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Abstract. A parameterized generalized successive overrelaxation (PGSOR) method
for a class of block two-by-two linear system is established in this paper. The con-
vergence theorem of the method is proved under suitable assumptions on iteration
parameters. Besides, we obtain a functional equation between the parameters and
the eigenvalues of the iteration matrix for this method. Furthermore, an accelerated
variant of the PGSOR (APGSOR) method is also presented in order to raise the con-
vergence rate. Finally, numerical experiments are carried out to confirm the theoretical
analysis as well as the feasibility and the efficiency of the PGSOR method and its vari-
ant.

AMS subject classifications: 65F10, 65F50, 65F08

Key words: Complex linear systems, symmetric positive definite, spectral radius, convergence,
preconditioning.

1 Introduction

Consider the system of linear equations

Au=b, A∈Cn×n, u,b∈Cn, (1.1)

where A is a complex symmetric matrix with the form

A=W+iT, (i=
√
−1), (1.2)
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and W,T ∈ Rn×n are both symmetric matrices with at least one of them being positive
definite. Hereafter, without loss of generality, we assume that W is symmetric positive
definite.

It is known to all that the Equation (1.1) arises frequently in many scientific and engi-
neering applications. For instance, it comes from diffuse optimal tomography [1], molec-
ular scattering [2], wave propagation [3], structural dynamics [4], FFT-based solution
of certain time-dependent PDEs [5] and so on. More examples and additional practical
backgrounds can be found in other places. See, e.g., [6] and references therein.

During these years, many methods with iteration approaches have been proposed
for significantly approximating the unique solution of this system (1.1). For example,
some of the well-known preconditioned Krylov subspace methods [5,7,8], Hermitian and
skew-Hermitian splitting (HSS) method and lots of its variants [9–15], and C-to-R itera-
tion methods [16–19] are proven to be useful techniques for solving the symmetric linear
systems. As a matter of fact, our system (1.1) can be easily changed into a special case of
generalized saddle point problems, so several generalizations of classical methods, such
as generalized successive overrelaxation (GSOR) method in [20], the new variations of
the method in [21–23] have brought new insight and new tools for solving such systems.

Based on GSOR method and some of its generalization, we in this paper develop
a parameterized generalized SOR (PGSOR) method for solving the complex symmetric
linear system (1.1). We study also the convergence properties and some its variants.

The organization of the paper is as follows. In Section 2, the new method PGSOR
is established. In Section 3, the convergence analysis of the PGSOR method is exactly
considered based on some lemmas. Section 4 will construct an efficient preconditioner to
accelerate the convergence of the PGSOR method. In Section 5, some numerical examples
are presented to show good behaviors for the efficiency of our methods. Finally, the paper
is concluded in Section 6.

2 Parameterized GSOR method

Let u= x+iy and b= p+iq, where x,y,p,q∈Rn. Then the system (1.1) becomes

(W+iT)(x+iy)= p+iq. (2.1)

And the complex linear system can be equivalently written as a block two-by-two real
equivalent formulation

Aũ :=
(

W −T
T W

)(
x
y

)
=

(
p
q

)
=: b̃. (2.2)

Inasmuch W is symmetric positive definite and T is symmetric, then the coefficient matrix
A is nonsingular. A natural splitting of A is as follow,

A=D−L−U ,
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where

D=

(
W+τ I 0

0 W

)
, L=

(
0 0
−T 0

)
, U=

(
τ I T
0 0

)
,

and τ is a nonnegative real parameter, In ∈Rn×n is the n-by-n identity matrix.
Our PGSOR method is considered to be an iteration scheme for solving the linear

system (2.2), i.e.,(
x(k+1)

y(k+1)

)
=(D−αL)−1[(1−α)D+αU ]

(
x(k)

y(k)

)
+α(D−αL)−1

(
p
q

)
. (2.3)

It is equivalent to (
x(k+1)

y(k+1)

)
=H(α,τ)

(
x(k)

y(k)

)
+G−1

(α,τ)

(
p
q

)
,

where

H(α,τ)=

(
H11 H12
H21 H22

)
with 

H11=(1−α)(W+τI)−1W+τ(W+τ I)−1,
H12=α(W+τ I)−1T,
H21=−α(1−α)W−1T(W+τ I)−1W−ατW−1T(W+τ I)−1,
H22=(1−α)I−α2W−1T(W+τI)−1T,

and

G(α,τ)=

( 1
α W+ τ

α I 0
T 1

α W

)
.

