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1 Introduction

Let Ω⊂RN (with N≥1) be a bounded domain with smooth boundary ∂Ω and α, β, p, q

be constants such that α≥0, β≥0, p>1, q>1 and
α+1

p
+

β+1
q

=1.

Our aim is to study the following eigenvalue problem

(Q) :


∆2

pu−λm1(x)|u|p−2u=m(x)|v|β+1|u|α−1u in Ω,
∆2

qv−λm2(x)|v|q−2v=m(x)|u|α+1|v|β−1v in Ω,
u=∆u=v=∆v=0 on ∂Ω,
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where ∆2
pu=∆(|∆u|p−2∆u) is the p-biharmonic operator and λ is a real parameter. The

coefficients m1, m2, m∈L∞(Ω) are assumed to be nonnegatives in Ω.
In [1], Talbi and Tsouli have investigated the scalar version of problem (Q) with m≡0,

which reads

(Pa,p,ρ) :

∆(ρ|∆u|p−2∆u)=λa(x)|u|p−2u in Ω,

u=∆u=0 on ∂Ω,

where ρ∈C(Ω) such that ρ>0 and a∈L∞(Ω). They proved that (Pa,p,ρ) possesses at least
one non-decreasing sequence of eigenvalues and studied (Pa,p,ρ) in the particular one di-
mensional case. The authors, in the same reference gave the first eigenvalue λ1,p,ρ(a) and
showed that if a≥ 0 a.e. in Ω, then λ1,p,ρ(a) is simple (i.e. the associated eigenfunctions
are a constant multiple of one another) and principal i.e. the associated eigenfunction,
denoted by φp,ρ,a is positive or negative on Ω with

λ1,p,ρ(a)= inf
u∈A

∫
Ω

ρ|∆u|pdx, (1.1)

where

A=

{
u∈W2,p(Ω)∩W1,p

0 (Ω) :
∫

Ω
a|u|pdx=1

}
. (1.2)

The problem (Pa,p,ρ) was considered by P. Drábek and M. Ôtani for ρ≡ 1 and a≡ 1 [2].
By using a transformation of the problem to a known Poisson problem, they showed that
(Pa,p,ρ) has a principal positive eigenvalue which is simple and isolated. In the case N=1
they gave a description of all eigenvalues and associated eigenfunctions.

El Khalil et al. [3] also considered problem (Pa,p,ρ) for ρ≡1, a≡1 with Dirichlet bound-
ary conditions and showed that the spectrum contains at least one non-decreasing se-
quence of positive eigenvalues.

Benedikt [4] gave the spectrum of the p-biharmonic operator with Dirichlet and Neu-
mann boundary conditions in the case N=1, ρ≡1 and a≡1.

It is important to note that (u,λ) is solution of problem (Pm1,p,1) if and only if [(u,0);λ]
is solution of (Q). This kind of solution is called ”semitrivial solution” of (Q). Further-
more if [(u,0);λ] is solution of (Q) with u of one sign on Ω, then λ is called ”semitrivial
principal eigenvalue” of (Q). Consequently, there are two forms of semitrivial solutions
for problem (Q): one of the type [(u,0);λ] with u ̸≡ 0 and (u,λ) solution of the problem
(Pm1,p,1) and the second of the type [(0,v);λ] with v ̸≡0 and (v,λ) solution of the problem
(Pm2,q,1). In particular λ1,p,1(m1) and λ1,q,1(m2) are semitrivial principal eigenvalues of
(Q).

This paper is organized as follows. We construct the eigencurve associated to problem
(Q) in Section 2. Section 3 is devoted to the study of strictly principal eigenvalue of (Q).
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Throughout this work, the Lebesgue norm in Lr(Ω) will be denoted by ∥·∥r, ∀r∈(1,∞]
and the norm in a normed space X by ∥·∥X. We denote by

Ypq(Ω)=
[
W2,p(Ω)∩W1,p

0 (Ω)
]
×
[
W2,q(Ω)∩W1,q

0 (Ω)
]

,

which is a reflexive Banach space endowed with the norm

∥(u,v)∥=∥∆u∥p+∥∆v∥q

(see, e.g., [5]). The weak convergence in Ypq(Ω) is denoted by ⇀. The positive and
negative part of a function w are denoted by w+ = max{w,0} and w− = max{−w,0}.
Equalities (and inequalities) between two functions must be understood a.e..

For all f ∈Lr(Ω), the Poisson equation associated with the Dirichlet problem{
−∆u= f (x) in Ω,
u=0 on ∂Ω,

is uniquely solvable in Xr =W2,r(Ω)∩W1,r
0 (Ω) (see for example [6]). We denote by Λ the

inverse operator of −∆ : Xr 7−→ Lr(Ω). The following lemma gives us some properties of
the operator Λ:

Lemma 1.1. ([1, 2]).

1. (Continuity) There exists a constant cr >0 such that

∥Λ f ∥W2,r ≤ cr∥ f ∥r

holds for all r∈ (1,∞) and f ∈Lr(Ω).

2. (Continuity) Given k∈N∗, there exists a constant cr,k >0 such that

∥Λ f ∥Wk+2,r ≤ cr,k∥ f ∥Wk,r

holds for all r∈ (1,∞) and f ∈Wk,r(Ω).

3. (Symmetry) The identity ∫
Ω

Λu·vdx=
∫

Ω
u·Λvdx

holds for u∈Lr(Ω) and v∈Lr
′
(Ω) with r

′
= r

r−1 and r∈ (1,∞).

4. (Regularity) Given f ∈ L∞(Ω), we have Λ f ∈C1,ν(Ω) for all ν∈ (0,1). Moreover, there
exists cν >0 such that

∥Λ f ∥C1,ν(Ω)≤ cν∥ f ∥∞.

