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1 Introduction

Consider the nonlinear heat equation

ut =div(k(u,x,t)∇u)+ f (u,x,t), (x,t)∈QT =Ω×(0,T), (1.1)

where Ω is a bounded domain in RN with appropriately smooth boundary, the func-
tion k(u,x,t) has the meaning of nonlinear thermal conductivity, which depends on the
temperature u=u(x,t). It is generally assume that the matrix k(u,x,t) is semidefinite. If
k(u,x,t)= k(x), Eq. (1.1) becomes a linear parabolic equation, we would like to suggest
that, for linear equations, any boundedness estimate is equivalent to a stability result
(i.e., control of differences of solutions in terms of differences of data), but this is not the
truth for nonlinear equations generally. One can see the well-known monographs or text-
books [1–7] and the references therein. However, in some special case, if we add some
restrictions to k(u,x,t) , the character may be still true. For simplicity, the paper limits to
consider

k(u,x,t)=ma(x)um−1, m>0,
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with a(x)>0 when x∈Ω, but a(x)=0 when x∈∂Ω. In other words, we will consider the
following nonlinear equation

ut =div(a(x)∇um)+ f (u,x,t), (x,t)∈QT. (1.2)

From my own perspective, the initial value

u(x,0)=u0(x), x∈Ω, (1.3)

is indispensable. While, the usual boundary value

u(x,t)=0, (x,t)∈∂Ω×(0,T), (1.4)

may be superfluous. To see that, if f ≡0 in (1.2), we suppose that u and v are two classical
solutions of equation (1.2) with the initial values u(x,0) and v(x,0) respectively. Then we
have ∫

Ω
Sη(um−vm)(u−v)tdx+

∫
Ω

a(x)S′
η(u

m−vm)|∇um−∇vm|2dx

=
∫

∂Ω
a(x)Sη(um−vm)(∇u−∇v)·n⃗dΣ=0,

where n⃗ is the outer unit normal vector of Ω, Sη(s) is the approximate function of the
sign function (the details are given (3.1)-(3.2) later). Then∫

Ω
Sη(um−vm)(u−v)tdx≤0,

lim
η→0

∫
Ω

Sη(um−vm)(u−v)tdx=
∫

Ω
sign(um−vm)(u−v)tdx

=
∫

Ω
sign(u−v)(u−v)tdx=

d
dt

∫
Ω
|u−v|dx.

Then, even without any boundary value condition (1.4), the classical solutions have the
stability ∫

Ω
|u(x,t)−v(x,t)|dx≤

∫
Ω
|u0(x)−v0(x)|dx. (1.5)

Certainly, since |∇um| may be singular or degenerate on Ω, equation (1.2) only has a
weak solution generally.

Thus, to study the well-posedness of weak solutions to equation (1.2), or a more gen-
eral reaction-diffusion equation with the type

∂u
∂t

=
∂

∂xi

(
aij(u,x,t)

∂u
∂xj

)
+div(b(u,x,t))+ f (u,x,t), (x,t)∈Ω×(0,T), (1.6)

the whole boundary value condition (1.4) is overdetermined. For the linear case, the
problem had been completely solved by Fichera [8], Oleinik [9] et al., for nonlinear case,
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the situation is far from success. Many important papers, for examples, references [8,10–
17] have been devoting to the corresponding problem. In our paper, we introduce a new
kind of weak solutions for Eq. (1.6). By the new definition, we can deal with the stability,
or the uniqueness of the weak solutions independent of the boundary value condition.

