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Abstract. First and second order numerical schemes for the fourth order parabolic equa-

tion with Peng-Robinson equation of state, which are based on recently proposed invari-

ant energy quadratisation method are developed. Both schemes are linear, uncondi-

tionally energy stable and uniquely solvable. The reduced linear systems are symmetric

and positive definite, so that their solutions can be efficiently found. Numerical results

demonstrate the good performance of the schemes, consistent with experimental data.
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1. Introduction

Modeling and simulation of the multi-phase hydrocarbon systems of the oil-exploitation

processes are popular in engineering practice [17]. The subsurface crude oil reservoirs of-

ten contain small amounts of nitrogen, carbon dioxide and hydrocarbons from methane

through C30+ in both vapor phase and liquid phase together with solid phase (rock or soil)

and water phase [29,41]. The anisotropic forces at the surface or interface between immis-

cible and/or partially miscible fluids at pore-scale yield the surface tension. The capillary

effect at Darcy-scale and the resultant capillary pressure caused by the surface tension is

one of the major forces in fluid flow and transport in subsurface reservoirs. It is also the

leading mechanism in oil recovery from fractured oil reservoirs [29]. In addition, the sur-

face tension influences the relative permeability and residual saturation in porous medium
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processes and thus influences the flow and the transport of the vapor and liquid phases on

the pore scale. Therefore, appropriate mathematical models play an important role in sim-

ulation and prediction of interface phenomena and in the calculation of important interface

parameters connected with different phases of oil mixture.

There are at least three main approaches to the study of interface phenomena. The first

one is carried out either by molecular Monte Carlo simulations or molecular dynamics sim-

ulation with an intermolecular potential function [12,38]. The second approach is known

as sharp interface modeling. In this case, the interface is considered as a zero-thickness

two-dimensional entity, where density experiences a big jump [23,28,38]. Although it can

predict the shape and the dynamics of the interface with a given interface tension, the in-

terface details can not be derived. The third one is the phase field model [44], gradient

theory [4], diffuse interface model [33]. The density is constant for homogeneous phase

and experiences continuous variation at the interface.

In our simulations of the interface phenomena, the phase field model is selected. This

well-known model was established by Van der Waals [42] in his work on the interface pre-

dictions based on thermodynamic principles [1], and extended by Cahn and Hilliard [5–7].

To describe the final steady state of a system based on the well accepted second thermo-

dynamic law, the Helmholtz free energy is usually used as starting point. According to

the phase field model, the total Helmholtz free energy often consists of the homogeneous

part of pure phase for substance and the gradient part determined by the density variation

at the interface. Thus the total energy can be approximated by a functional, describing

the phenomenological characters of the investigated system — e.g. by the double-well po-

tential [21, 22], the molecular beam epitaxy model with [39] or without [8, 9, 40] slope

selection, the Ericksen-Leslie model for nematic liquid crystal flows [13], the phase field

crystal energy functional [2, 24], the energy of polymer hydrogels [37, 50] and so on. On

the other hand, to provide reliable predictions for all thermodynamic properties, the total

Helmholtz free energy has been obtained from the equation of state for a real substance.

To derive the corresponding free energy expressions, serious efforts are needed. In partic-

ular, for every substance of interest at each development step, some practical laboratory

experiments should be carried out along with the study of the interaction of different com-

ponents or different phases for real mixture. The Peng-Robinson equation of state model

is used more often than other cubic equations of the state due to better prediction of fluid

densities and reliable results in the vicinity of critical regions [34,41].

These energy functionals are used to derive the Euler-Lagrange equation for the system

equilibrium. The popular Allen-Cahn and Cahn-Hilliard equations are typical examples of

such flows. A variety of numerical schemes for parabolic equations are based on these

energy functionals. Note that the main concern for these methods is the energy stability

and, excluding the approach [40], there are four ways to guarantee this. The first one,

relying on the addition to discrete equation of a stabilised term of order O (∆t) or higher,

is called the stabilised method [44, 51]. The stabilised parameter should be expedient to

balance the stability and convergence of the scheme [31]. The second one is the convex-

splitting scheme proposed by Eyre [15] for the Cahn-Hilliard equation. The basic idea of

this method is that if the total energy could be represented as the difference of two con-
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vex functions of the target variable. Then the derivatives of the minuend and subtractive