5. (Regularity and Hopf-type maximum principle) Let f ∈C(Ω) and f ≥ 0 then w=Λ f ∈
C1,ν(Ω), for all ν∈ (0,1) and w satisfies: w>0 in Ω, ∂w

∂n <0 on ∂Ω.

6. (Order preserving property) Given f , g∈Lr(Ω) if f ≤ g in Ω, then Λ f <Λg in Ω.
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2 An eigenvalue curve associated to problem (Q)

It is well established that (see, e.g., [7–11]), in order to prove the existence of strictly
principal eigenvalue or semitrivial principal eigenvalue of (Q), one fixes λ and embeds
the problem into the new eigenvalue problem of parameter µ∈R:

(Qλ) :


∆2

pu−m(x)|v|β+1|u|α−1u−λm1(x)|u|p−2u=µ|u|p−2u in Ω,

∆2
qv−m(x)|u|α+1|v|β−1v−λm2(x)|v|q−2v=µ|v|q−2v in Ω,

u=∆u=v=∆v=0 on ∂Ω.

(2.1)

Definition 2.1. 1. [(u,v);µ]∈Yp,q(Ω)×R is a (weak) solution to problem (Qλ) if∫
Ω
|∆u|p−2∆u∆φ1dx−

∫
Ω

m|v|β+1|u|α−1uφ1dx−λ
∫

Ω
m1|u|p−2uφ1dx

=µ
∫

Ω
|u|p−2uφ1dx, (2.2)

∫
Ω
|∆v|q−2∆v∆φ2dx−

∫
Ω

m|u|α+1|v|β−1vφ2dx−λ
∫

Ω
m2|v|q−2vφ2dx

=µ
∫

Ω
|v|q−2vφ1dx, (2.3)

for all (φ1,φ2)∈Ypq(Ω).

2. [(u,v);λ]∈Yp,q(Ω)×R is a (weak) solution to problem (Q) if∫
Ω
|∆u|p−2∆u∆φ1dx−

∫
Ω

m|v|β+1|u|α−1uφ1dx=λ
∫

Ω
m1|u|p−2uφ1dx, (2.4)∫

Ω
|∆v|q−2∆v∆φ2dx−

∫
Ω

m|u|α+1|v|β−1vφ2dx=λ
∫

Ω
m2|v|q−2vφ2dx, (2.5)

for all (φ1,φ2)∈Ypq(Ω).

3. If [(u,v);λ]∈Yp,q(Ω)×R (resp. [(u,v);µ]∈Yp,q(Ω)×R) is a (weak) solution to problem
(Q) (resp. (Qλ)), (u,v) shall be called an eigenfunction of the problem (Q) (resp. (Qλ))
associated to the eigenvalue λ (resp. µ(λ)). Let us agree to say that an eigenvalue of (Q) or
(Qλ) is strictly principal (resp. semitrivial principal) if it is associated to an eigenfunction
(u,v) such that u>0 or u<0 and v>0 or v<0 (resp. [u>0 and v≡0 or u<0 and v≡0]
or [u≡0 and v>0 or u≡0 and v<0]).

We are going to consider the smallest eigenvalue µ∈R of problem (Qλ). In order to
do so, we define the energy functional

Jλ : Yp,q(Ω) −→ R
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(u,v) 7−→ Jλ(u,v)=
α+1

p
∥∆u∥p

p+
β+1

q
∥∆v∥q

q−V(u,v)−λM(u,v),

where

V(u,v)=
∫

Ω
m|u|α+1|v|β+1dx, M(u,v)=

α+1
p

M1(u)+
β+1

q
M2(v)

with
M1(u)=

∫
Ω

m1|u|pdx, M2(v)=
∫

Ω
m2|v|qdx, ∀(u,v)∈Ypq(Ω).

Equalities (2.2) and (2.3) are equivalent to

∇Jλ(u,v)=µ∇I(u,v)

where

I(u,v)=
α+1

p
∥u∥p

p+
β+1

q
∥v∥q

q, ∀(u,v)∈Ypq(Ω).

Lemma 2.1. Let (ω1, ω2)∈ L∞(Ω)×L∞(Ω). If ω1, ω2>0 on Ω then there exist three positive
constants c1, c2, c3 such that

∥∆u∥p
p+∥∆v∥q

q ≤ c1 Jλ(u,v)+c2

∫
Ω

ω1|u|pdx+c3

∫
Ω

ω2|v|qdx, (2.6)

for every (u,v)∈Ypq(Ω).

Proof. We only sketch it since it is adapted from [10] in (p,q)-laplacian systems case. First,
note that

M1(u)≤∥m1∥∞∥u∥p
p, M2(u)≤∥m2∥∞∥u∥q

q.

Since
α+1

p
+

β+1
q

=1, it is well known by Young inequality that:

V(u,v)≤∥m∥∞

∫
Ω

[
α+1

p
|u|p+ β+1

q
|v|q
]

dx. (2.7)

We set k3=max{k1,k2} with:

k1=∥m∥∞ max
{

α+1
p

,
β+1

q

}
, k2= |λ|max

{
α+1

p
∥m1∥∞,

β+1
q

∥m2∥∞

}
.

Then, one has:

V(u,v)≤ k1
(
∥u∥p

p+∥v∥q
q
)

, |λM(u,v)|≤ k2
(
∥u∥p

p+∥v∥q
q
)

.
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On the other hand according to the proof of [9, Lemma 2] in p-Laplacian case, for ε> 0
there exist Mε >0 and M

′
ε >0 such that:

∥u∥p
p ≤ ε∥∆u∥p

p+Mε

∫
Ω

ω1|u|pdx, ∥v∥q
q ≤ ε∥∆v∥q

q+M
′
ε

∫
Ω

ω2|v|qdx.