Definition 1.1. A function u(x,t) is said to be a weak solution of Eq. (1.2) with the initial value
(1.3), if

u∈L∞(QT), ut ∈L2(QT), a(x)|∇um|2∈L1(QT), (1.7)

for any function g(s)∈C1(R), g(0)=0, φ1∈C1
0(Ω), φ2∈L∞(0,T;W1,2

loc (Ω)),∫∫
QT

[utg(φ1φ2)+a(x)∇um ·∇g(φ1φ2)− f (u,x,t)g(φ1φ2)]dxdt=0, (1.8)

and the initial value is satisfies in the sense of that

lim
t→0

∫
Ω
|u(x,t)−u0(x)|dx=0. (1.9)

In what follows, we suppose that m>0 and

u0∈L∞(Ω), a(x)∇um
0 ∈L2(Ω). (1.10)

In the first place, we would like to suggest that, the existence of Eq. (1.2) in the sense of
Definition 1.1 is easily to be obtained, we will give a basic result and the skeleton of the
proof in the second section of the paper. The paper mainly follows with interest in the
stability of weak solutions without any boundary value condition.

Theorem 1.1. Let u,v be two solutions of Eq. (1.2) with the different initial value u0(x),v0(x)
respectively. If ∫

Ω
a−1(x)dx<∞, (1.11)

| f (u,x,t)− f (v,x,t)|≤ c|u−v|, (1.12)

then ∫
Ω
|u(x,t)−v(x,t)|≤ c

∫
Ω
|u0(x)−v0(x)|dx, a.e. t∈ [0,T). (1.13)

Theorem 1.2. Let u,v be two solutions of Eq. (1.2) with the different initial value u0(x),v0(x)
respectively. If f satisfies (1.12), a(x) satisfies

1
η2

∫
Ω\Ωη

a(x)dx≤ c, (1.14)

then the stability (1.13) is true. Here Ωη ={x∈Ω : d(x,∂Ω)>η} for small η>0.
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We give a brief explanation of the conditions (1.11) and (1.14). Let a(x)=dα(x), d(x)=
dist(x,∂Ω), α>0 be a constant. Then the condition (1.11) implies that 0<α<1; while the
condition (1.14) means that α>1. Thus, Theorem 1.3 is the complement of Theorem 1.1.
It is astonished that, if a(x)=dα(x), our results exclude the case α=1.

At last, we would like to suggest that if {x∈Ω : a(x)=0} has the interior point in Ω,
then the equation is strongly degenerate. In such case, only in the sense of the entropy
solutions, the stability (or the uniqueness) of the weak solutions can be proved. One can
refer to the references [8, 10–17] etc. In the last section of our paper (Section 5), a special
case of equation (1.6) is considered.

So, the main results listed above (Theorems 1.1-1.2) not only clarify that, if the equa-
tion is weakly degenerate (i.e. there is not the interior point in the set {x∈Ω:a(x)=0}⊂Ω),
then the usual boundary value condition (1.3) is overdetermined, but also show that the
stability of weak solutions may be proved without any boundary value condition. Cer-
tainly, if the equation is strongly degenerate, whether the stability of the solutions can be
obtained without any boundary value condition is still an open problem.

2 The existence of the solution

In general, the weak solution is defined as follows.

Definition 2.1. A nonnegative function u(x,t) is said to be a weak solution of equation (1.2)
with the initial value (1.3), if u satisfies (1.7) and for any function φ∈C1

0(QT),∫∫
QT

(ut φ+a(x)∇um∇φ)dxdt=
∫∫

QT

f (u,x,t)φ(x,t)dxdt, (2.1)

the initial value (1.3) is true in the sense of (1.9).

Theorem 2.1. If u0(x) satisfies

0≤u0∈L∞(Ω),
√

a(x)∇um
0 ∈L2(Ω), (2.2)

f (s,x,t)≥0 when s<0, then there exists a nonnegative solution of equation (1.2) with the initial
value (1.3) in the sense of Definition 2.1.

Proof. We consider the following regularization problem
un t =div

(
(a(x)+

1
n
)∇um

n

)
+ f (un,x,t), (x,t)∈QT,

un(x,t)=0, (x,t)∈∂Ω×(0,T),

un(x,0)=u0(x), x∈Ω .