Now the algorithm for the PGSOR method can be described as follows.

Algorithm 2.1. The PGSOR method

Given initial vectors x(0)∈Rn and y(0)∈Rn, and two real relaxation factors α>0,τ≥0.
For k = 0,1,2,... until the iteration sequence

{
(x(k)

T
,y(k)

T
)T
}

converges to the exact
solution, compute the next iteration according to the following procedure{

(W+τ I)x(k+1)=(1−α)Wx(k)+τx(k)+αTy(k)+αp
Wy(k+1)=(1−α)Wy(k)−αTx(k+1)+αq.

Meantime, it is not hard to find that the PGSOR method will reduce to the GSOR
method when τ=0.
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3 Convergence analysis for the PGSOR method

For convergence analysis we need the following lemmas.

Lemma 3.1. If λ is an eigenvalue of matrix H(α,τ), then λ ̸=1.

Proof. Suppose λ is the eigenvalue of H(α,τ), and X=(xT,yT)T is the corresponding eigen-
vector. Then H(α,τ)X=λX, that is

(D−αL)−1[(I−α)D+αU ]X=λX,

or equivalently,(
(1−α)W+τI αT

0 (1−α)W

)(
x
y

)
=λ

(
W+τ I 0

αT W

)(
x
y

)
.

Evidently we have {
[(1−α)W+τ I]x+αTy=λ(W+τ I)x,
(1−α)Wy=λαTx+λWy.

(3.1)

If λ=1, then
Ty=Wx, Tx=−Wy.

That means exactly (TW−1T+W)y=0. Because W is a symmetric positive definite matrix
and T is a symmetric matrix, TW−1T+W is nonsingular. This implies that y=0, thereby
x=0. It shows that the corresponding eigenvector of λ is a zero vector. This contradiction
leads to the conclusion: λ ̸=1.

Lemma 3.2. ([20]) Let the matrices W and T∈Rn×n be symmetric positive definite and symmet-
ric, respectively. Then the eigenvalues of the matrix S=W−1T are all real.

Lemma 3.3. ([24]) Both roots of real quadratic equation x2−bx+c = 0 are less than one in
modulus if and only if |c|<1 and |b|<1+c.

Applying the above Lemmas, we are able to have the conclusion about the eigenval-
ues of the iteration matrix of the PGSOR method which will play an important role in the
proof process for convergence.

Theorem 3.1. Let W and T∈Rn×n be symmetric positive definite and symmetric, respectively.
And let τ be a nonnegative real constant. Assume that λ is an eigenvalue of the iteration matrix
H(α,τ) and X=(xT,yT)T ∈R2n is the corresponding eigenvector. Denote by

η=
xTSx
xTx

, µ=
xTW−1x

xTx
,

where S=W−1T. Then either λ=1−α or λ satisfies the quadratic equation

λ2−λ
2(1−α)+τµ(2−α)−α2η2

1+τµ
+
(1−α)(1−α+τµ)

1+τµ
=0. (3.2)
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Proof. From Lemma 3.1, we have known that H(α,τ)X=λX. Thus(
(1−α)W+τ I αT

0 (1−α)W

)(
x
y

)
=λ

(
W+τ I 0

αT W

)(
x
y

)
.

So, we have the following system of two equations{
[(1−α)W+τI]x+αTy=λ(W+τ I)x,
(1−α)Wy=λαTx+λWy.

(3.3)

In the system we can assert that y ̸= 0. Otherwise, if y = 0, it is not difficult to find
that x = 0. This is contradiction. Recalling that λ ̸= 1, so (3.3) changes directly into the
following system, {

(1−α−λ)x+τ(1−λ)W−1x+αW−1Ty=0,
(1−α−λ)y−λαW−1Tx=0.

(3.4)

If λ=1−α and W−1T is a singular matrix, the equation (3.3) reduces to{
τW−1x+W−1Ty=0,
(α2−α)W−1Tx=0.

So we get
x∈null(W−1T) and τW−1x+W−1Ty=0.

If λ= 1−α and W−1T is a nonsingular matrix, it is not hard to verify that both x= 0
and y=0. The result will contradict that y ̸=0.