Now, we have

α+1
p

∥∆u∥p
p+

β+1
q

∥∆v∥q
q = Jλ(u,v)−V(u,v)+λM(u,v).

Then, one has:

α+1
p

∥∆u∥p
p+

β+1
q

∥∆v∥q
q ≤ Jλ(u,v)+2k3

(
∥u∥p

p+∥v∥q
q
)

≤Jλ(u,v)+2εk3
(
∥∆u∥p

p+∥∆v∥q
q
)
+2k3Mε

∫
Ω

ω1|u|pdx+2k3M
′
ε

∫
Ω

ω2|v|qdx.

Let ε>0 be such that k4=min
{

α+1
p −2εk3, β+1

q −2εk3

}
>0. Thus, one has:

k4(∥∆u∥p
p+∥∆v∥q

q)≤ Jλ(u,v)+2k3Mε

∫
Ω

ω1|u|pdx+2k3M
′
ε

∫
Ω

ω2|v|qdx.

We deduce

∥∆u∥p
p+∥∆v∥q

q ≤
1
k4

Jλ(u,v)+
2k3Mε

k4

∫
Ω

ω1|u|pdx+
2k3M

′
ε

k4

∫
Ω

ω2|v|qdx.

We can take c1=1/k4 , c2=2k3Mε/k4 and c3=2k3M
′
ε/k4.

Proposition 2.1. The value

µ1(λ) := inf{Jλ(u,v) : (u,v)∈M}, (2.8)

where
M={(u,v)∈Ypq(Ω) : I(u,v)=1},

is the smallest eigenvalue of (Qλ).

Proof. By Lemma 2.1, one has for ω1=ω2≡1,

0≤∥∆u∥p
p+∥∆v∥q

q ≤c1 Jλ(u,v)+c2

∫
Ω
|u|pdx+c3

∫
Ω
|v|qdx

≤c1 Jλ(u,v)+c2,3

[
α+1

p

∫
Ω
|u|pdx+

β+1
q

∫
Ω
|v|qdx

]
=c1 Jλ(u,v)+c2,3, ∀(u,v)∈M,
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where c2,3 = max{ pc2
α+1 , qc3

β+1}, so that Jλ is bounded below on M. Furthermore any se-
quence (un,vn) that minimizes Jλ on M is bounded in Ypq(Ω).

Thus there exists (u0,v0)∈Ypq(Ω) such that, up to a subsequence, (un,vn) converges
weakly to (u0,v0) in Ypq(Ω) and strongly in Lp(Ω)×Lq(Ω). Hence

Jλ(u0,v0)≤ lim
n−→∞

Jλ(un,vn)=µ1(λ), (u0,v0)∈M

and consequently Jλ(u0,v0)=µ1(λ). By the Lagrange multipliers rule, µ1(λ) is an eigen-
value for (Qλ) and (u0,v0) is an associated eigenfunction. Moreover for any eigenvalue
µ(λ) associated to (uλ,vλ)∈Ypq(Ω)\{(0,0)}, Jλ(uλ,vλ)=µ(λ)I(uλ,vλ) with I(uλ,vλ)>0.
Consequently

µ1(λ)≤ Jλ

(
uλ

I(uλ,vλ)
1
p

,
vλ

I(uλ,vλ)
1
q

)
=

Jλ(uλ,vλ)

I(uλ,vλ)
=µ(λ).

We conclude that µ1(λ) is the smallest eigenvalue of (Qλ).

For m=m1=m2≡0, we denote by

µ0=µ1(λ)= inf
{

α+1
p

∥∆u∥p
p+

β+1
q

∥∆v∥q
q : (u,v)∈M

}
.

Since the space W2,r(Ω)∩W1,r
0 (Ω) with r∈{p,q} does not contain any constant non trivial

function, one has µ0>0.

Proposition 2.2. The following results hold

1. µ1 is concave and differentiable with µ
′
1(λ)=−M(u0,v0) where (u0,v0) is some eigenfunc-

tion of (Qλ) associated to µ1(λ) for all λ∈R.

2. lim
λ→+∞

µ1(λ)=−∞.

3. µ1 is strictly decreasing.

Proof. We provide the proof in the following steps.

1. The concavity of µ1 follows from the concavity of the mapping λ 7→ Jλ(u,v), for a
fixed (u,v)∈Ypq(Ω). In particular µ1 is continuous. Now let λn −→λ and (un,vn),
(uλ,vλ) be the I-normalized eigenfunctions related to µ1(λn), µ1(λ) respectively.
We apply Lemma 2.1 with ω1=ω2=1 to get

∥∆un∥p
p+∥∆vn∥q

q ≤c1 Jλ(un,vn)+c2

∫
Ω
|un|pdx+c3

∫
Ω
|vn|qdx,

≤c1 Jλ(un,vn)+max
{

pc2

α+1
,

qc3

β+1

}
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=c1µ1(λn)+max
{

pc2

α+1
,

qc3

β+1

}
.

Moreover

lim
n→∞

c1µ1(λn)+max
{

pc2

α+1
,

qc3

β+1

}
= c1µ1(λ)+max

{
pc2

α+1
,

qc3

β+1

}
.

So we conclude that (un,vn)n is a bounded sequence in Ypq(Ω). Hence there exists
(u0,v0) such that, up to a subsequence, (un,vn)⇀ (u0,v0) in Ypq(Ω), strongly in
Lp(Ω)×Lq(Ω). Then (u0,v0)∈M and from

Jλ(u0,v0)≤ lim
n−→∞

Jλ(un,vn)=µ1(λ)

we infer that µ1(λ)= Jλ(u0,v0)= Jλ(uλ,vλ) and (u0,v0) is an eigenfunction of (Qλ)
associated to µ1(λ). Furthermore{

µ1(λn)−µ1(λ)≥−(λn−λ)M(un,vn),
µ1(λn)−µ1(λ)≤−(λn−λ)M(u0,v0).