terms are, respectively, derived implicitly and explicitly. The uniqueness of this scheme is

based on the fact that the corresponding solution is the minimiser of the modified con-

vex total energy. This method has been applied to almost all above mentioned models —

cf. Refs. [2, 3, 8, 18, 20, 24, 43, 46, 49, 52] and the references therein. The third approach

is called the exponential time difference (ETD) method and involves exact integration of

the linear part of the governing equations along with the approximation of the integral for

nonlinear terms [11]. This method was used to solve semilinear parabolic equations [25]

and phase field elastic bending energy models [48]. The fourth one is the newly intro-

duced invariant energy quadratisation (IEQ) method. It has a number of advantages such

as the linearity, unconditional energy stability and accuracy. The method has been applied

to the Cahn-Hilliard type equation with various energy functionals [19], the binary fluid-

surfactant phase field model [54], the phase field crystal model [53], phase field dendritic

crystal growth model [56], second order parabolic equations with the Peng-Robinson equa-

tion of state [30].

The equations derived from the Peng-Robinson equation of state contain logarithmic

and fractional singular terms. Various problems for such equations have been studied.

Thus Kou and Sun [27] presented the solvability conditions for the Euler-Lagrange equa-

tion in multi-component case and established the maximum principle for the weighted

molar density. Moreover, approximate solutions of these equations have been obtained

by modified Newton and finite element methods. The single component [38] and multi-

component [16] second order parabolic equation with mass conservation restriction have

been solved using a first order convex-splitting scheme. Besides, numerical solution of the

naturally mass conservative fourth order parabolic equation with Peng-Robinson equation

of state for single- and multi-component cases was also obtained. In the single-component

case, the energy stability, unique solvability and l∞ convergence of a first order convex-

splitting scheme [35] and two second order schemes [36] have been established. In the

multi-component case, the relations between different components are decoupled and the

solution of the new system of equations was derived by a semi-implicit unconditionally

stable scheme combined with a mixed finite element method.

In this work, the mass-conserved gradient flow with Peng-Robinson equation for the

state of particular pure substances is solved by IEQ based Crank-Nicolson schemes of the

first and second orders. The paper is organised as follows. In Sections 2 and 3, the corre-

sponding fourth order parabolic equation and its modified version are introduced. Section 4

deals with numerical schemes and the unconditional energy stability. The numerical results

presented in Section 5, demonstrate the efficiency and effectiveness of these schemes and

concluding remarks are in Section 6.

2. Mathematical Model of Peng-Robinson Equation of State

Let x and t refer to spacial and time variables, respectively. By n= n(x, t)we denote any

special hydrocarbon substance in a real crude oil mixture. The total Helmholtz free energy

of this substance in the oil recovery process, can be represented via the Peng-Robinson
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equation of state [26] as follows

F(n(x, t)) =

∫

Ω

h

f0(n(x, t)) +
c

2
|∇n(x, t)|2
i

dx, (2.1)

where the homogeneous Helmholtz free energy f0(n) of a single component fluid has the

form

f0(n) = f ideal
0 (n) + f excess

0 (n)

= f ideal
0 (n) + f excess

01 (n) + f excess
02 (n),

f ideal
0
(n) = RT n (ln n− 1) ,

f excess
01 (n) = −nRT ln (1− bn) ,

f excess
02

(n) =
a(T )n

2
p

2b
ln

�

1+ (1−p2)bn

1+ (1+
p

2)bn

�

.

Here, R ≈ 8.31432JK−1mol−1 is the universal gas constant and T the substance tempera-

ture. The parameters a(T ) and b are described in Appendix.

Mathematically the problem can be formulated as follows: Find an n∗ ∈ H such that

F(n∗) =min
n∈H F(n)

subject to the constrain
∫

Ω

n dx= N ,

where H is a space of sufficiently smooth functions. We note that N represents the fixed

amount of material mass.

Using variational methods, one can show that n satisfies the initial value problem for a

fourth order parabolic equation — viz.

∂ n(x, t)

∂ t
=∇ ·∇δF

δn
(n) = −c∆2n(x, t) +∆µ0(n(x, t)),

n(x, 0) = n0(x).