If λ ̸=1−α, from the second equality in (3.4), we have

y=
λα

1−α−λ
W−1Tx.

Substituting it into the first equality in (3.4), one obtains

(1−α−λ)x+τ(1−λ)W−1x+
λα2

(1−α−λ)
W−1TW−1Tx=0.

If we let S=W−1T and denote by η=(xTSx)/(xTx), µ=(xTW−1x)/(xTx), then

(1−α−λ)+τµ(1−λ)+
λα2η2

(1−α−λ)
=0.

Hence comes,

λ2−λ
2(1−α)+τµ(2−α)−α2η2

1+τµ
+
(1−α)(1−α+τµ)

1+τµ
=0.

This completes the proof of the theorem.
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Theorem 3.2. Let W and T∈Rn×n be symmetric positive definite and symmetric, respectively.
Also let τ be a nonnegative real constant and µ be the quantity defined in Theorem 3.1. Then the
PGSOR method is convergent if and only if α satisfies

0<α<2

or0<α<min
{

2+τµmin, 2+τµmin−
√

(2+τµmin)2−4(1+τµmin)(1−ρ2(S))
1−ρ2(S)

}
, i f 1−ρ2(S) ̸=0,

0<α< 2+2τµmin
2+τµmin

, i f 1−ρ2(S)=0,

where ρ(S) is the spectral radius of the matrix S=W−1T.

Proof. By Theorem 3.1 we know that, if λ=1−α, then |λ|<1 is equivalent to 0<α<2.
While if λ satisfies the quadratic Equation (3.2), then the Lemma 3.3 applies. It tells

us that |λ|<1 is equivalent to∣∣∣∣ (1−α)(1−α+τµ)

1+τµ

∣∣∣∣<1, (3.5a)∣∣∣∣2(1−α)+τµ(2−α)−α2η2

1+τµ

∣∣∣∣<1+
(1−α)(1−α+τµ)

1+τµ
. (3.5b)

Finding the solution of the first inequality in (3.5) and noticing that

0<α<2+τµmin<2+τµ,

immediately we can obtain that ∣∣∣∣ (1−α)(1−α+τµ)

1+τµ

∣∣∣∣<1.

As for the second inequality in (3.5), we have{
−(1−α)(1−α+τµ)−1−τµ<2(1−α)+τµ(2−α)−α2η2,
2(1−α)+τµ(2−α)−α2η2<1+τµ+(1−α)(1−α+τµ).

(3.6)

It is easily to see that the first inequality in (3.6) naturally hold for any α>0. Now let
us consider the second inequality. By calculating, we have

α2−2(2+τµ)α+4(1+τµ)>α2η2.

According to Theorem 3.1, we can observe from the previous inequality

α2−2(2+τµmin)α+4(1+τµmin)>α2ρ2(S),
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which leads to
(1−ρ2(S))α2−2(2+τµmin)α+4(1+τµmin)>0.

Combining 0<α<2+τµmin, direct computation gives that if 1−ρ2(S) ̸=0, then

0<α<min

{
2+τµmin,

2+τµmin−
√
(2+τµmin)2−4(1+τµmin)(1−ρ2(S))

1−ρ2(S)

}
,

else
0<α<

2+2τµmin

2+τµmin
.

In conclusion, we know that the result of this theorem holds. The proof is completed.

4 Accelerating the PGSOR method

Additionally, if we assume that the matrices W and T are symmetric positive definite
and symmetric positive semi-definite respectively, then a preconditioner to accelerate the
convergence rate of the PGSOR method can be introduced. In fact, let I ∈ Rn×n be an
identity, and we consider the following preconditioned form of (2.2)(

I I
−I I

)(
W −T
T W

)(
x
y

)
=

(
I I
−I I

)(
p
q

)
, (4.1)

or equivalently, (
W̃ −T̃
T̃ W̃

)(
x
y

)
=

(
p̃
q̃

)
,

where W̃ :=W+T,T̃ :=T−W and p̃ := p+q, q̃ := q−p. Applying the PGSOR method to
the linear system (4.1), we have the APGSOR method for the linear system (2.2).

