig. 5. Fig. 6
shows the CPU time of different k correspondingly. The explicit scheme cannot offer a
convergent result and it is not shown in the figure.

It can be seen from Fig. 5 that the convergent speed is enhanced obviously when the
inner iteration is applied in a single loop. As the value of k increases, the convergent
speed is improved gradually. For CPU time cost as shown in Fig. 6, k=3 could have 25%
of time-saving and the iteration steps could decrease by a half. Therefore, k=3 is recom-
mended in this case to balance both convergent speed and computational efficiency.

Fig. 7 and Fig. 8 show the pressure and Mach number distributions obtained by
present solver with inner iteration number of k=3. These pictures show that the present
solver can well capture strong shock waves and describe flow details such as low pres-
sure after the biconics tail. Fig. 9 shows the comparison of pressure coefficient computed
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Algorithm 1 Implicit block LU-SGS.
Input: Wn

Output: Wn+1

1. R(W)←
∮

Γ (Fc−Fv)dS /∗ nx, ny: the number of grid points on x, y-direction ∗/

2. for k←1 to nk do

3. for const←2 to nx+ny−2 do /* Forward sweep */

4. for j←1 to ny−1 do

5. i← const− j

6. Dij←
Ω
∆t

I+A+
i −A−i +A+

j −A−j

7. if k←1 then

8. ∆Wn,0
ij ←0

9. end

10. ∆W∗ij←D−1
ij

[
−Rij(Wn)−Lij∆W∗ij−Uij∆Wn,k−1

ij

]
11. end

12. end

13. for const←nx+ny−2 to 2 do /* Backward sweep */

14. For j←ny−1 to 1 do

15. i← const− j

16. Dij← Ω
∆t I+A+

i −A−i +A+
j −A−j

17. ∆Wn,k
ij ←D−1

ij

[
−Rij(Wn)−Lij∆W∗ij−Uij∆Wn,k

ij

]
18. end

19. end

20. end

21. Wn+1←Wn+∆Wn,k
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Fig. 4. Partial view of structured grid around biconics model. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

  

Figure 4: Partial view of structured grid around biconics model.

Fig. 5. Comparison of convergence history by different number of inner iterations for 

biconics model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5: Comparison of convergence history by different number of inner iterations for biconics model.

Fig. 6. Comparison of CPU time cost by different number of inner iterations for 

biconics model. 

 

 

 

 

 

 

 

 
 

 

  

Figure 6: Comparison of CPU time cost by different number of inner iterations for biconics model.

by Roe scheme, van Leer scheme and the present solver. Fig. 10 depicts the comparison
of heat flux between the above mentioned three schemes and the experimental data [47].
It can be observed that the results of present solver are in line with those of the classi-
cal schemes and the experimental data. Overall, the present solver shows good com-
putational accuracy and better efficiency of reaching a convergent state for simulating
hypersonic flows.
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Fig. 7. Pressure contours by the present solver for biconics model. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

  

Figure 7: Pressure contours by the present solver for biconics model.

Fig. 8. Mach number contours by the present solver for biconics model. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  

Figure 8: Mach number contours by the present solver for biconics model.

Fig. 9. Comparison of pressure coefficient on the surface of biconics model by 

different schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 9: Comparison of pressure coefficient on the surface of biconics model by different schemes.

3.2 Case 2: Hypersonic flight vehicle

A hypersonic flight vehicle configuration with wings and rudders is used to demon-
strate the potential of the developed method in industrial application. The geometry
has 5665mm in total length and 1480mm in width (including rudder). The free stream
with Mach number of Ma=5.56, pressure of P=105Pa and temperature of T=218.6K is
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Fig. 10. Comparison of heat flux on the surface of biconics model by different 

schemes. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  

Figure 10: Comparison of heat flux on the surface of biconics model by different schemes.