The function µ0(n(x, t)) represents the first order variational derivative of the total homo-

geneous energy
∫

Ω
f0(n(x, t))dx with respect to the molar density n(x, t). It has the form

µ0(n) = RT ln

�

n

1− bn

�

+
RT bn

1− bn
+

a(T )

2
p

2b
ln

�

1+ (1−p2)bn

1+ (1+
p

2)bn

�

− a(T )n

1+ 2bn− b2n2
,

and can be considered as the homogeneous chemical potential of the substance.

Two types of boundary conditions are considered in this work:

1. All variables are periodic.
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2. Function n satisfies the zero boundary flux condition — i.e.

∂nn|∂Ω =∇µ · n|∂Ω = 0,

where n is the unit outward normal on the boundary ∂Ω.

The mass conservation and the energy stability of such problems have been considered

earlier [36] and are used here without any comments.

Remark 2.1. The so-called convex splitting approach used to discretise the nonlinear term

while preserving unconditional energy stability leads to nonlinear schemes, the implemen-

tations of which is complicated and the computational cost is high. Therefore, our goal

here is to develop efficient linear schemes for fourth order parabolic equations based on

IEQ approach.

3. Modified Total Free Energy and Transform System

The key point in IEQ approach is to make the homogeneous Helmholtz free energy

quadratic by changing auxiliary variables. A particularly significant property of the free

energy is the boundedness from below.

The homogeneous part f0(n) of the total free energy will be written in the form f0(n) =

f01(n) + f02(n), where

f01(n) = f ideal
0 (n) + f excess

01 (n) = RT n (ln n− 1)− nRT ln (1− bn) ,

f02(n) = f excess
02 (n) =

a(T )n

2
p

2b
ln

�

1+ (1−p2)bn

1+ (1+
p

2)bn

�

.

The function f01(n) is singular at the end points of its physically reasonable region (0,1/b).

To remove its singularities at n= 0 and n= 1/b, we replace it by a C2 continuous, convex,

piecewise function f̃01(n), with the reasonable domain (−∞,+∞). For an ε ∈ (0,1/2b),

the modified version of f01(n) has the form

f̃01(n) =

























RT n

�

ln
ε

b
− 1

�

− nRT ln (1− bn) + RT

�

b

2ε
n2 − ε

2b

�

, if n<
ε

b
,

RT n (ln n− 1)− nRT ln (1− bn) , if n ∈ [ε
b

,
1− ε

b
],

RT n (ln n− 1)− RT

�

n lnε+ (
bε+ b

2ε2
(n− 1− ε

b
+
ε(1− ε)
bε+ b

)2 − (1− ε)
2

2(bε+ b)
)

�

,

if n>
1− ε

b
.

In the interval (0,1/b), the error of approximation f01(n) by f̃01(n) does not exceed a

constant multiple of ε— cf. [10,14].

For the function f02(n), the physically reasonable region (0,1/b) is included in its

functional domain (1 − p2,1 +
p

2). We will carry out the computations in the interval
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[1−p2+ ǫ, 1+
p

2− ǫ], where ǫ is a small positive number, so that the function f02(n) is

bounded from below during the whole procedure.

The modified homogeneous Helmholtz free energy of the single component fluid takes

the form f̃0(n) = f̃01(n) + f02(n). The function f̃0(n) is bounded from below but may take

non-positive values at some points in the domain. Thus

F̃tot(n) =

∫

Ω

h

c

2
|∇n|2+ f̃0(n) + B − B

i

d x , (3.1)

where B is a positive constant such that f̃0(n) + B > 0. Using the notation

W =
q

f̃0(n) + B

we rewrite the total free energy (3.1) as

F̃tot(n,W ) =

∫

Ω

h

c

2
|∇n|2+W 2 − B

i

d x . (3.2)

Variational methods applied to the Eq. (3.2) produce a new equivalent system

nt =∆µ, (3.3)

µ = −c∆n+W H(n), (3.4)

Wt =
1

2
H(n)nt , (3.5)

where H(n) = f̃ ′
0
(n)/
Æ

f̃0(n) + B and f̃ ′
0
(n) = (δ f̃0/δn)(n). The Eqs. (3.3)-(3.5) form a

closed PDE system with the initial conditions

n(t = 0) = n0, µ(t = 0) = µ(n0), W (t = 0) =
q

f̃0(n0) + B.