Hence 
−M(un,vn)≤

µ1(λn)−µ1(λ)

λn−λ
≤−M(u0,v0), if λn >λ,

−M(u0,v0)≤
µ1(λn)−µ1(λ)

λn−λ
≤−M(un,vn), if λn <λ.

Passing to the limit we get µ
′
1(λ)=−M(u0,v0).

2. We know that m1 is nonnegative, then there exists a function u ∈ Xp such that
M1(u)>0 and I(u,0)=1. Then, for all λ∈R∗

+, µ1(λ)≤ Jλ(u,0). We deduce that

lim
λ−→+∞

Jλ(u,0)= lim
λ−→+∞

Em(u,0)−λM(u,0)=−∞,

where

Em(u,v)=
α+1

p
∥∆u∥p

p+
β+1

q
∥∆v∥q

q−
∫

Ω
m|u|α+1|v|β+1dx.

Thus lim
λ−→+∞

µ1(λ)=−∞.

3. The result is clear from the fact that M(uλ,vλ)>0 for any λ∈R. Indeed, if λ1 <λ2
then

µ1(λ1)=Em(uλ1 ,vλ1)−λ1M(uλ1 ,vλ1)≥Em(uλ1 ,vλ1)−λ2M(uλ1 ,vλ1)≥µ1(λ2).

This completes the proof of the proposition.
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3 Strictly or semitrivial principal eigenvalues

Note that, if µ1(λ)= 0 then λ is an eigenvalue of problem (Q). Our purpose is to find a
reasonable assumption on m so that there exists at least one λ∈(0,∞) such that µ1(λ)=0.

Lemma 3.1. If ∥m∥∞ < µ0 then, µ1(0)> 0 and µ1(λ) = 0 has a unique positive solution λ

(eigenvalue of (Q)).

Proof. Assume that ∥m∥∞ <µ0. By (2.7), we have V(u,v)≤∥m∥∞ I(u,v), ∀(u,v)∈Ypq(Ω).
Then, one has

α+1
p

∥∆u∥p
p+

β+1
q

∥∆v∥q
q−∥m∥∞ I(u,v)≤Em(u,v), ∀(u,v)∈Ypq(Ω).

We deduce that:

µ0≤Em(u,v)+∥m∥∞, ∀(u,v)∈M,

µ0−∥m∥∞ ≤ inf{Em(u,v),(u,v)∈M}≤µ1(0).

Consequently, µ1(0)> 0. Moreover, from Propoaition 2.1, µ1 is strictly decreasing. We
deduce that, µ1(λ)=0 has a unique positive solution λ and λ is an eigenvalue of (Q).

We will denote by

L(Ω) :=([Lp(Ω)×Lq(Ω)]\{(0,0)})×R, (3.1)

L0(Ω) :=([Lp(Ω)×Lq(Ω)]\{(0,0)})×{0}. (3.2)

We apply some results proved by Drábek and Ôtani [2] and some ideas used by Talbi and
Tsouli [1].

Remark 3.1.

1. ∀u∈Xr, ∀v∈Lr(Ω) with r∈ (1,∞): v=−∆u⇐⇒u=Λv.

2. Let Nr be the Nemytskii operator with r∈ (1,∞), defined by

Nr(u)(x)=

{
|u(x)|r−2u(x) if u(x) ̸=0,
0 if u(x)=0.

We have
∀v∈Lr(Ω), ∀w∈Lr

′
(Ω) : Nr(v)=w⇐⇒v=Nr′ (w) (3.3)

with r
′
= r

r−1 .
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3. If (u,v) is an eigenfunction of (Qλ) associated with µ then φ=−∆u, w=−∆v satisfy:{
Np(φ)=Λ([µ(λ)+λm1]Np(Λφ)+m|Λw|β+1|Λφ|α−1Λφ),
Nq(w)=Λ([µ(λ)+λm2]Nq(Λw)+m|Λφ|α+1|Λw|β−1Λw).

Hence:

(a) [(u0,v0);µ(λ)] is a solution of (Qλ) if and only if [(φ0,w0);µ(λ)] is a solution of
problem

(Q
′
λ) :


Find [(φ,w);µ(λ)]∈L(Ω) such that
Np(φ)=Λ([µ(λ)+λm1]Np(Λφ)+m|Λw|β+1|Λφ|α−1Λφ)

Nq(w)=Λ([µ(λ)+λm2]Nq(Λw)+m|Λφ|α+1|Λw|β−1Λw)

with φ0=−∆u0 and w0=−∆v0.

(b) [(φ0,w0);µ(λ)]∈L0(Ω) is a solution of (Q
′
λ) if and only if [(φ0,w0);λ]∈L(Ω) is

a solution of problem

(Q
′
) :


Find [(φ,w);λ]∈L(Ω) such that
Np(φ)=Λ(λm1Np(Λφ)+m|Λw|β+1|Λφ|α−1Λφ)

Nq(w)=Λ(λm2Nq(Λw)+m|Λφ|α+1|Λw|β−1Λw)

with φ0=−∆u0 and w0=−∆v0.

(c)
µ1(λ) := inf{Fλ(φ,w) : (φ,w)∈Lp(Ω)×Lq(Ω),R(φ,w)=1} (3.4)

where

Fλ(φ,w)=
α+1

p

[∫
Ω
|φ|pdx−λ

∫
Ω

m1|Λφ|pdx
]

+
β+1

q

[∫
Ω
|w|qdx−λ

∫
Ω

m2|Λw|qdx
]
−
∫

Ω
m|Λφ|α+1|Λw|β+1dx,

R(φ,w)=
α+1

p
∥Λφ∥p

p+
β+1

q
∥Λw∥q

q.

