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1 Introduction

Let QO CRY (with N >1) be a bounded domain with smooth boundary oQY and «, B, p, g

1 1
be constants such that « >0, >0, p>1,9>1and a;;#-ﬂ;; =1.
Our aim is to study the following eigenvalue problem
ASu—Amy (x)[ulP~2u=m(x) |0 u]* " u in O,
(Q): Agv—)&mz(xﬂv\q*zv:m(x)|u\“+1]v|ﬁflv in Q,
u=Au=v=Av=0 on 9(),
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where A%u = A(]Au|P~2Au) is the p-biharmonic operator and A is a real parameter. The
coefficients mjy, mp, m € L*(()) are assumed to be nonnegatives in Q).

In [1], Talbi and Tsouli have investigated the scalar version of problem (Q) with m=0,
which reads

Ap|AulP~2Au) = Aa(x)|u|P~2u in Q,
(Pa’p,p):
u=~Au=0 on d(),

where p € C(Q) such that p>0and a € L®(Q)). They proved that (P, ,,) possesses at least
one non-decreasing sequence of eigenvalues and studied (FP,,;,) in the particular one di-
mensional case. The authors, in the same reference gave the first eigenvalue Ay, ,(a) and
showed that if >0 a.e. in (), then Ay, ,(a) is simple (i.e. the associated eigenfunctions
are a constant multiple of one another) and principal i.e. the associated eigenfunction,
denoted by ¢, 4 is positive or negative on () with

A = inf AulPd 1.1
an(“) L}?A/Qp‘ u|Pdx, (1.1)
where
A:{uEWZ"’(Q)ﬂWOLP(Q):/ a]u\’”dle}. (1.2)
Q

The problem (P, ;,) was considered by P. Drabek and M. Otani for p=1and a=1 [2].
By using a transformation of the problem to a known Poisson problem, they showed that
(Pa,p,p) has a principal positive eigenvalue which is simple and isolated. In the case N=1
they gave a description of all eigenvalues and associated eigenfunctions.

El Khalil et al. [3] also considered problem (P, ;) for p=1, a=1 with Dirichlet bound-
ary conditions and showed that the spectrum contains at least one non-decreasing se-
quence of positive eigenvalues.

Benedikt [4] gave the spectrum of the p-biharmonic operator with Dirichlet and Neu-
mann boundary conditions in the case N=1,p=1and a=1.

It is important to note that (u,A) is solution of problem (Py,, 1) if and only if [(1,0);A]
is solution of (Q). This kind of solution is called ”semitrivial solution” of (Q). Further-
more if [(#,0);A] is solution of (Q) with u of one sign on (), then A is called “semitrivial
principal eigenvalue” of (Q). Consequently, there are two forms of semitrivial solutions
for problem (Q): one of the type [(#,0);A] with 1 #0 and (u,A) solution of the problem
(Puy,pa) and the second of the type [(0,);A] with v#0 and (v,A) solution of the problem
(Puy,q1). In particular Aqp1(m1) and Ay, 1(m2) are semitrivial principal eigenvalues of
(Q).

This paper is organized as follows. We construct the eigencurve associated to problem
(Q) in Section 2. Section 3 is devoted to the study of strictly principal eigenvalue of (Q).
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Throughout this work, the Lebesgue norm in L"(Q)) will be denoted by ||-||,, Vre(1,00]
and the norm in a normed space X by ||-||x. We denote by

1, 1,
Yy (Q) = [wzfp(n)mwo ”(Q)] X [wzfq(n)mwo q(o)},
which is a reflexive Banach space endowed with the norm

[(w,0) || = [|Au],+[| o],

(see, e.g., [5]). The weak convergence in Yy,;(Q)) is denoted by —. The positive and
negative part of a function w are denoted by w* = max{w,0} and w~ = max{—w,0}.
Equalities (and inequalities) between two functions must be understood a.e..

For all f € L"(Q)), the Poisson equation associated with the Dirichlet problem

—Au=f(x) in Q,
u=0 on d(),

is uniquely solvable in X, = W2 (Q)NW,”" (Q) (see for example [6]). We denote by A the
inverse operator of —A: X, — L"(Q)). The following lemma gives us some properties of
the operator A:

Lemma 1.1. ([1,2]).

1. (Continuity) There exists a constant ¢, >0 such that
[Afllwer <crl fIr
holds for all r € (1,00) and f € L"(Q)).
2. (Continuity) Given k € IN*, there exists a constant c, . >0 such that
A fllwesar < cpllfllwer
holds for all r € (1,00) and f € WK (Q)).
3. (Symmetry) The identity
/ Au-vdx:/ u-Avdx
o) o)
holds for ue L' (Q)) and v e L (Q) with ' = and r € (1,00).