Considering the inner product

(h(x), g(x)) :=

∫

Ω

h(x)g(x)dx

on the space L2 and denoting by || · || the corresponding norm, we compute the sum of the

inner products of (3.3)-(3.5) with −µ, nt and W , thus obtaining the energy dissipation law

for (3.3)-(3.5) — viz.
d F̃tot(n,W )

d t
= −‖∇µ‖2 ≤ 0. (3.6)

4. Numerical Schemes

Here we want to develop semi-discrete time marching numerical schemes for the system

(3.3)-(3.5) and establish their unconditionally energy stability. Let δt > 0 be the time step

size and tk := kδt for 0≤ k ≤ K with the ending time T = Kδt.
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4.1. A first order scheme

Assuming that {nk,µk,W k} are already known, we determine the terms {nk+1,µk+1,

W k+1} from the first order temporal semi-discretised system

nk+1− nk

δt
=∆µk+1, (4.1)

µk+1 = −c∆nk+1+W k+1H(nk), (4.2)

W k+1 −W k

δt
=

1

2
H(nk)

nk+1 − nk

δt
(4.3)

provided with a periodic (or no-flux) boundary condition.

It follows from (4.3) that

W k+1 =W k +
1

2
H(nk)(nk+1 − nk). (4.4)

Here and hereafter, we write W k for W (nk). Substituting (4.4) into (4.2) yields

µk+1 = −c∆nk+1+H(nk)

�

W k +
1

2
H(nk)(nk+1 − nk)

�

, (4.5)

and using the representation (4.5) in (4.1), we obtain

nk+1 = nk +δt∆

§

−c∆nk+1+H(nk)

�

W k +
1

2
H(nk)(nk+1 − nk)

�ª

. (4.6)

Therefore, we can now determine nk+1 from (4.6) and then compute µk+1 and W k+1. Note

that the introduction of the auxiliary variable W comes at no extra computational cost.

Theorem 4.1. The linear equation (4.6) is symmetric (self-adjoint) and positive definite for

the variable nk+1.

Proof. Considering the inner products of nk and 1, we have

∫

Ω

nk+1d x =

∫

Ω

nkd x = · · ·=
∫

Ω

n0d x .

Set α0
n := (1/ |Ω|)∫

Ω
n0d x and let

βµ =
1

|Ω|

∫

Ω

µk+1d x , n̂k+1 = nk+1−α0
n, µ̂k+1 = µk+1 − βµ. (4.7)

Using (4.1)-(4.3), we note that nk+1 and µk+1 are the solutions of the equations

n

δt
−∆µ = n̂k

δt
, (4.8)

µ = −c∆n+H(nk)W (nk) +
H2(nk)

2
(n− nk)− βµ (4.9)
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with the term µ satisfying the condition

∫

Ω

ud x = 0.

We define the inverse Laplace operator ∆−1 from the equations

∆v = u,
∫

Ω

ud x = 0

with periodic or no-flux boundary conditions.

Applying −∆−1 to the Eq. (4.8) and taking into account relation (4.9), one obtains

−∆
−1n

δt
− c∆n+

H2(nk)

2
n− βµ = −∆

−1n̂k

δt
−H(nk)W (nk) +

H2(nk)

2
nk.

We write this equation as Ln = f . Then for any u, v such that
∫

Ω
ud x =
∫

Ω
vd x = 0, the

relations

(Lu, v) =

�

−∆
−1u

δt
, v

�

− c(∆u, v) +

�

H2(nk)

2
u, v

�

− (βµ, v),

(Lv,u) =

�

−∆
−1v

δt
,u

�

− c(∆v,u) +

�

H2(nk)

2
v,u

�

− (βµ,u)

hold. Note that (Lu, v) = (Lv,u), hence L is a self-adjoint linear operator. If v = u, then

(Lu,u) =

�

−∆
−1u

δt
,u

�

− c(∆u,u) +

�

H2(nk)

2
u,u

�

− (βµ,u)

=
1

δt
‖u‖2

H−1 + c ‖∇u‖2 + 1

2





H(nk)u





2 ≥ 0,

and the inequality becomes an equality if and only if u = 0.