We may now assume the following condition:

(Hm) :∥m∥∞ <µ0. (3.5)

Lemma 3.2. If [(u,v);µ(λ)] is a solution of (Qλ) then −∆u, −∆v∈C(Ω) and u, v∈C1,ν(Ω),
for all ν∈ (0,1).
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Proof. Without loss of generality, one can assume that p≤q. Let p0∈[p,∞), q0∈[q,∞) such
that p0=q0 if p=q. Suppose that φ=Np′ (Λθ1)∈Lp0(Ω), w=Nq′ (Λθ2)∈Lq0(Ω) with{

θ1=ω1Np(Λφ)+m|Λw|β+1|Λφ|α−1Λφ,
θ2=ω2Nq(Λw)+m|Λφ|α+1|Λw|β−1Λw,

where ω1∈L∞(Ω), ω2∈L∞(Ω). It is easy to see that:

1. if p=q, then

(a) φ, w∈Lp1(Ω), with 1
p1
= 1

p0
− 2p

′

N , if p0<
N

2p′
.

(b) φ, w∈L
k

p′ −1 (Ω), ∀k∈ (1,+∞), if p0=
N

2p′
.

(c) φ, w∈C(Ω), if p0>
N

2p′
. Indeed, one have

i. φ, w∈C(Ω), if N
2 < p0.

ii. if N
2 = p0, then θ1, θ2∈ L

k
p−1 (Ω), for all k∈ (1,+∞). We can take k such that

k
p−1 >

N
2 . Thus φ, w∈C(Ω).

iii. if N
2p′

< p0<
N
2 , then: θ1, θ2∈L

r0
p−1 (Ω) with r0=

Np0
N−2p0

and r0
p−1 >

N
2 . Then φ,

w∈C(Ω).

2. if p<q, then :

(a) if p0<
N

2p′
, then

i. θ1∈L
r0

p−1 (Ω) and φ∈Lp1(Ω) with r0=
Np0

N−2p0
, p1=

Np0(p−1)
N(p−1)−2pp0

, if q0≥ N
2 .

ii. if q0<
N
2 , then:

A. θ1∈L
r0

p−1 (Ω) and φ∈Lp1(Ω) with s0=
Nq0

N−2q0
, if ps0>qr0.

B. θ2∈L
s0

q−1 (Ω), if ps0<qr0.

C. θ1∈L
r0

p−1 (Ω), θ2∈L
s0

q−1 (Ω) and φ∈Lp1(Ω), if ps0=qr0.

(b) if p0=
N

2p′
, then

i. φ∈L
k

p′ −1 (Ω), ∀k∈ (1,+∞), if q0≥ N
2 .

ii. if q0<
N
2 , then:

A. φ∈L
k

p′ −1 (Ω), ∀k∈ (1,+∞), if ps0>qr0.

B. θ2∈L
s0

q−1 (Ω), if ps0<qr0.

C. θ2∈L
s0

q−1 (Ω) and φ∈L
k

p′ −1 (Ω), ∀k∈ (1,+∞), if ps0=qr0.
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(c) if p0>
N

2p′
, then

i. φ, w∈C(Ω), if N
2 ≤ p0<q0.

ii. if N
2p′

≤ p0<
N
2 , then:

A. φ∈C(Ω), if N
2 ≤q0.

B. θ1∈L
r0

p−1 (Ω) or θ2∈L
s0

q−1 (Ω) if N
2 >q0.

Let [(u,v);µ(λ)]∈Ypq(Ω)×R be a solution of (Qλ), then [(φ,w);µ(λ)] is a solution of (Q
′
λ)

with φ=−∆u=Np′ (Λθ1)∈Lp(Ω), w=−∆v=Nq′ (Λθ2)∈Lq(Ω) with{
θ1=ω1Np(Λφ)+m|Λw|β+1|Λφ|α−1Λφ,
θ2=ω2Nq(Λw)+m|Λφ|α+1|Λw|β−1Λw,

where ω1=µ(λ)+λm1∈L∞(Ω), ω2=µ(λ)+λm2∈L∞(Ω).

Case (1): p=q
We easily see that φ, w∈C(Ω) from assertion 1c, if p> N

2p′
.

Now take suitable (pn), p= p0 and k∈N such that pk−1 <
N

2p′
< pk with 1

pk
= 1

p0
− 2kp

′

N .

Then applying assertion 1a with p0 = p0, p1,..., pk−1, we deduce φ, w ∈ Lpk(Ω). Hence
from assertion 1c, φ, w∈C(Ω) follows.

Case (2): p<q and N
2p′

≤ p.

1. We deduce φ, w∈C(Ω) from assertion 2b and 2c, if N
2 ≤q.

2. If N
2 > q, take suitable sn =

Nqn
N−2qn

with 1
qn

= 1
q0
− 2nq

′

N , q0 = q and k ∈ N such that
sk

q−1 >
N
2 . Then applying assertion 2b and 2c with q0=q0, q1,..., qk, p0= p, we deduce

θ2∈L
sk

q−1 (Ω). Hence Λθ2∈C(Ω) and φ, w∈C(Ω) follows.

Case (3): p<q and N
2p′

> p.

1. If N
2q′

≤ q, take suitable (pn), p = p0 and k ∈N such that pk−1 <
N

2p′
< pk with 1

pk
=

1
p0
− 2kp

′

N . Then applying assertion 2a with p0 = p0, p1,..., pk−1, q0 = q, we deduce

φ∈Lpk(Ω) and φ, w∈C(Ω) follows.