4. (Regularity) Given f € L*(Q), we have Af € CYV(Q) for all v € (0,1). Moreover, there
exists ¢, > 0 such that

[AS e o) <cvll flleo-

5. (Regularity and Hopf-type maximum principle) Let f € C(Q)) and f >0 then w= Af €
C(Q), forall v € (0,1) and w satisfies: w>0in O, %—7:1’ <0on oQ.

6. (Order preserving property) Given f, g € L"(Q)) if f <gin Q), then Af <Agin Q).
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2 An eigenvalue curve associated to problem (Q)

It is well established that (see, e.g., [7-11]), in order to prove the existence of strictly
principal eigenvalue or semitrivial principal eigenvalue of (Q), one fixes A and embeds

the problem into the new eigenvalue problem of parameter y € R:

Au—m(x) [0 P u|* i — Amy (x) [u]P~2u= plulP—2u in O,
(Qxr): A%v—m(x)|u|”‘+1|v|ﬁflv—)tm2(x)|U\‘7fzv:pt|v|‘7*20 in Q,
u=Au=v=Av=0 on dQ).

Definition 2.1. 1. [(u,0);u] €Y,,4(Q) xR is a (weak) solution to problem (Q,) if
/ ]Au\p’zAqu)ldx—/ m]v]ﬁ+1|u]“’lugo1dx—/\/ my |u|P~2ug dx
0 0 0

= ulP2ugpqdx,
Z /Q\ P ug
/Q|Av|‘7_2A0Aq)2dx—/Qm\u|"‘+l|v|ﬁ_1v(p2dx—A/sz\v]q_zv(pzdx

= q_z d
.

for all (¢1,92) € Ypq(QY).
2. [(u,0);A] €Y,4(Q) xR is a (weak) solution to problem (Q) if

/]Au|"’_2AuA(p1dx—/ m|v|ﬁ+1|u|"‘_luq)1dx:)\/ my |u|P"ugdx,
0 0 0
/]Av]q’zAvA(pzdx—/m\u!”‘“]vw’lvq)zdx:/\/ my v 20g,dx,
0 0 0

for all (¢1,92) € Yp(QQ).

2.1)

(2.2)

(2.3)

3. If [(u,0);A] € Yp,q(Q) xR (resp. [(w,0);1] €Ypq(Q) XR) is a (weak) solution to problem
(Q) (resp. (Qx)), (u,v) shall be called an eigenfunction of the problem (Q) (resp. (Qx))
associated to the eigenvalue A (resp. p(A)). Let us agree to say that an eigenvalue of (Q) or
(Qn) is strictly principal (resp. semitrivial principal) if it is associated to an eigenfunction
(u,v) such that u>0or u<0and v>0orv<0 (resp. [u>0and v=0or u<0and v=0]

or[u=0and v>0o0ru=0and v<0]).

We are going to consider the smallest eigenvalue u € R of problem (Q,). In order to

do so, we define the energy functional

it Ype(Q)) — R
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/3+1

(w,0) — Na(uov)= HA ullp+=—Av][§ =V (u,0) = AM(u,0),

where

ﬁ+1

+1
V(u,v):/Qm\u|““|v\ﬁ“dx, M(u,v):{Xle( u)+——My(v)

with
Ml(u):/ my |u|Pdx, MQ(U):/ malolidx, V(1,0) € Y ().
o) o)
Equalities (2.2) and (2.3) are equivalent to
V(u,0)=uVI(u,0)

where

,3+1

Lemma 2.1. Let (wy, wy) € L*(Q) x L®(Q)). If wy, wy >0 on Q) then there exist three positive
constants c1, ¢, c3 such that

| 8ullf+[180]1f S ciJa (o) +c2 | wrlul’dx-+es [ walolidx, (2.6)

for every (u,v) € Ypq(QY).

Proof. We only sketch it since it is adapted from [10] in (p,q)-laplacian systems case. First,
note that

Mi(u) < lmfloollullp,  Ma(u) <|lma]leolu]lg-

Since —— =1, it is well known by Young inequality that:

1 1

a+1
p

V(o)< mle [ [ |urp+ﬁ‘;1|v|q] dx. 27)

We set ks =max{ky,kp } with:

a+1 B+1 a+1 +1
b= lflemax{ T2 EEL =i maxd 2 o, P o

Then, one has:

V(u,0) <ki (lulp+lolg),  [AM(u,0)| <ka (|lullp+]2l)-
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On the other hand according to the proof of [9, Lemma 2] in p-Laplacian case, for ¢ >0
there exist M, >0 and M, >0 such that:

Jullp <ellaulh+M. [ @ilulrds,  Jollj<e|aoli+M, [ walofidx.