Remark 4.1. The well-posedness of the linear equation Ln = f can be established via

Lax-Milgram theorem. On the set L2
per
(Ω) we define the inner product and the norm by

(u, v)L := (Lu, v) and ‖u‖L :=
p

(Lu,u), respectively, where L2
per(Ω) denotes the subspace

of all functions u ∈ L2(Ω) with the periodic boundary condition. Considering the subset

S =
¦

u ∈ L2
per
(Ω);‖u‖L <∞

©

we note that it is a Hilbert space with respect to the above inner product. Therefore, the

Lax-Milgram theorem yields that the Eq. (4.6) has a unique weak solution in S.

Let us now consider the stability of this first-order scheme.
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Theorem 4.2. The linear scheme (4.1)-(4.3) is unconditionally energy stable — i.e. it satisfies

the discrete dissipation law

F k+1
1st
≤ F k

1st
−δt




∇µk+1





2

, (4.10)

where

F k
1st =

c

2





∇nk





2
+




W k





2

.

Proof. Considering the L2-inner products of (4.1) and−µk+1, (4.2) and (nk+1−nk)/(δt),

(4.3) and −2W k+1, we respectively obtain

�

nk+1− nk

δt
,−µk+1

�

= (∆µk+1,−µk+1) =




∇µk+1





2

, (4.11)

�

µk+1,
nk+1− nk

δt

�

=

�

−c∆nk+1,
nk+1− nk

δt

�

+

�

W k+1H(nk),
nk+1− nk

δt

�

=
c

2δt

�



∇nk+1





2 −




∇nk





2
+




∇ �nk+1− nk
�




2
�

+

�

W k+1H(nk),
nk+1 − nk

δt

�

, (4.12)

�

W k+1−W k

δt
, 2W k+1

�

=

�

1

2
H(nk)

nk+1− nk

δt
, 2W k+1

�

. (4.13)

Note that the identity 2(a− b, a) = |a|2−|b|2+ |a− b|2 was used in the Eq. (4.12). Besides,

the Eq. (4.13) implies

− 1

δt

�



W k+1





2 −




W k





2
+




W k+1 −W k





2
�

= −
�

H(nk)
nk+1 − nk

δt
,W k+1
�

. (4.14)

Taking into account the Eqs. (4.11), (4.12), and (4.14), we arrive at the equation

c

2δt

�



∇nk+1





2 −




∇nk





2
+




∇ �nk+1− nk
�




2
�

+
1

δt

�



W k+1





2 −




W k





2
+




W k+1−W k





2
�

= −




∇µk+1





2

,

which yields the inequality (4.10).

4.2. A second order scheme

We now introduce a second order time stepping scheme of the Crank-Nicolson type for

the systems (3.3)-(3.5). Assuming that {nk,µk,W k} and {nk−1,µk−1,W k−1} are already

known, we determine the terms {nk+1,µk+1,W k+1} from the second order temporal semi-

discretised system

nk+1− nk

δt
=∆µk+1/2, (4.15)
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µk+1/2 = −c∆nk+1/2 +W k+1/2H(n∗), (4.16)

W k+1 −W k

δt
=

1

2
H(n∗)

nk+1− nk

δt
, (4.17)

where

nk+1/2 =
nk+1+ nk

2
, n∗ =

3

2
nk − 1

2
nk−1, W k+1/2 =

W k+1+W k

2
, µk+1/2 =

µk+1+µk

2
.

The Eq. (4.17) can be rewritten as

W k+1 =W k +
H(n∗)

2

�

nk+1− nk
�

, (4.18)

and adding W k to (4.18) yields

W k+1/2 =
W k+1 +W k

2
=W k +

H(n∗)
4

�

nk+1− nk
�

. (4.19)

It follows from (4.15), (4.16) and (4.19) that

nk+1− nk

δt
= −c∆2nk+1/2 +∆

§�

W k +
H(n∗)

4

�

nk+1 − nk
�

�

H(n∗)
ª

= − c

2
∆

2nk+1− c

2
∆

2nk +∆

�

H2(n∗)
4

nk+1

�

+∆

�

W kH(n∗)− H2(n∗)
4

nk

�

or

nk+1

δt
+

c

2
∆

2nk+1− 1

4
∆

�

H2(n∗)nk+1
�

=
nk

δt
− c

2
∆

2nk+∆

�

W kH(n∗)− H2(n∗)
4

nk

�

. (4.20)

Theorem 4.3. The linear equation (4.20) is symmetric (self-adjoint) and positive definite for

the variable nk+1.