Algorithm 4.1. The APGSOR method

Given initial vectors x(0)∈Rn and y(0)∈Rn, and two real relaxation factors α>0,τ≥0.
For k = 0,1,2,... until the iteration sequence

{
(x(k)

T
,y(k)

T
)T
}

converges to the exact
solution, compute the next iteration according to the following procedure{

(W̃+τ I)x(k+1)=(1−α)W̃x(k)+τx(k)+αT̃y(k)+αp
W̃y(k+1)=(1−α)W̃y(k)−αT̃x(k+1)+αq.

Theorem 4.1. Let W and T∈Rn×n be symmetric positive definite and symmetric positive semi-
definite, respectively. Also let τ be a nonnegative real constant, W̃ =W+T, T̃=T−W ∈Rn×n,
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and S̃=W̃−1T̃. Moreover, from Lemma 3.2 it can be seen that the eigenvalues of S̃ are all real and
nonnegative. Denote by

ξ=
xT S̃x
xTx

, ν=
xTW̃−1x

xTx
.

Then the APGSOR method is convergent if and only if α satisfies

0<α<2

or 0<α<min
{

2+τνmin, 2+τνmin−
√

(2+τνmin)2−4(1+τνmin)(1−ξ2(S̃))
1−ξ2(S̃)

}
, i f 1−ξ2(S̃) ̸=0,

0<α< 2+2τνmin
2+τνmin

, i f 1−ξ2(S̃)=0,

where ξmax(S̃) is the largest eigenvalue in modulus of the matrix S̃=W̃−1T̃.

Proof. The proof is similar to that of Theorem 3.2. Hence it is omitted here.

5 Numerical experiments

In this section, we illustrate the feasibility and efficiency of the PGSOR and the APGSOR
methods for solving complex symmetric system of linear equations. Meantime, we com-
pare their numerical results including iteration steps (denoted by IT), elapsed CPU time
in seconds (denoted by CPU) and relative residual error (denoted by RES) with those of
the HSS, the MHSS and the GSOR methods. The numerical experiments are performed
in MATLAB [version 7.14.0.739 (R2012a)] with machine precision 10−16 on a personal
computer with 3.20 GHz 64-bit processor [Intel(R) Core(TM) i5-3470] and 8.00G memory.

In our implementations, the initial guess is chosen to be zero vector and the iteration
is terminated once the relative residual error satisfies

RES :=

∥∥∥r(k)
∥∥∥

2∥∥r(0)
∥∥

2

<10−6.

Example 5.1. Consider the complex symmetric linear system of the form (cf. [10, 16, 19])[(
K+

3−
√

3
τ

I

)
+i

(
K+

3+
√

3
τ

I

)]
u=b, (5.1)

where τ is the time step-size, and K= Im⊗Vm+Vm⊗ Im with Vm =h−2tridiag(−1,2,−1)∈
Rm×m. K is the five-point centered difference approximation of the negative Laplacian
operator L=−△ with homogeneous Dirichlet boundary conditions on uniform mesh in
the unit square [0,1]×[0,1]. Here ⊗ is the Kronecker product symbol and h=1/(m+1) is
the discretization mesh-size.
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Table 1: Numerical results for Example 5.1.

Method 16×16 32×32 64×64 128×128 256×256
HSS IT 44 65 97 136 191

CPU 0.0579 0.3517 2.2193 17.5931 115.4806
RES 9.16e-07 9.82e-07 9.84e-07 9.26e-07 9.51e-07

MHSS IT 40 54 73 98 133
CPU 0.0231 0.1054 5.5891 5.2974 36.0572
RES 9.67e-07 9.61e-07 9.41e-07 9.35e-07 9.99e-07

GSOR IT 19 22 24 26 26
CPU 0.0189 0.0679 0.2319 1.3299 6.9214
RES 9.02e-07 9.24e-07 6.38e-07 4.82e-07 9.46e-07

PGSOR IT 12 13 13 13 15
CPU 0.0123 0.0356 0.1441 0.9854 1.1676
RES 7.63e-07 6.67e-07 7.06e-07 9.19e-07 5.13e-07

APGSOR IT 5 5 5 5 5
CPU 0.0046 0.0193 0.0817 0.3312 0.6756
RES 4.04e-07 5.79e-07 5.22e-07 9.14e-07 2.06e-07

This complex symmetric linear system arises in centered difference discretization of
R22-Pade approximations in the time integration of parabolic partial differential equa-
tions [16]. In this example, K is an n×n block diagonal matrix with n=m2. In our tests,
we take τ= h. Furthermore, we normalize coefficient matrix and right-hand side of (5.1)
by multiplying both by h2. We take

W=K+
3−

√
3

τ
I and T=K+

3+
√

3
τ

I.