Now, we have

a+1

+1
||Au||§+5q||m;\|g 2 (1,0) =V (1,0) + AM (11,0).

Then, one has:

B+1
q

SJA(u,v)—stkg,(HAquqLHAUHZ)+2k3M£/Qw1]u\pdx+2k3M;/sz|v|‘7dx.

a+1
THAMH% 18] < Ja(,0) +2ks ([|ullp+ [[0]17)

Let e >0 be such that k4 = min{ % —2¢ks, % —28k3} > 0. Thus, one has:

k;;(HAuHﬁ—l—HAvHZ)g]A(u,v)—|—2k3Mg/Qw1\u]pdx—|—2k3M;/Qw2\v\‘7dx.

We deduce
1 2ks M 2k3 M,
p 1= 3 5/ p 3 s/ q
lAullp+llAvllg < Ja(wo)+ == | @rfufPdet=r== | wafol’dx.
We can take ¢; =1/ky , ¢y =2k3 M. /ky and c3 =2ks M., /ky. O
Proposition 2.1. The value
w1 (A):=inf{ ]\ (u,0): (u,0) e M}, (2.8)

where
M={(u,v) €Ype(Q):1(u,v) =1},

is the smallest eigenvalue of (Q,).

Proof. By Lemma 2.1, one has for wy =wy =1,
og|yAu|y;+y|Av||ggclh(u,v)+c2/0|u|vdx+c3/ﬂyv|qu

<ciJx(u,v)+co3 [DC—H/ |“’pdx+ﬁ+1/ \U‘qu]
p Ja g Ja

=c1J)(u,0)+c23, V(u,0)eM,
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where cy3 = max{%,%}, so that J, is bounded below on M. Furthermore any se-
quence (u,,v,) that minimizes ], on M is bounded in Y}, ().
Thus there exists (u0,70) € Ypy(Q)) such that, up to a subsequence, (u,,v,) converges

weakly to (uo,vp) in Yy, (Q) and strongly in L? (Q) x L9(€)). Hence
Ja(uo,v0) < Hm J (un,0n) =p1(A),  (#0,00) €M

and consequently ], (ug,v9) = p1(A). By the Lagrange multipliers rule, y1(A) is an eigen-
value for (Q,) and (uo,vp) is an associated eigenfunction. Moreover for any eigenvalue
1 (M) associated to (1p,v1) € Ypg (U)\{(0,0)}, Ja(ur,vp) =p(A)I(up,vp) with I(uy,vp) >0.
Consequently

“ v Ja(ua,0
Hl(A)Sb‘( . T/ . 1)2 IA(( A A)):]/l()\).
I(“/\Iv/\)p I(HA,Z))\>q U, Op
We conclude that 11 (A) is the smallest eigenvalue of (Q, ). -

For m=my =my =0, we denote by

. a+1 +1
o= (3) =int{ 2 foull+ 2 0l () e |

Since the space W' (Q))NW,” (Q) with r€ {p,q} does not contain any constant non trivial
function, one has g > 0.
Proposition 2.2. The following results hold

1. py is concave and differentiable with uy (A)=—M (uo,v0) where (1,v0) is some eigenfunc-
tion of (Qy) associated to pq(A) for all A €R.

B A)=—o0.
2 lim = -o
3.y is strictly decreasing.
Proof. We provide the proof in the following steps.

1. The concavity of y; follows from the concavity of the mapping A — J,(u,v), for a
fixed (1,v) € Ypq(Q)). In particular y is continuous. Now let A, — A and (uy,v,),
(up,v)) be the I-normalized eigenfunctions related to u1(A,), p1(A) respectively.
We apply Lemma 2.1 with w; =wp =1 to get

\|Aun||§+||Avn||ggclh(un,vn)wz/ﬂ|un|r’dx+c3/0\vn|qu,

pca qcs }

SleA(“ann) +max { m/m
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c o
:clyl()&n)—}—max{pi_zl,ﬁqﬁl }
Moreover
. pc2  qcs pc2  4qc3
1 n A == T a7, 4 .
nl_r&clyl(/\ )+max{lx+1 lB-I—l} clyl()\)—i—max{(x_i_l IB+1}

So we conclude that (u,,7,), is a bounded sequence in Y,,((2). Hence there exists
(10,v0) such that, up to a subsequence, (u,,v,) — (ug,v0) in Yp,(Q2), strongly in
LP(Q) x L1(Q)). Then (ug,v9) € M and from

Ja(uo,v0) < nhgiw]A(“n,Un) =u1(A)

we infer that p1(A) =] (uo,v0) = Ja(1x,01) and (up,v) is an eigenfunction of (Q,)
associated to 11 (A). Furthermore

H1(An) = p1(A) > = (A —A)M(up,0,),
1 (An) —p1(A) < =(An—A)M(u0,v0)
Hence
_M(un/vn)g ‘ul(/\)}z):ﬁl()\) <—M(M0,Z)0>, if Ay>A,
—M(ug,v0) < K MX):T(A) < —M(uy,v,), if A,<A

Passing to the limit we get 3t (1) = —M (ug,vp).