Fig. 11. Partial view of structured grid around the hypersonic flight vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 11: Partial view of structured grid around the hypersonic flight vehicle.

considered in this case. The structured grid is used, which is shown in Fig. 11.
Firstly, we present the comparison of convergence history and CPU time cost between

different values of k in Figs. 12 and 13. It can be seen from Fig. 12 that increasing inner
iterations in a single loop can speed up the convergent rate. As for CPU time shown in
Fig. 13, k= 3 could save 34% of the computational time as compared to k= 1 and it will
be used in this case.

Fig. 14 shows the pressure contours around the hypersonic flight vehicle. It can be
seen clearly that the largest pressure occurs near head area, which matches the situation
in Fig. 16. The leading edge on rudder has larger pressure than that on wing due to a
larger angle, which would result in fierce gas squeezing. Fig. 15 shows the Mach number
distribution. Together with Fig. 17, we can see that the largest value of Q/Q0 is not
exactly on the leading edge, but near it. The reason is that the turbulent flows would
result in a larger heat flux after the stagnation point. Similarly, the larger angle of rudder
results in larger heat flux than wing. Comparison of Fig. 16 and Fig. 17 shows that the
results of the present solver have the same tendency as those of the classical schemes.
However, the comparison of heat flux in Fig. 17 shows larger difference between the
compared schemes than that of pressure coefficient in Fig. 16. It can be seen that near
the area of shock waves such as head and rudders, the present solver according with the
Roe scheme better, which has a high resolution of shock waves [48]. Therefore, it can
be concluded that the LBFS could catch and describe more details, such as the strong
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Fig. 12. Comparison of convergence history by different number of inner iterations 

for the flight vehicle. 

 

 

 

 

 

 

 

 

 

 

  
Figure 12: Comparison of convergence history by different number of inner iterations for the flight vehicle.

Fig. 13. Comparison CPU time cost by different number of inner iterations for the 

flight vehicle. 

 

 

 

 

 

 

 
 

 

 

 

 

  

Figure 13: Comparison CPU time cost by different number of inner iterations for the flight vehicle.

Fig. 14. Pressure contours by the present solver for the flight vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 14: Pressure contours by the present solver for the flight vehicle.

shock waves and serious aeroheating produced by air drag and friction. From this test
example, it is well demonstrated that the present solver has a great potential for flight
vehicle design and industrial applications.
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Fig. 15. Mach number contours by the present solver for the flight vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 15: Mach number contours by the present solver for the flight vehicle.

Fig. 16. Comparison of pressure coefficient on the surface of the flight vehicle by 

different schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 16: Comparison of pressure coefficient on the surface of the flight vehicle by different schemes.

Fig. 17. Comparison of heat flux on the surface of the flight vehicle by different 

schemes. 

 

 

 

 

 

 

 

 

Figure 17: Comparison of heat flux on the surface of the flight vehicle by different schemes.

4 Conclusions

This paper presents a stable and efficient LBFS scheme which introduces the implicit
block LU-SGS algorithm for simulating 2-D complex hypersonic flows. The Navier-
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Stokes equations are discretized by FVM in spatial dimension and resultant governing
equations are solved by implicit block LU-SGS algorithm. During the FVM discretiza-
tion, the inviscid flux is evaluated by the LBFS with non-free parameter D1Q4 model,
and a switch function is applied to control numerical dissipation. Meanwhile, the vis-
cous flux is computed by conventional central difference method. During the iteration,
the original LU-SGS computation is replaced by a k times repetitional looping, which is
named as an implicit block approach. This repetition will approximately consider the
original block diagonal matrix by introducing the lower and upper elements from the
previous computation which obviously enhances the convergent property with little ex-
tra expense in memory request.

A biconics model at Ma= 9.86 is firstly studied to validate the present solver. Then
a hypersonic flight vehicle with wings and rudders is used to prove the potential of the
present method in solving practical engineering problem. The numerical results show
that the developed solver not only inherits the ability of describing the flow field with
high accuracy from LBFS, but also combines the properties of robustness and good ef-
ficiency of reaching convergent from implicit block LU-SGS method. Therefore, it can
be concluded that the present method is able to solve complex hypersonic problems and
gets convergent results with both high accuracy and efficiency. This provides a stepping
stone towards the future industrial application of LBFS method.
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