2. If N
2q′

>q, take suitables (pn), (qn) and k, j∈N such that p= p0, q=q0, pk−1<
N

2p′
<pk,

qj−1 <
N

2q′
< qj with 1

pk
= 1

p0
− 2kp

′

N and 1
qj
= 1

q0
− 2jq

′

N . Then applying assertion 2a with

p0= p0, p1,..., pk−1, and q0=q0, q1,..., qj−1, we deduce φ∈ Lpk(Ω), w∈ Lqj(Ω) and φ,
w∈C(Ω) follows.
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Hence we deduce that φ, w∈ L∞(Ω) and from the assertion in Lemma 1.1 that u=Λφ,
v=Λw∈C1,ν(Ω) for all ν∈ (0,1).

Lemma 3.3. [(φ1,w1);µ1(λ)]∈L(Ω) is a solution of problem (Q
′
λ), if and only if

Gλ(φ1,w1)=0= min
(φ,w)∈L∗(Ω)

Gλ(φ,w) (3.6)

where

Gλ(φ,w)=Fλ(φ,w)−µ1(λ)R(φ,w), L∗(Ω)= [Lp(Ω)×Lq(Ω)]\{(0,0)}.

Proof. Assume that [(φ1,w1);µ1(λ)]∈L(Ω) is a solution of problem (Q
′
λ). Then Fλ(φ1,w1)=

µ1(λ)R(φ1,w1). Hence Gλ(φ1,w1)=Fλ(φ1,w1)−µ1(λ)R(φ1,w1)=0. Put

φ=
φ

[R(φ,w)]
1
p

, w=
w

[R(φ,w)]
1
q

for every (φ,w)∈L∗(Ω).

Then R(φ,w)=1. We deduce that

µ1(λ)≤Fλ(φ,w)=
Fλ(φ,w)

R(φ,w)
, (3.7)

Gλ(φ,w)=Fλ(φ,w)−µ1(λ)R(φ,w)≥0 (3.8)

for all (φ,w)∈L∗(Ω). We claim that (3.6) holds.
Now suppose that (3.6) holds. We deduce that ∇Gλ(φ1,w1)=(0,0). Then

⟨∂Gλ

∂φ
(φ1,w1),Ψ⟩= ⟨∂Gλ

∂w
(φ1,w1),θ⟩=0, (3.9)

for all (Ψ,θ)∈ [Lp(Ω)×Lq(Ω)]. Hence, [(φ1,w1);µ1(λ)]∈L(Ω) is a solution of (Q
′
λ).

Lemma 3.4. If (Hm) holds and [(φ1,w1);µ1(λ)]∈ L0(Ω) is a solution of problem (Q
′
λ) then

[(|φ1|,|w1|);µ1(λ)]∈L0(Ω) is a solution of problem (Q
′
λ).

Proof. Assume that (Hm) holds and [(φ1,w1);µ1(λ)]∈L0(Ω) is a solution of problem (Q
′
λ).

Then Gλ(φ1,w1)= 0, µ1(λ)= 0, λ> 0 and (|φ1|,|w1|)∈ [Lp(Ω)×Lq(Ω)]\{(0,0)}. Hence
Gλ(|φ1|,|w1|)≥0.

Additionally, one has |Λ(|φ1|)|r≥|Λφ1|r and |Λ(|w1|)|r≥|Λw1|r, for all r∈(1;∞). We
deduce that:

−λ
∫

Ω
m1|Λ(|φ1|)|pdx≤−λ

∫
Ω

m1|Λφ1|pdx,

−λ
∫

Ω
m2|Λ(|w1|)|qdx≤−λ

∫
Ω

m2|Λw1|qdx,

−
∫

Ω
m|Λ(|φ1|)|α+1|Λ(|w1|)|β+1dx≤−

∫
Ω

m|Λφ1|α+1|Λw1|β+1dx.

Consequently, Fλ(|φ1|,|w1|)≤Fλ(φ1,w1) and Gλ(|φ1|,|w1|)≤Gλ(φ1,w1)=0. Thus Gλ(|φ1|,|w1|)=
0 and [(|φ1|,|w1|);µ1(λ)] is solution of (Q

′
λ).
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Proposition 3.1. Assume that (Hm) holds and µ1(λ) = 0. Then λ is a semitrivial principal
eigenvalue or strictly principal eigenvalue of problem (Q).

Proof. Assume that (Hm) holds and µ1(λ)= 0. Then λ is an eigenvalue of problem (Q)
associated with (u,v)∈Ypq(Ω)\{(0,0)}.

If u ̸≡0 and v ̸≡0, then [(φ,w);µ1(λ)], [(|φ|,|w|);µ1(λ)]∈L0(Ω) are solutions of problem
(Q

′
λ) with φ =−∆u ̸≡ 0 and w =−∆v ̸≡ 0. Since |φ| ≥ 0 and |w| ≥ 0, then Λ(|φ|)> 0,

Λ(|w|)>0. Therefore

Np(Λ|φ|)>0, Nq(Λ|w|)>0, |Λ(|w|)|β+1|Λ(|φ|)|α >0, |Λ(|φ|)|α+1|Λ(|w|)|β >0

and {
|φ|=Np′

(
Λ
[
λm1Np(Λ|φ|)+m|Λ(|w|)|β+1|Λ(|φ|)|α−1Λ(|φ|)

])
>0,

|w|=Nq′
(
Λ
[
λm2Nq(Λ|w|)+m|Λ(|φ|)|α+1|Λ(|w|)|β−1Λ(|w|)

])
>0.

We then conclude that [(φ,w);µ1(λ)] is solution of problem (Q
′
λ) with φ positive in Ω or

negative in Ω and w is positive in Ω or negative in Ω.
Since by Lemma 3.2, φ, w∈C(Ω), we deduce that u=Λφ positive in Ω or negative

in Ω and v=Λw positive in Ω or negative in Ω, from the Lemma 1.1. Then λ is strictly
principal eigenvalue of (Q).