. We know that m, is nonnegative, then there exists a function u € X, such that

M (1) >0and I(u,0)=1. Then, for all A € R, p1(A) <J)(1,0). We deduce that

Air&w]A(u,O) = Air&mEM(u,O) —AM(u,0) = —o0,

where
x+1 +1
En0)= 2 aul -+ B2 a0l [ mupT ol

Thus lim pq(A)=—oo.

A— 400

. The result is clear from the fact that M(u,,v,) >0 for any A € R. Indeed, if A1 <A,

then

1 (M) =Ep(up,0p,) —AM(up,,vp,) > En(1p,,00,) —AaM(up,,vp,) > p1(A2).

This completes the proof of the proposition. O
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3 Strictly or semitrivial principal eigenvalues

Note that, if #1(A) =0 then A is an eigenvalue of problem (Q). Our purpose is to find a
reasonable assumption on m so that there exists at least one A € (0,00) such that p1 (1) =0.

Lemma 3.1. If ||m||e < po then, p1(0) >0 and puy(A) =0 has a unique positive solution A
(eigenvalue of (Q)).

Proof. Assume that |||« < pig. By (2.7), we have V(u,v) < ||m||eoI(u,v), V(11,0) € Ypy (OY).
Then, one has

a+1 +1
pHAuHﬁJrﬁqllAvHZ— [mllool(1,0) <Em(u,0), V(u,0)€ Ype(QQ).

We deduce that:

to < Ep(u,0)+|m|e, Y(u,0)eM,
po—Imllee <inf{Ey (1,0),(1,0) € M} <p1(0).

Consequently, 111(0) > 0. Moreover, from Propoaition 2.1, 1 is strictly decreasing. We
deduce that, y1(A) =0 has a unique positive solution A and A is an eigenvalue of (Q). [

We will denote by

L(Q) = ([LP(Q) x LY (Q)]\{(0,0)}) xR, G.1)
Lo(Q) := ([L7(Q) x L1(Q)]\{(0,0)}) x {0} (3.2)

We apply some results proved by Drabek and Otani [2] and some ideas used by Talbi and
Tsouli [1].

Remark 3.1.
1. VueX,, Voe L'(Q) withr€ (1,00): v=—Au<=u=Awv.

2. Let N, be the Nemytskii operator with r € (1,00), defined by

[l Pulx)if u(x) £0,
Nr(u)(x)—{o if u(x)=0.
We have ,
Yoel'(Q), VYwel (Q): N;(v)=w<=v=N,(w) (3.3)

. Ty
Wlthr =71
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3. If (u,v) is an eigenfunction of (Q, ) associated with y then p=—Au, w=—Av satisfy:

Np(@) =A([1(A)+Am1 Ny (Ag) +m|Aw|P T Ap* " Ag),
Ny(w) =A([u(A) +Ama] Ny (Aw) +m|Ag|*HAw|F 1 Aw).

Hence:

(@) [(uo,v0);u(A)] is a solution of (Q, ) if and only if [(¢o,wp);(A)] is a solution of
problem

Find [(¢,w);u(A)] € L(Q) such that
(Q1):§ No(@) = A([1(A) +Am Ny (Ag) +m| Aw|P! |Ag|*~T Ag)
Ny (w) = A([i(A) +Ama] Ny (Aw) +m| Ap|* | Aw|P~! Aw)

with ¢ = —Aug and wy = —Avy.

(b) [(@o,wo);u(A)] €Lo(Q) is a solution of (Q/A) if and only if [(@o,wp);A] €L(Q)) is
a solution of problem

Find [(¢,w);A] € L(Q) such that
(Q’): Ny(9) _A()‘mlNP(A‘P)“‘me\ﬁH!A(pl"‘_lAgo)
N, (w) :A(/\mqu(Aw)+m|A(P|a+1|Aw’5_1Aw)

with ¢ = —Aug and wy = —Avy.