(2.3)
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By the monotone convergent method [18], the initial-boundary value problem (2.3) has a
nonnegative weak solution un(x,t),

un(x,t)∈L∞(Ω), unt ∈L2(QT), um
n ∈L2(0,T;W1,2

0 (Ω)),

∥un(x,t)∥L∞(QT)≤ c. (2.4)

Let us multiply um
n on both sides of the equation, integrate it over QT. Then

1
m+1

∫
Ω

um+1
n dx+

∫∫
QT

(
a(x)+

1
n

)
|∇um

n |2dxdt+
∫∫

QT

f (un,x,t)um
n dxdt

=
1

m+1

∫
Ω

um+1
0 dx,

accordingly, ∫∫
QT

(
a(x)+

1
n

)
|∇um

n |2dxdt≤ c. (2.5)

Let us multiply unt on both sides of the equation, integrate it over QT. Then

1
2

∫∫
QT

u2
ntdxdt=

∫∫
QT

div
((

a(x)+
1
n

)
∇um

n

)
untdxdt+

∫∫
QT

f (un,x,t)untdxdt,∫∫
QT

div
((

a(x)+
1
n

)
∇um

n

)
untdxdt=−

∫∫
QT

(
a(x)+

1
n

)
∇um

n ·∇untdxdt

=−m
∫∫

QT

(
a(x)+

1
n

)
um−1

n ∇un ·∇untdxdt

=−m
2

∫∫
QT

(
a(x)+

1
n

)
um−1

n
d
dt
|∇un|2dxdt. (2.6)∣∣∣∣∫∫QT

f (un,x,t)untdxdt
∣∣∣∣≤ c+

1
4

∫∫
QT

u2
ntdxdt. (2.7)

By (2.6)-(2.7), we have ∫∫
QT

u2
ntdxdt≤ c. (2.8)

Thus, by (2.4), (2.5) and (2.8), there exists a function u(x,t)∈L∞(QT) and a n−dimensional
vector

−→
ζ =(ζ1,··· ,ζn) such that uε →u a.e.∈QT, and

u∈L∞(QT),
∂u
∂t

∈L2(QT),
∣∣∣−→ζ ∣∣∣∈L2(QT),

uε ⇀u, weakly star in L∞(QT), uε →u, in L2
loc(QT),

∂uε

∂t
⇀

∂u
∂t

in L2(QT),

√
a(x)+

1
n
∇um

ε ⇀
−→
ζ in L2(QT).



On a Nonlinear Heat Equation with Degeneracy on the Boundary 25

As the usual porous medium equation [5], we can prove that

ζ=
√

a(x)∇um.

Also, we can prove that (1.9) is true. Thus, u is a solution of equation (1.2) with the initial
value (1.3) in the sense of Definition 2.1.

Theorem 2.2. If u0(x) satisfies (2.3), f (s,x,t)≥ 0 when s< 0, then there exists a nonnegative
solution of equation (1.2) with the initial value (1.3) in the sense of Definition 1.1.

Proof. According to Theorem 2.1, for any function φ∈C1
0(QT) and for any function g(s)∈

C1(R), g(0)=0, we have∫∫
QT

[utg(φ)+a(x)∇um∇g(φ)]dxdt=
∫∫

QT

f (u,x,t)g(φ)dxdt.

If we denote Ωφ =suppφ, then

∫ T

0

∫
Ωφ

[utg(φ)+a(x)∇um∇g(φ)− f (u,x,t)g(φ)]dxdt=0.

Now, for any function φ1∈C1
0(Ω), φ2∈L∞(0,T;W1,2

loc (Ω)), it is clearly that φ2∈W1,2(Ωφ1).
By the fact of that C∞

0 (Ωφ1) is dense in W1,2(Ωφ1), by a process of limit, we have

∫ T

0

∫
Ωφ1

[utg(φ1φ2)+a(x)∇um∇g(φ1 φ2)− f (u,x,t)g(φ1 φ2)]dxdt=0.

which implies that∫ T

0

∫
Ω
[utg(φ1 φ2)+a(x)∇um∇g(φ1 φ2)− f (u,x,t)g(φ1 φ2)]dxdt=0.