If [u≡0 and v ̸≡0] or [u ̸≡0 and v≡0], then we also prove that [u≡0 and v>0 in Ω
or v< 0 in Ω] or [u> 0 in Ω or u< 0 in Ω and v≡ 0]. Then λ is a semitrivial principal
eigenvalue of (Q).

Lemma 3.5. Let A, B, C and r be real numbers satisfying A≥0, B≥0, C≥max{B−A,0} and
r∈ [1,+∞). Then

|A+C|r+|B−C|r ≥Ar+Br.

Proof. See the proof of [2, Lemme 2.5] if r∈ (1,+∞). Assume that r=1, then{
|A+C|+|B−C|=A+C+B−C=A+B, if B−C≥0
|A+C|+|B−C|=A−B+2C>A+B, if B−C<0.

Thus |A+C|+|B−C|≥A+B.

Lemma 3.6. Suppose that (Hm) holds. If (φ1,w1) and (φ2,w2) are positive eigenfunctions of
problem (Q

′
λ) associated with µ1(λ)= 0, then (φ12,w12), (φ12,w21), (φ21,w12) and (φ21,w21)

with 
φ12(x) :=max{φ1(x),φ2(x)}= φ1(x)+(φ2−φ1)

+(x)
w12(x) :=max{w1(x),w2(x)}=w1(x)+(w2−w1)

+(x)
φ21(x) :=min{φ1(x),φ2(x)}= φ2(x)−(φ2−φ1)

+(x)
w21(x) :=min{w1(x),w2(x)}=w2(x)−(w2−w1)

+(x)

,

for all x∈Ω, are eigenfunctions of (Q
′
λ) associated with µ1(λ)=0.
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Proof. Assume that (Hm) holds and (φ1,w1), (φ2,w2) are positive eigenfunctions of prob-
lem (Q

′
λ) associated with µ1(λ)=0. By Lemma 3.5 we get

|Λφ12|p+|Λφ21|p ≥|Λφ1|p+|Λφ2|p

|Λw12|q+|Λw21|q ≥|Λw1|q+|Λw2|q

|Λφ12|α+1+|Λφ21|α+1≥|Λφ1|α+1+|Λφ2|α+1

|Λw12|β+1+|Λw21|β+1≥|Λw1|β+1+|Λw2|β+1.

Then, one has:

−λ
∫

Ω
m1|Λφ12|pdx−λ

∫
Ω

m1|Λφ21|pdx≤−λ
∫

Ω
m1|Λφ1|pdx−λ

∫
Ω

m1|Λφ2|pdx, (3.10)

−λ
∫

Ω
m2|Λw12|qdx−λ

∫
Ω

m2|Λw21|qdx≤−λ
∫

Ω
m2|Λw1|qdx−λ

∫
Ω

m2|Λw2|qdx. (3.11)

Likewise, we have

Z1(φ,w)≤Z2(φ,w)≤−
∫

Ω
m|Λφ1|α+1|Λw1|β+1dx−

∫
Ω

m|Λφ2|α+1|Λw2|β+1dx, (3.12)

with

Z1(φ,w)=−
∫

Ω
m|Λφ12|α+1|Λw12|β+1dx−

∫
Ω

m|Λφ12|α+1|Λw21|β+1dx

−
∫

Ω
m|Λφ21|α+1|Λw12|β+1dx−

∫
Ω

m|Λφ21|α+1|Λw21|β+1dx,

Z2(φ,w)=−
∫

Ω
m|Λφ1|α+1|Λw1|β+1dx−

∫
Ω

m|Λφ1|α+1|Λw2|β+1dx

−
∫

Ω
m|Λφ2|α+1|Λw1|β+1dx−

∫
Ω

m|Λφ2|α+1|Λw2|β+1dx.

Additionally, we have:∫
Ω
|φ12|pdx+

∫
Ω
|φ21|pdx=

∫
Ω
|φ1|pdx+

∫
Ω
|φ2|pdx, (3.13)

∫
Ω
|w12|qdx+

∫
Ω
|w21|qdx=

∫
Ω
|w1|qdx+

∫
Ω
|w2|qdx. (3.14)

By (3.10)–(3.14) we deduce that:

Fλ(φ12,w12)+Fλ(φ12,w21)+Fλ(φ21,w12)+Fλ(φ21,w21)≤Fλ(φ1,w1)+Fλ(φ2,w2),

Gλ(φ12,w12)+Gλ(φ12,w21)+Gλ(φ21,w12)+Gλ(φ21,w21)≤Gλ(φ1,w1)+Gλ(φ2,w2)=0.

It follows that

Gλ(φ12,w12)=Gλ(φ12,w21)=Gλ(φ21,w12)=Gλ(φ21,w21)=0.

Hence (φ12,w12), (φ12,w21), (φ21,w12) and (φ21,w21) are eigenfunctions of (Q
′
λ) associated

with µ1(λ)=0.
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Proposition 3.2. Assume that (Hm) holds and µ1(λ) = 0. Then λ is a semitrivial principal
eigenvalue or strictly principal eigenvalue of problem (Q) and simple.

Proof. Assume that (Hm) holds and µ1(λ)=0. Then λ is a semitrivial principal eigenvalue
or strictly principal eigenvalue of problem (Q) from Proposition 3.1.

Case 1: Take λ as a strictly principal eigenvalue of (Q).
Let (u11,u12) and (u21,u22) be two positive eigenfunctions of (Q) associated with λ.