Proof. Considering the L2-inner products of nk and 1, we have
∫

Ω

nk+1d x =

∫

Ω

nkd x = · · ·=
∫

Ω

n0d x .

Set α0
n = 1/ |Ω|∫

Ω
n0d x and let

βµ =
1

|Ω|

∫

Ω

µk+1/2d x , n̂k+1 = nk+1−α0
n, µ̂k+1/2 = µk+1/2 − βµ.

Then, nk+1 and µk+1/2 are the solutions of the equations

n

δt
−∆µ= nk

δt
, (4.21)

µ = − c

2
∆n− c

2
∆nk +H(n∗)W (nk) +

H2(n∗)
4

(n− nk)− βµ (4.22)



222 Q. Peng, H. Li and Z. Xu

under the constrain
∫

Ω
ud x = 0.

Applying the operator −∆−1 to the Eq. (4.21) and taking into account the relation

(4.22), one obtains

−∆
−1n

δt
− c

2
∆n+

H2(n∗)
4

n= −∆
−1nk

δt
+

c

2
∆nk −W (nk)H(n∗) +

H2(n∗)
4

nk.

This equation can be written as L̂n= f̂ , where

L̂n= −∆
−1n

δt
− c

2
∆n+

H2(n∗)
4

n− βµ.

Let u, v satisfy the condition
∫

Ω
ud x =
∫

Ω
vd x = 0. Then

�

L̂u, v
�

=

�

−∆
−1u

δt
, v

�

− c

2
(∆u, v) +

�

H2(n∗)
4

u, v

�

− (βµ, v),

=

�

−∆
−1u

δt
, v

�

− c

2
(∆u, v) +

�

H2(n∗)
4

u, v

�

,

�

L̂v,u
�

=

�

−∆
−1v

δt
,u

�

− c

2
(∆v,u) +

�

H2(n∗)
4

v,u

�

− (βµ,u)

=

�

−∆
−1v

δt
,u

�

− c

2
(∆v,u) +

�

H2(n∗)
4

v,u

�

,

so that
�

L̂u, v
�

=
�

L̂v,u
�

. Hence, L̂ is a self-adjoint operator and for v = u the inner products

above take the form

�

L̂u,u
�

=

�

−∆
−1u

δt
,u

�

− c

2
(∆u,u) +

�

H2(n∗)
4

u,u

�

− (βµ,u)

=
1

δt
‖u‖2

H−1 +
c

2
‖∇u‖2 + 1

4
‖H(n∗)u‖2 ≥ 0.

As before, we note that the inequality becomes an equality if and only if u = 0.

Remark 4.2. The Lax-Milgram theorem can again be used to show the unique solvability

of the system (4.20).

Theorem 4.4. The second order scheme (4.15)-(4.17) is unconditionally energy stable — i.e.

it satisfies the discrete energy dissipation law

F k+1
2st = F k

2st −δt




∇µk+1





2

,

where

F k
2st
=

c

2





∇nk





2
+




W k





2

.



Stable Linear Schemes for Peng-Robinson EoS 223

Proof. Considering the L2-inner products of (4.15) and µk+1, (4.16) and −(nk+1− nk)/

δt, (4.17) and 2W k+1/2, we obtain

�

nk+1− nk

δt
,µk+1/2

�

= −




∇µk+1/2





2

, (4.23)

�

µk+1/2,−nk+1 − nk

δt

�

= − c

2δt

�



∇nk+1





2 −




∇nk





2
�

−
�

W k+1/2H(n∗),
nk+1− nk

δt

�

, (4.24)

�

W k+1 −W k

δt
, 2W k+1/2

�

=

�

H(n∗)
nk+1− nk

δt
,W k+1/2

�

. (4.25)

It follows from (4.23), (4.24) and (4.25) that

c

2

�



∇nk+1





2 −




∇nk





2
�

+
�



W k+1





2 −




W k





2
�

= −δt




∇µk+1/2





2

,

which implies

c

2





∇nk+1





2
+




W k+1





2
=

c

2





∇nk





2
+




W k





2 − δt




∇µk+1/2





2

,

thus finishing the proof.

Remark 4.3. For the second order scheme, the discrete energy dissipation law is an equa-

tion, not an inequality.

Remark 4.4. The energy stability is represented in the terms of an alternate energy func-

tional (3.2) instead the original representation (2.1).