The right-hand vector b is given with its jth entry

bj =
(1−i)j

τ(1+ j)2 , j=1,...,n.

Example 5.2. Consider the complex symmetric linear system of the form (cf. [5, 10, 19])

[(−ω2M+K)+i(ωCV+CH)]u=b, (5.2)

where M and K are the inertia and the stiffness matrices, CV and CH are the viscous and
hysteretic damping matrices, respectively. ω is the driving circular frequency and K is
defined the same as in Example 5.1.

This complex symmetric linear system arises in direct domain analysis of an n degree-
of-freedom (n-DOF) linear system [6]. In this example, K is an n×n block diagonal matrix
with n=m2. We take CH =µK with µ being a damping coefficient, M= In,CV =10In. In
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Table 2: Numerical results for Example 5.2.

Method 16×16 32×32 64×64 128×128 256×256
HSS IT 86 153 284 540 1084

CPU 0.1114 0.7887 6.3884 66.7546 672.4739
RES 9.11e-07 9.85e-07 9.81e-07 9.99e-07 9.94e-07

MHSS IT 34 38 50 81 139
CPU 0.0371 0.0889 0.4594 4.5696 38.9751
RES 7.59e-07 7.42e-07 8.49e-07 9.13e-07 9.67e-07

GSOR IT 26 24 24 23 23
CPU 0.0267 0.0526 0.2044 1.2558 8.1449
RES 7.49e-07 8.47e-07 5.51e-07 9.53e-07 9.43e-07

PGSOR IT 12 12 12 16 20
CPU 0.0118 0.0325 0.1337 1.2596 7.6351
RES 9.78e-07 4.21e-07 9.66e-07 9.22e-07 9.97e-07

APGSOR IT 9 9 9 9 11
CPU 0.0076 0.0292 0.1021 0.9953 4.5127
RES 8.51e-07 5.17e-07 8.12e-07 5.03e-07 8.35e-07

Table 3: Choice of parameters: HSS, MHSS, GSOR vs PGSOR, APGSOR.

Example Method
Grid

16×16 32×32 64×64 128×128 256×256

No.5.1

HSS αopt 0.81 0.55 0.37 0.28 0.20
MHSS αopt 1.06 0.75 0.54 0.40 0.30
GSOR αopt 0.550 0.495 0.457 0.432 0.421

PGSOR τ 1.22 0.38 0.15 0.06 0.035
α 0.91 0.87 0.85 0.83 0.785

APGSOR τ 0.09 0.05 0.03 0.01 0.005
α 1.01 0.99 1.01 0.99 0.995

No.5.2

HSS αopt 0.42 0.23 0.12 0.07 0.04
MHSS αopt 0.21 0.08 0.04 0.02 0.01
GSOR αopt 0.455 0.455 0.455 0.455 0.455

PGSOR τ 0.19 0.05 0.02 0.01 0.005
α 0.92 0.91 1.01 1.21 1.375

APGSOR τ 0.05 0.01 0.006 0.001 0.001
α 0.84 0.82 0.82 0.81 0.81

addition, we set ω=π,µ= 0.02 and the right-hand-side vector b is chosen such that the
exact solution of the linear system (5.2) is (1+i)(1,1,...,1)T ∈Cn. Similar to Example 5.1,
the linear system is normalized by multiplying both sides with h2.
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6 Conclusion

For a class of complex symmetric linear system we presented a parameterized general-
ized successive overrelaxation (PGSOR) method, which includes the generalized succes-
sive overrelaxation (GSOR) method as its special case. In addition, we demonstrate that
our method is convergent under certain conditions. An accelerated PGSOR (APGSOR)
method is established when W is symmetric and positive definite and T is symmetric and
positive semi-definite. Observations of the numerical results let us know that the APG-
SOR is more effective than the PGSOR method. Again, numerical experiments show that
our methods PGSOR and APGSOR are more efficient than the classical HSS, MHSS and
GSOR methods comparing with iterative steps and CPU time required for solving the
special complex symmetric system of linear equations in the work.
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