Thus, we have the conclusion.

3 Proof of Theorem 1.1

For small η>0, let

Sη(s)=
∫ s

0
hη(τ)dτ, hη(s)=

2
η

(
1− | s |

η

)
+

. (3.1)

Obviously hη(s)∈C(R), and

hη(s)≥0, | shη(s) |≤1, |Sη(s) |≤1; lim
η→0

Sη(s)=sgns, lim
η→0

sS′
η(s)=0. (3.2)
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Proof of Theorem 1.1. Let u, v be two solutions of equation (1.2) with the initial values
u0(x),v0(x). We can choose Sη(aβ(um−vm)) as the test function. Then∫

Ω
Sη(aβ(um−vm))

∂(u−v)
∂t

dx+
∫

Ω
aβ+1(x)(∇um−∇vm)·∇(um−vm)S′

η(aβ(um−vm))dx

+
∫

Ω
a(x)(∇um−∇vm)·∇aβ(um−vm)S′

η(aβ(um−vm))dx

+
∫

Ω
[ f (u,x,t)− f (v,x,t)]Sη(aβ(um−vm))dx=0. (3.3)

Thus

lim
η→0

∫
Ω

Sη(aβ(um−vm))
∂(u−v)

∂t
dx=

∫
Ω

sign(aβ(um−vm))
∂(u−v)

∂t
dx

=
∫

Ω
sign(u−v)

∂(u−v)
∂t

dx=
d
dt

∫
Ω
|u−v|dx, (3.4)∫

Ω
aβ+1(x)|∇um−∇vm|2S′

η(aβ(um−vm))dx≥0. (3.5)

By that |∇a(x)|≤ c in Ω, we have

∣∣∣∣∫Ω
a(x)(um−vm)S′

η(aβ(um−vm))(∇um−∇vm)·∇aβdx
∣∣∣∣

≤c
∫

Ω
aβ|um−vm|S′

η(aβ(um−vm))|∇um−∇vm|dx

=c
∫
{Ω:aβ|um−vm|<η}

a−
1
2 aβ|um−vm|S′

η(aβ(um−vm))a
1
2 |∇um−∇vm|dx

≤c
(∫

{Ω:aβ|um−vm|<η}

[
a−

1
2 aβ|um−vm|S′

η(aβ(um−vm))
]2

dx
) 1

2

·
(∫

{Ω:aβ|um−vm|<η}
a(x)(|∇um|2+|∇vm|2)dx

) 1
2

.

If {x∈Ω : um−vm =0} has 0 measure, since∫
Ω

a−1(x)dx<∞,

consequently ∫
{Ω:aβ|um−vm|<η}

∣∣∣a− 1
2 aβ(um−vm)S′

η(aβ(um−vm))
∣∣∣2dx

≤
∫
{Ω:aβ|um−vm|<η}

a−1(x)dx<∞. (3.6)



On a Nonlinear Heat Equation with Degeneracy on the Boundary 27

Then

lim
η→0

(∫
{Ω:aβ|um−vm|<β}

a(x)(|∇um|2+|∇vm|2)dx
) 1

2

=

(∫
{Ω:|um−vm|=0}

a(x)(|∇um|2+|∇vm|2)dx
) 1

2

=0.

If {x∈Ω : um−vm =0} has a positive measure, obviously,

lim
η→0

(∫
{Ω:aβ|um−vm|<η}

∣∣∣a− 1
2 aβ(um−vm)S′

η(aβ(um−vm))
∣∣∣2dx

) 1
p

=

(∫
{Ω:|um−vm|=0}

lim
η→0

∣∣∣a− 1
2 aβ(um−vm)S′

η(aβ(um−vm))
∣∣∣2dx

) 1
2

=0.