(c)
1 (A):=inf{F\(@,w): (¢, w) € LF(Q) x L1(Q),R(¢p,w) =1} (34)

where

F(g,w)= el U |p|Pdx— A/ m1|Aq)|pdx}

'B+1 [/ |w|7dx — /\/m2|Aw|‘7dx} /m|A(p|"‘+1|Aw|ﬁ+1dx,

,3+1

a+1

R((P,W)ZTHAGOH;J | Aw Hq

We may now assume the following condition:
(Hn) :[[]leo <pto. (3.5)

Lemma 3.2. If [(u,0); ()] is a solution of (Q)) then —Au, —Ave C(Q) and u, ve C'¥(Q),
forallve (0,1).
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Proof. Without loss of generality, one can assume that p<q. Let pp€ [p,0), g0 € [q,0°) such
that po =qo if p=q. Suppose that =N, (AB1) €Ll (Q)), w= Ny (ABy) € LP(Q)) with

01=wiNy (Ag)+m|Aw|P At~ Ag,
02 =wr Ny (Aw) +m|Ag|* ™| Aw|P~1 Aw,
where w1 € L®(Q), wy € L*®(Q). It is easy to see that:

1. if p=g, then

. 1
(@) ¢, weLP(Q)), with =

%, if Po<2—z;],
k.
(b) @, we LP/*l (Q), vke (1,+00), lf Poz zﬂ
(© ¢, weC(Q),if po> 2—1;],. Indeed, one have
i o, weC(Q),if ¥ <po.

ii. if % =po, then 61, 6, € L% (Q), for all k€ (1,4+00). We can take k such that
%1 >4 Thus ¢, we C(Q).

0
-1

iii. if N, <po<%, then: 6;,6,€L
wEC(Q)

. o Np 7 N
r1(Q) with rp= N_z(;o and ;25 > 5. Then ¢,

2. if p<q, then:

(@) if po <3 /, then

i. 0 ¢e Lr—°1 (Q) and g € L (Q) with ro= b, p1 = Ngjﬁf;’j;;po, if go> .
ii. if go< %, then:
A 6 € L% () and g € L (Q) with sp = M, if pso > gro.
B. GzeL
C. oL

(b) if Po=>; ,,then

o

(), if pso <qro.
(Q), 6, € L77(Q) and g € LP1 (Q), if pso=4ro.

\o
N

i. (peLﬁ(Q),Vke( ,+00), if go > X.
ii. if qo<%,then:

A. 9L 1(Q), Vke (1,400), if psy > qro.
B. 6L 1(Q)),if pso<qro
C. ,eL71(Q)and peL¥ 1( ), Yk e (1,400), if pso=qro.
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- N
(c) if po> 2 then
i ¢, weC(Q),if & <po<qo.
ii. if % <po< %, then:
A ¢pc C(ﬁ), if % <{o.
o S0
B. 61 €L71(Q) or 6, € L71(Q) if T > go.
Let [(1,0);1(A)] €Yy (Q) x R be a solution of (Q,), then [(¢,w);(A)] is a solution of (Q))
with g=—Au=N,, (A1) €LP(Q), w=—Av =N, (Ab) € L1(Q2) with

01=wiN,(Ag) +m|Aw|FT|Ap|* T Ag,
02 =wr Ny (Aw) +m|Ap|*™ | Aw|f~ Aw,

where w1 =pu(A)+Amy € L®(Q), wa=p(A)+Amy € L®(Q).

Case (1): p=g¢q
We easily see that ¢, w € C(Q)) from assertion 1c, if p > %.
Now take suitable (p,), p=po and k € N such that p;_; < 2—1;5, < pr with i = % - ZkTp.

Then applying assertion 1la with po = po, p1,..., Pk—1, we deduce ¢, w € LPx(Q}). Hence

from assertion 1c, ¢, w € C(Q)) follows.

Case (2): p<gand % <p.

1. We deduce ¢, w € C(Q) from assertion 2b and 2c, if § <g.

2. If § > g, take suitable s, = Nl\_[qz';” with % = qlT)_ 2 go=4q and k € N such that

qukl > % Then applying assertion 2b and 2c with g0 =qo, 41,-.., gk, Po=p, we deduce
6, L1 (Q)). Hence Af; € C(Q)) and ¢, w e C(QQ) follows.

Case (3): p<gand % >p.

1. If % < g, take suitable (p,), p=po and k € N such that p;_; < 2%’ < pr with i =
% - 2’;\’; . Then applying assertion 2a with po = po, p1,--., Px—1, 0 =4, we deduce

@€ LPr(Q)) and ¢, we C(Q) follows.