Remark 4.5. The system used in the construction of numerical schemes is not equivalent

to the initial problem. Therefore, the corresponding convergence analysis is not trivial and

will be carried out in future studies.

5. Numerical Results

In this section, we apply the proposed numerical schemes to the fourth order parabolic

equation with Peng-Robinson equation of state. The substance selected for the comparison

with the results of [38] is isobutane (nC4). The critical properties and the normal boiling

point of this substance are provided in Table 1. The parameters a(T ), b and c(T ) are

calculated by formulas (A.1) and (A.2). All the following numerical results are obtained

for the domain Ω= [0, L]2 with L = 2× 10−8 meters.
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Table 1: Criti
al properties �- 
f. [17, Table 3.1℄, and ω, m for isobutane (nC4).

symbol Tc , K Pc ω m

nC4 425.18 3.797 MPa 0.1990 0.6709

5.1. Numerical accuracy

Here, we present the convergence rate in time for the first order scheme (denoted by

IEQ-1st) and the second order Crank-Nicolson scheme (denoted by IEQ-CN2). The initial

condition shows the liquid density of isobutane under a saturated pressure condition at

temperature 350K in the subdomain [0.3L, 0.7L]2 with the same temperature isobutane

gas occupying the rest of the domain. Table 2 shows how the Cauchy difference varies

at the final time. Thus new schemes achieve the convergence rate, which asymptotically

corresponds the expected orders in time.

Table 2: Cau
hy 
onvergen
e test at time=3.0E-18 with 
entral �nite di�eren
e on the uniform mesh

256× 256 used for spatial dis
retisation.

Scheme IEQ-1st IEQ-CN2

Coarse time steps Fine time steps L2 error Conv. Rate L2 error Conv. Rate

10 20 2.252E-6 - 3.902E-6 -

20 40 1.253E-6 0.85 3.437E-6 0.18

40 80 6.588E-7 0.93 1.804E-6 0.93

80 160 3.417E-7 0.95 4.760E-7 1.92

160 320 1.757E-7 0.96 1.141E-7 2.06

5.2. Spatial distribution of molar density and other chemical properties

Let us first consider the above problem in the case of a one droplet. The surface tension

contribution to the Helmholtz free energy density fint f Tens and the thermodynamic pressure

p0 are defied as in [38]— i.e.

fint f Tens = 2 f∇(n) = c∇n · ∇n,

p0 = n

�

∂ f0

∂ n

�

− f0 =
nRT

1− bn
− n2a(T )

1+ 2bn− b2n2
.

The evolution history and steady state obtained from the above schemes are very close, so

that each one can illustrate the same phenomenon. Here we use the solution obtained by

the IEQ-CN2 scheme to find all the parameters required. The domain Ω is discretised by

256× 256 rectangular mesh.

We study the one droplet situation — i.e. the liquid of the isobutane density under

saturated pressure condition at the temperature 350K is concentrated in the subdomain

[0.3L, 0.7L]2, with the saturated isobutane gas occupying the rest of the domain.
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Figure 1: Simulated dynami
al evolution of molar density distribution for single droplet. Snapshots are

taken at the time t = 0, 2E-18, 4E-18, 6E-18, 8E-18, 1E-17.

Figure 2: Simulated dynami
al evolution of surfa
e tension for single droplet. Snapshots are taken at

the time t = 0, 2E-18, 4E-18, 6E-18, 8E-18, 1E-17.

Fig. 1 displays the molar density of isobutane (nC4) for the single droplet case at different

times. Initially, the liquid droplet has the form of a square, the corners of which round

out as with the time, finally becoming a perfect circle. The IEQ-CN2 scheme for the fourth

order parabolic equation provides similar molar density evolution history and final state

as the convex-splitting scheme in [38]. The simulation of the surface tension contribution

to the Helmholtz free energy density is presented in Fig. 2. In addition, clear dissipative

trend of the total Helmholtz free energy during the whole evolution history and the mass
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Figure 3: Evolution of total energy and mass. Single droplet 
ase, simulated by IEQ-CN2 s
heme, δt
= 2.0E-21.

Figure 4: Simulated dynami
al evolution of molar density distribution for four droplets. Snapshots are

taken at the time t = 0, 2E-19, 3E-18, 9E-18, 1.5E-17, 3E-17.

are demonstrated in Fig. 3. We point out that energy decreases monotonically, whereas

mass is accurately maintained all the time.