Using Lebesgue dominated convergence theorem, in both cases, we have

lim
η→0

∣∣∣∣∫Ω
a(um−vm)S′

η(aβ(um−vm))(∇um−∇vm)·aβdx
∣∣∣∣=0. (3.7)

In addition,

lim
η→0

∣∣∣∣∫Ω
[ f (u,x,t)− f (v,x,t)]Sη(aβ(um−vm))dx

∣∣∣∣≤ c
∫

Ω
|u−v|dx. (3.8)

Now, let η→0 in (3.3). By(3.4)-(3.8), we have∫
Ω
|u(x,t)−v(x,t)|dx6 c

∫
Ω
|u0−v0|dx, ∀t∈ [0,T).

Theorem 1.1 is proved.

4 The proof of Theorem 1.2

Proof of Theorem 1.2. Let u, v be two solutions of equation (1.1) with the initial values
u0(x),v0(x) respectively. Denote Ωη = {x∈Ω : dist(x,∂Ω)> η}, let ξη ∈C∞

0 (Ω) such that
ξη =1 on Ωη , 0≤ ξη ≤1 and

|∇ξη |≤
c
η

.

We can choose g(s)≡ s, φ1=χ[τ,s]ξη , φ2=(um−vm), and choose χ[τ,s]Sη(um−vm)ξη as
a test function. Here χ[τ,s] is the characteristic function of [τ,s)⊆ [0,T). Then

∫∫
Qτs

Sη(um−vm)ξη
∂(u−v)

∂t
dxdt
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=−
∫∫

Qτs

a(x)(∇um−∇vm)∇[Sη(um−vm)ξη ]dxdt

−
∫∫

Qτs

[ f (u,x,t)− f (v,x,t)]Sη(um−vm)ξηdxdt. (4.1)

We have ∫∫
Qτs

aξη |∇(um−vm)|2S′
η(u

m−vm)dxdt≥0, (4.2)

and ∣∣∣∣∫∫Qτs

Sη(um−vm)a(x)(∇um−∇vm)∇ξηdxdt
∣∣∣∣

≤
∫∫

Qτs

a(x)(|∇um|+|∇vm|)|∇ξη |dxdt

≤
∫ s

0

∫
Ω\Ωη

[
1
2

a(x)(|∇um|2+|∇vm|2)+ 1
2

a(x)|∇ξη |2
]

dxdt

≤
∫ s

0

∫
Ω\Ωη

[
1
2

a(x)(|∇um|2+|∇vm|2)+ca(x)η−2
]

dxdt, (4.3)

which goes to zero when η→0, due to the assumption

1
η2

∫
Ω\Ωη

a(x)dx≤ c.

At the sane time,

lim
η→0

∫∫
Qτs

Sη(um−vm)ξη
∂(u−v)

∂t
dxdt=

∫∫
Qτs

sign(um−vm)
∂(u−v)

∂t
dxdt

=
∫∫

Qτs

sign(u−v)
∂(u−v)

∂t
dxdt. (4.4)

lim
η→0

∣∣∣∣∫∫Qτs

[ f (u,x,t)− f (v,x,t)]Sη(um−vm)ξηdxdt
∣∣∣∣≤ c|

∫∫
Qτs

|u−v|dxdt. (4.5)

Let η→0 in (4.1). By (4.2)-(4.5), we have

∫
Ω
|u(x,s)−v(x,s)|dx−

∫
Ω
|u(x,τ)−v(x,τ)|dx≤ c

∫ s

τ

∫
Ω
|u(x,t)−v(x,t)|dxdt. (4.6)

By (4.6), using Growall’s inequality, we are able to obtain the stability (1.13). The proof is
complete.
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5 The existence of BV solution

At the end of the paper, we generalize equation (1.2) to the following degenerate parabol-
ic equation

∂u
∂t

=
∂

∂xi

(
a(u,x,t)

∂u
∂xi

)
+ f (u,x,t), (x,t)∈QT =Ω×(0,T), (5.1)

with

u(x,0)=u0(x), x∈Ω, (5.2)

u(x,t)=0, (x,t)∈∂Ω×(0,T), (5.3)

and study the existence of the entropy solution in BV space. However, we would like to
suggest that the concepts of the entropy solution (Definition 5.1), the existence of the so-
lution (Theorem 5.1) and the stability of solutions (Theorem 5.2), are just a minor version
of our previous work [17].