!/

2. If 2—1;’, > g, take suitables (p,), (7,) and k, j €IN such that p=po, §=4qo, px—1 < % <Pk
gi-1< % <g; with ﬁ = % — ZkTp and qu = ql—o — 2{3 . Then applying assertion 2a with

Po=Po, P1,--» Pk—1, and qo=4o, q1,---, 4j—1, we deduce ¢ € LPe(Q)), we L9 (Q) and ¢,

w e C(Q) follows.
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Hence we deduce that ¢, w € L®(Q)) and from the assertion in Lemma 1.1 that u = Ag,

v=AweC"(Q) forallve (0,1). O
Lemma 3.3. [(@1,w1);11(A)] € L(Q) is a solution of problem (Q,), if and only if

G ,wp) =0= i Gilo, 3.6

A(pr,wr) L. A(p,w) (3.6)

where

Ga(p,w) =Fr(p,w) = (MR(@w),  L7(Q) = [LF(Q) x L1(Q)]\{(0,0)}.
Proof. Assume that [(@1,w1);1(A)]€L(Q) is a solution of problem (Q) ). Then F) (¢1,w;)=
#1(A)R(¢@1,w1). Hence GA(?l,w1)= A(@1,w1) —p1(A)R(@1,w1) =0. Put

P= Ll, W= Ll for every (¢, w) € L*(Q)).
[R(g,w)]? [R(g,w)]"
Then R(@,w)=1. We deduce that
__. FE(pw)
< = .

m(A) <F\(9w) R(pw)’ (3.7)

Galg,w) =Fr(¢p,w) —p1(A)R(@,w) =0 (3.8)
for all (¢, w) € L*(Q2). We claim that (3.6) holds.

Now suppose that (3.6) holds. We deduce that VG, (¢1,w1) =(0,0). Then
dG dG
(G (900 1) = (52 (or101),6) =0, (3.9)

for all (¥,6) € [LP(Q) x L1(Q)]. Hence, [(¢1,w1);p1(A)] € L(Q) is a solution of (Q}). O
Lemma 3.4. If (H,,) holds and [(¢1,w1);p1(A)] € Lo(Q) is a solution of problem (Q',) then
(@1, |w1]);11(A)] € Lo(Q) is a solution of problem (Q)).

Proof. Assume that (H,,) holds and [(¢1,w1);41(A)]€Lo(Q) is a solution of problem (Q)).
Then GA(q)l,wl) =0, }11()\) =0, A>0and (’§01|,|ZU1’) S [LP(Q) X Lq(Q)]\{(0,0)} Hence
Gar(l¢al,|wr]) =0.

Additionally, one has |A(|¢@1])|" > |A@1|" and |A(Jw1|)|" > |Aw,|", for all r€ (1;00). We
deduce that:

A [ mlA(gilPdx <A [ m|Agi s,
—/\/ mz\A(]wl\)deg—A/ o] At |7dx,
Q Q
— [ A DI A on ) e < = [ mlga T e
Q Q

Consequently, Fy (1], [w:|) <Fy(¢1,w1) and Gy (|1, |wi1]) <Ga (¢1,w1)=0. Thus Gy (|1, w1 ])=
0 and [(|¢1],|w1|);p1(A)] is solution of (Q),). O
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Proposition 3.1. Assume that (H,,) holds and yy(A) =0. Then A is a semitrivial principal
eigenvalue or strictly principal eigenvalue of problem (Q).

Proof. Assume that (H,,) holds and p1(A) =0. Then A is an eigenvalue of problem (Q)
associated with (u,v) € Y,,(Q)\{(0,0)}.

If u#0 and v#£0, then [(@,w); u1(A)], [(|@],|w|);u1(A)]€Lo(Q)) are solutions of problem
(Q)) with ¢ = —Au #0 and w = —Av #0. Since |¢| >0 and |w| >0, then A(|g|) >0,
A(|w|) >0. Therefore

N, (Alg]) >0, Ny(Alw])>0, [A(Jw]) P A(@))]* >0, [A(le))[* T A(Jw])]f >0
and

{\90! =N, (A [AmiNy(Alg|) +m|A([w]) [P A(l9)* Al 9])]) >0,
|w| =Ny (A [AmaNy(Afw])+m|A(l])|*HA(Jw]) [P A(fw])]) >0.

We then conclude that [(¢,w);u1(A)] is solution of problem (Q) ) with ¢ positive in Q) or
negative in (2 and w is positive in () or negative in ().

Since by Lemma 3.2, ¢, w € C(Q)), we deduce that u = A¢ positive in Q or negative
in () and v = Aw positive in () or negative in (), from the Lemma 1.1. Then A is strictly
principal eigenvalue of (Q).

If [u=0and v#0] or [u #0 and v=0], then we also prove that [u=0and v >0 in Q)
orv<0in QJor [u>0in Q or u <0in O and v=0]. Then A is a semitrivial principal

eigenvalue of (Q). O

Lemma 3.5. Let A, B, C and r be real numbers satisfying A>0, B>0, C>max{B—A,0} and
€[1,+c0). Then
|A+C|"+|B—C|'>A"+P".