We now use the IEQ-CN2 scheme to describe the solution evolution in the four droplet

case under a specific initial condition. The molar density distribution at different time

points and the energy evolution during the whole process are displayed in Fig. 4. Initially,

there are four commensurate square bubbles
��

0.3L, 0.45L
�

,
�

0.55L, 0.7L
�	2

symmetrically

located with respect to the center of the domain with gas-liquid interface around every

single bubble at the initial time. At the early stage, the bubbles round out separately. Then

nearly circular bubbles touch neighboring ones. The contact areas gradually increase and

the whole construction transforms into the unit circle. Finally, single ring becomes a circular

droplet at the domain center. Fig. 5 shows the surface tension at the same times. The

total energy monotonically decreases and then rapidly decays after the shape of the liquid
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Figure 5: Simulated dynami
al evolution of surfa
e tension for four droplets. Snapshots are taken at

the time t = 0, 2E-19, 3E-18, 9E-18, 1.5E-17, 3E-17.
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Figure 6: Evolution of total energy and mass for four droplets, simulated by the IEQ-CN2 s
heme, δt
= 2.0E-21.

bubbles changes dramatically — cf. Fig. 6, whereas mass is accurately maintained all the

time.

5.3. Calculation of interface tension and verification against Young-Laplace

equation

The surface tension σ is defined as the net contractive force per unit length with a

unit of N/m mechanically or the work for creating a unit area of interface with a unit of

J/m2. Assuming that for the given system the surface tension is spatially constant within

the interface, one can represent it in the form — cf. [17,38]:

σ =
∂ F

∂ A
=

F(n)− F0(nbulk)

A
. (5.1)
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Figure 7: Numeri
al and Experimental Results. Left: Surfa
e tension. Right: Capillary pressure.

The numerator in the Eq. (5.1) evaluates the contribution of the surface tension to the

total free energy at the equilibrium state. The volume of the liquid droplet is assumed to

be constant all the time and droplet becomes a circle at the steady state. The radius and

the length of the droplet are, respectively, r = 2 × 10−8 × (0.16/π)1/2 = 4.514 × 10−9

and A = 2π × 4.514 × 10−9 meters. Fig. 7(a) shows the surface tension determined by

our approximation method. The results are compared with the experimental data in [32,

Table 2] and they are sufficiently close from the engineering point of view.

The pressure is calculated by the well-known Young-Laplace equation Pc = Pl iquid −
Pgas = σ/r — cf. Refs. [17,38]. The pressure of the liquid drop Pl iquid and the gas region

Pgas are, respectively, evaluated at the grid points (128,128) and (38,38). The difference

between them p0 = Pl iquid − Pgas is the capillary pressure. On the other hand, the capillary

pressure given by the Young-Laplace equation is p = σ/r. The results obtained by these

methods in the temperature range 250K − 350K are displayed in Fig. 7(b).

6. Conclusion

We developed first and second order numerical schemes for the fourth order parabolic

equation with Peng-Robinson equation of state, which are based on recently proposed in-

variant energy quadratisation method. Both schemes are linear, unconditionally energy

stable and uniquely solvable. Moreover, since the reduced linear systems are symmetric

and positive definite, their solutions can be efficiently found. Numerical results demon-

strate the good performance of the schemes.
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Appendix. Parameters in the Peng-Robinson Equation of State

The parameters a(T ) and b can be evaluated as follows

a(T ) = 0.45724
R2T 2

c

Pc

�

1+m

�

1−
√

√ T

Tc

��2

, b = 0.07780
RTc

Pc

, (A.1)

where Tc and Pc are, respectively, the critical temperature and the critical pressure of the

corresponding substance. The parameter m is related to the acentric parameter ω— viz.

m = 0.37464+ 1.54226ω− 0.26992ω2, ω≤ 0.49,

m = 0.379642+ 1.485030ω− 0.164423ω2+ 0.016666ω3, ω> 0.49.

The coefficient c in (2.1) is the influence parameter of the pure substance and has the form

c = ab2/3

�

mc
1

�

1− T

Tc

�

+mc
2

�

, (A.2)

where

mc
1 = −

10−16

1.2326+ 1.3757ω
, mc

2 =
10−16

0.9051+ 1.5410ω
.
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