Definition 5.1. A function u∈BV(QT)∩L∞(QT) is said to be the entropy solution of equation
(5.1) with the initial value (5.2) and with the boundary value condition (5.3), if

1. There exists gi ∈L2(QT), i=1,2,··· ,N, such that for any φ(x,t)∈C1
0(QT),∫∫

QT

φ(x,t)gi(x,t)dxdt=
∫∫

QT

φ(x,t)
̂√
a(u,x,t)

∂u
∂xi

dxdt, (5.4)

where
̂√

a(u,x,t)(u,x,t)=
∫ 1

0

√
a(τu++(1−τ)u−,x,t)dτ,

which is called the composite mean value of
√

a(u,x,t).
2. For any φ∈C2

0(QT), φ≥0, for any k∈R, for any small η>0, u satisfies∫∫
QT

[
Iη(u−k)φt+Aη(u,x,t,k)∆φ−

N

∑
i=1

S′
η(u−k) | gi |2 φ

]
dxdt

+
∫∫

QT

∫ u

k
axi(s,x,t)Sη(s−k)dsφxi dxdt+

∫∫
QT

f (u,x,t)φSη(u−k)dxdt≥0. (5.5)

3. The homogeneous boundary value (5.3) is true in the sense of trace,

γu |∂Ω×(0,T)=0. (5.6)

4. The initial value is true in the sense of

lim
t→0

∫
Ω
|u(x,t)−u0(x) |dx=0. (5.7)
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Here the double equal indices imply a summation from 1 up to N, and

Aη(u,x,t,k)=
∫ u

k
a(s,x,t)Sη(s−k)ds,

A(u,x,t)=
∫ u

0
a(s,x,t)ds, Iη(u−k)=

∫ u−k

0
Sη(s)ds.

Theorem 5.1. If A(s,x,t) is C3, f (u,x,t) is C1, u0(x)∈C1(Ω), and there is a constant δ> 0
such that

a(u,x,t)−δ
N+1

∑
s=1

(axs)
2≥0, (5.8)

then Eq. (5.1) with the initial-boundary value conditions (5.2)–(5.3) has a entropy solution in the
sense of Definition 5.1. Here s=1,··· ,N,N+1, xN+1= t.

Theorem 5.2. Suppose that A(s,x,t) is C2, f (s,x,t) satisfies

| f (s1,x,t)− f (s2,x,t)|≤ c|s1−s2|, (5.9)

and there exists a constant δ>0 such that

|
√

a(·,x,·)−
√

a(·,y,·) |≤ c | x−y |2+δ . (5.10)

Let u,v be solutions of Eq. (1.1) with the same homogeneous boundary value (5.3) and with the
different initial values u0(x), v0(x)∈L∞(Ω) respectively. Then∫

Ω
|u(x,t)−v(x,t) |dx≤

∫
Ω
|u0(x)−v0(x) |dx. (5.11)

At last, let us come back to consider the main equation (1.2). If we compare (1.2) with
the usual reaction-diffusion equation (5.1), then

a(u,x,t)=ma(x)um−1,

the condition (5.8) becomes

ma(x)um−1−δm2u2(m−1)|∇a|2=mum−1(a−δmum−1|∇a|2).

By this observation, we have

Theorem 5.3. If m≥1, and
|∇a|2≤ ca,

then equation (1.2) has a BV solution in the sense of Definition 5.1. Moreover, if a satisfies the
condition (5.10), the solution is unique.

Certainly, Theorem 5.1 and Theorem 5.2 show the well-posedness of the usual reaction-
diffusion equation (5.1), including the case when the equation is strongly degenerate.
Accordingly, they have their own independent significance.
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