Proof. See the proof of [2, Lemme 2.5] if r € (1,4-00). Assume that r=1, then
|A+C|+|B—C|=A+C+B—-C=A+B, if B-C>0
|A+C|+|B—C|=A—-B+2C>A+B, if B—-C<O0.

Thus |A+C|+|B—C|>A+B. O

Lemma 3.6. Suppose that (H,,) holds. If (¢1,w1) and (@a,wy) are positive eigenfunctions of

problem (Q/A) associated with u1(A) =0, then (@12,w12), (¢12,w21), (P21,w12) and (@21,wo1)
with

¢12(x) :=max{g1(x),@2(x) } = ¢1(x) + (92— 1) (x)
w1p(x) :=max{w; (x),wz(x)} =wy (x)+ (wy —wy) " (x)
@21(x) :=min{ @1 (x),¢2(x)} = 92(x) = (2 — 1) T (x)
wo1 (x) :=min{w (x),wy(x) } =wy (x) — (wy —wq) T (x)

for all x € Q), are eigenfunctions of (Q, ) associated with p1(A) =0.
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Proof. Assume that (H,,) holds and (¢1,w1), (¢2,w2) are positive eigenfunctions of prob-
lem (Q)) associated with i1 (1) =0. By Lemma 3.5 we get

[Apu2|P +[Agar [P = [Ag1|P +|Ag2|?

| Aw1z|T+ | Awo |7> | Awy |1+ | Aw, |1
|A¢12|“+1+|Ag021|“+1 > |Aq)1|“+1—|—‘Aq02|“+1

| Awp|PH 4 | Awy [PH > | Awy [P 4| Awy |PHL

Then, one has:
—A/le|A(p12|pdx—)\/0m1|A(p21]pdx§—/\/le|A(pl|pdx—)\/0m1|Ag02|”dx, (3.10)
—/\/sz\Awlz\qu—A/szlAwﬂ]qug—/\/sz\Awl\qu—/\/QmZ\sz\”’dx. (3.11)

Likewise, we have
Zy (g,w) < Zp(p,w) < — /Q m|Agi|* | Aw [P dx— /Q m| Ago|* | Aw, [P dx,  (3.12)

with

Zi(gw) =~ [ mlAgual*! [ Awl# dr— [ mlAgu|*t [ Awy FH1dx
—/()m]/\qm\‘”1\Aw12|ﬁ“dx—/0m]/\q)21]”‘H]Aw21]ﬁﬂdx,

Zz(q),w):—/Qm\Aq)l|"‘+1|Aw1|5+1dx—/0m|A(p1\““]szlﬁﬂdx
—/Qm|A(p2|"‘+1]Awl|ﬁ+1dx—/0m|A(p2|”‘+l|Aw2|ﬁ+1dx.

Additionally, we have:

/Q|¢12\de+/0|¢21;?de/0|(,)1|de+/0\¢2de>¢, (3.13)

/|w12|‘7dx—|—/ |w21|qu:/ |w1|’7dx+/ |, |7dx. (3.14)
QO Q (@) (@)
By (3.10)—(3.14) we deduce that:

Fx(@12,w12) +Fr(@12,w21) +FA(@21,w12) +FA (@21, w21) < Fx(@1,w1) +FA(@2,w2),
Ga(@12,w12) +Ga(@12,w21) + G (@21, w12) + Ga(@21,w21) < Ga(@1,w1) + G (@2, w2) =0.

It follows that

Gr(@12,w12) = Ga(@12,w21) = GA(@21,w12) = Gp (@21,w21) =0.

Hence (¢12,w12), (¢12,W21), (¢21,w12) and (¢21,w21 ) are eigenfunctions of (Q//\) associated
with 251 (/\) =0. [l
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Proposition 3.2. Assume that (H,,) holds and yy(A) =0. Then A is a semitrivial principal
eigenvalue or strictly principal eigenvalue of problem (Q) and simple.

Proof. Assume that (Hy,) holds and 1 (A)=0. Then A is a semitrivial principal eigenvalue
or strictly principal eigenvalue of problem (Q) from Proposition 3.1.

Case 1: Take A as a strictly principal eigenvalue of (Q).

Let (u11,u12) and (up1,up) be two positive eigenfunctions of (Q) associated with A.
Then, [(v,w);0], [(¢.,9);0], [([o],[w]);0], [(|¢,[¢]);0] € Lo(©?), are solutions of (Q,) with
v=—Auy; >0, w=—Au1p >0, ¢ =—Auy >0and Pp=—Auy >0.