Then, [(v,w);0], [(φ,ψ);0], [(|v|,|w|);0], [(|φ|,|ψ|);0]∈ L0(Ω), are solutions of (Q
′
λ) with

v=−∆u11>0, w=−∆u12>0, φ=−∆u21>0 and ψ=−∆u22>0.
For x0∈Ω, we set

k=
φ(x0)

v(x0)
, ω1(x)=max{φ(x),kv(x)} and ω2(x)=max

{
ψ(x),k

p
q w(x)

}
,

for all x∈Ω.
From Lemma 3.6, [(ω1,ω2);0] is a solution of problem (Q

′
λ) because [(kv,k

p
q w);0] and

[(φ,ψ);0] are solutions of (Q
′
λ). We deduce that Np(v), Nq(w), Np(φ), Nq(ψ), Np(ω1),

Nq(ω2)∈C1,ν(Ω̄) and
Np(φ)

Np(v)
,

Nq(ψ)

Nq(w)
∈C1(Ω).

For any unit vector e=(0,...,ei,...,0) with i∈{1,...,N} and t∈R, we have{
Np(φ)(x0+te)−Np(φ)(x0)≤Np(ω1)(x0+te)−Np(ω1)(x0),
Np(kv)(x0+te)−Np(kv)(x0)≤Np(ω1)(x0+te)−Np(ω1)(x0).

Dividing these inequalities by t>0 and t<0 and letting t tend to 0±, we get
∂

∂xi
[Np(φ)](x0)≤

∂

∂xi
[Np(ω1)](x0),

∂

∂xi
[Np(kv)](x0)≤

∂

∂xi
[Np(ω1)](x0),


∂

∂xi
[Np(φ)](x0)≥

∂

∂xi
[Np(ω1)](x0),

∂

∂xi
[Np(kv)](x0)≥

∂

∂xi
[Np(ω1)](x0),

for all i∈{1,...,N}. Thus,
∂

∂xi
[Np(φ)](x0)=

∂

∂xi
[Np(ω1)](x0),

∂

∂xi
[Np(kv)](x0)=

∂

∂xi
[Np(ω1)](x0),

for all i∈{1,...,N}. Hence,

∇Np(φ)(x0)=∇Np(ω1)(x0)=∇Np(kv)(x0)= kp−1∇Np(v)(x0).
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Furthermore, we have

∇
(

Np(φ)

Np(v)

)
(x0)=

∇(Np(φ))(x0)Np(v)(x0)−Np(φ)(x0)∇(Np(v))(x0)[
Np(v)(x0)

]2

=
[Np(v)(x0)−k1−pNp(φ)(x0)]∇(Np(φ))(x0)[

Np(v)(x0)
]2 =0.

We deduce that for all x0∈Ω, ∇
(

Np(φ)

Np(v)

)
(x0)=0. Consequently, Np(

φ
v )=

Np(φ)

Np(v)
=const=

kp−1 in Ω. Then, φ= kv in Ω.
It is easy to see all the same that ψ=hw if for x0∈Ω), we set

h=
ψ(x0)

w(x0)
, ω1(x)=max{ψ(x),hw(x)} and ω2(x)=max

{
φ(x),k

q
p v(x)

}
,

for all x∈Ω.
Accordingly, (φ,ψ)=(kv,hw) with k=h

q
p . We deduce that (u21,u22)=(ku11,hu12) with

k=h
q
p .

Let (u11,u12) and (u21,u22) be two eigenfunctions of (Q) associated with λ. If there
exist i, j∈{1,2} such that uij <0, then we can set uij =−uij and the result follows.

Case 2: Take λ as a semitrivial principal eigenvalue of (Q).
Let [(u11,0) and (u21,0)] or [(0,u12) and (0,u22)] be two eigenfunctions of (Q) associ-

ated with λ. It is easy to see that there exist [k ̸= 0 real number] or [h ̸= 0 real number]
such that [u11= ku21] or [u12=hu22].

Theorem 3.1. Assume that (Hm) holds. The lowest positive eigenvalue of problem (Q) is the
value

λ1= min
(u,v)∈S

Em(u,v), (3.15)

where

S =
{
(u,v)∈Ypq(Ω) : M(u,v)=1

}
.

Moreover

1. λ1≤min{λ1,p,1(m1),λ1,q,1(m2)}.

2. λ1 is semitrivial principal eigenvalue or strictly principal eigenvalue.

3. λ1 is simple.
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Proof. Assume that (Hm) holds. Then from Proposition 2.2 and Lemma 3.1, there exists a
unique real λ1∈ (0,∞) solution of equation µ1(λ)=0, λ1 is an eigenvalue of (Q) and

µ
′
1(λ1)=−M(u0,v0)<0=µ1(λ1)=Em(u0,v0)−λ1M(u0,v0)

with (u0,v0)∈M. Then, Em(u0,v0)=λ1M(u0,v0)>0 and we can set

u0=
u0

[M(u0,v0)]
1
p

, v0=
v0

[M(u0,v0)]
1
q

.

Thus, (u0,v0)∈S and Em(u0,v0)=λ1.
Additionally, for every (u,v)∈S , one has

Em

(
u

[I(u,v)]
1
p

,
v

[I(u,v)]
1
q

)
≥λ1M

(
u

[I(u,v)]
1
p

,
v

[I(u,v)]
1
q

)
, i.e. Em(u,v)≥λ1.

Consequently (3.15) holds. Moreover, from Proposition 3.2, λ1 is a strictly principal eigen-
value or semitrivial principal eigenvalue and simple.

Set φp =( p
α+1 )

1
p φp,1,m1 and φq =( q

β+1 )
1
q φq,1,m2 . Then

α+1
p

M1(φp)+
β+1

q
M2(0)=1,

α+1
p

M1(0)+
β+1

q
M2(φq)=1.

Thus {
λ1≤Em(φp,0)= α+1

p ∥∆φp∥p
p =λ1,p,1(m1),

λ1≤Em(0,φq)=
β+1

q ∥∆φq∥q
q =λ1,q,1(m2).

Consequently, λ1≤min{λ1,p,1(m1),λ1,q,1(m2)}.
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