For xo € (), we set

k= 230) ) mmax{g(x) ko(x)} and wa(x) :max{lp(x),k%w(x)},
v(x0)
forall xe Q). ,
From Lemma 3.6, [(w;,w:);0] is a solution of problem (Q',) because [(kv,k7w);0] and
[(¢,4);0] are solutions of (Q,). We deduce that N, (v), Ny(w), Ny(9), Ny(¢), Np(w1),
L Ne) Ny()
1v 0O P q 1 0).
Ny (w2) €CH(Q)) and N, (v)’ Ny(w) eC'(O)
For any unit vector e= (0, ...,¢;,...,0) withi€ {1,..,N} and t € R, we have

{Np(¢)(xo+t€) —Np(9)(x0) < Np(w1)(x0+te) = Np(wr) (x0),
N, (kv)(xo+te) —Np(kv)(xo) < Np(wr)(xo+te) = Np(wr)(xo).

Dividing these inequalities by t >0 and t <0 and letting ¢ tend to 0%, we get

Ny ()] (30) < 5 Ny a01)] x0),

;%[Np(kv)] (x0) < a‘i [Np(w1)](x0),

e Ny ()] (30) > 5 [Ny 1) x0),

A Ny (k)] (30) > 5 [Ny ()] (),
forallie{1,..,N}. Thus,

e Ny ()] 30) = 5 Ny 1) 30),

N (k0)](0) = 5 [Ny 1)) ),

forallie{1,..,N}. Hence,

VN, (¢)(x0) = VNp(wi)(x0) = VN, (kv)(x0) = k”’1VNp(v) (x0).



Principal Eigenvalue for Cooperative (p,q)-biharmonic Systems 49

Furthermore, we have

Ny (o) ~ V(Np(9))(x0)Np(v)(x0) — Np(@) (x0) V(Ny(0))(x0)
v ( N, (v) ) (x0)= N,(0) (x0)]

[Np(2) (x0) =K' PNp (@) (x0)]V (Ny () (x0)

[Ny () (x0)]°

e

N
We deduce that for all xo€Q), V <€\\]]Z ((f)) ) (x9)=0. Consequently, Nj,(£)= N”i

kP~1in Q. Then, p=kvin Q.
It is easy to see all the same that i = hw if for xo € )), we set

=250, G () =max{p(x) ho(x) and @a(x) =max{ p() Kol
for all x€ Q).

Accordingly, (¢,1) = (ko,hw) with k=h7. We deduce that (1121, 1122) = (k1 1) with
k=hv.

Let (u11,u12) and (up1,u22) be two eigenfunctions of (Q) associated with A. If there
exist i, j€{1,2} such that u; <0, then we can set Ujj= —Ujj and the result follows.

Case 2: Take A as a semitrivial principal eigenvalue of (Q).

Let [(u11,0) and (121,0)] or [(0,u12) and (0,u22)] be two eigenfunctions of (Q) associ-
ated with A. It is easy to see that there exist [k # 0 real number] or [/ # 0 real number]
such that [u11 =kus1] or [u1p = huy]. dJ

Theorem 3.1. Assume that (H,,) holds. The lowest positive eigenvalue of problem (Q) is the
value

A= (g)igSEm (u,0), (3.15)
where
S = {(wv)eYy(Q): M(uv)=1}.
Moreover

1. )Ll S min{)\l,p,l (m1 ),/\1,qu (WLQ) }
2. Ay is semitrivial principal eigenvalue or strictly principal eigenvalue.

3. Ay is simple.
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Proof. Assume that (H,,) holds. Then from Proposition 2.2 and Lemma 3.1, there exists a
unique real A; € (0,00) solution of equation y1(A) =0, A1 is an eigenvalue of (Q) and

]/l/l ()\1) = —M(M(),Uo) <0= 251 ()\1) = Em (uo,vo) —/\1M(u0,00)

with (u9,v9) € M. Then, E,, (119,00) = A1 M(up,v9) >0 and we can set
U (4

Mo oo)r Moot

Thus, (0,70) €S and E,,(#o,7) = A1.
Additionally, for every (u,v) €S, one has

Em< R )2/\1M< R ]),i.e.Em(u,v)z)\l.
[I(w0)]7 [I(u,0)] [I(u0)]7 [I(w,0)]

Consequently (3.15) holds. Moreover, from Proposition 3.2, A; is a strictly principal eigen-
value or semitrivial principal eigenvalue and simple.

1 1
Set ¢, = (7)7 @p1,m, and @ = (ﬁ%) 79g,1,m,- Then

Uy=

==

==

a+1 +1 a+1 +1
pM1((Pp)+ﬁqM2(0) =1, le(O)—i—ﬁqu((Pq) =1.

Thus

{)\1 < En(@p,0) =S| Bqpllp=A1,p1 (m1),

1
M < En(0,00) = B2 | g 1§ =M1 g, (m2).

Consequently, Ay <min{Ay,1(m1),A141(m2)}. O
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