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Abstract. The concrete aggregate model is considered as a type of weakly discontin-
uous problem consisting of three phases: aggregates which randomly distributed in
different shapes, cement paste and internal transition zone (ITZ). Because of different
shapes of aggregate and thin ITZs, a huge number of elements are often used in the
finite element (FEM) analysis. In order to ensure the accuracy of the numerical so-
lutions near the interfaces, we need to use higher-order elements. The widely used
FEM softwares such as ANSYS and ABAQUS all provide the option of quadratic el-
ements. However, they have much higher computational complexity than the linear
elements. The corresponding coefficient matrix of the system of equations is a highly
ill-conditioned matrix due to the large difference between three phase materials, and
the convergence rate of the commonly used solving methods will deteriorate. In this
paper, two types of simple and efficient preconditioners are proposed for the system
of equations of the concrete aggregate models on unstructured triangle meshes by us-
ing the resulting hierarchical structure and the properties of the diagonal block matri-
ces. The main computational cost of these preconditioners is how to efficiently solve
the system of equations by using linear elements, and thus we can provide some ef-
ficient and robust solvers by calling the existing geometric-based algebraic multigrid
(GAMG) methods. Since the hierarchical basis functions are used, we need not present
those algebraic criterions to judge the relationships between the unknown variables
and the geometric node types, and the grid transfer operators are also trivial. This
makes it easy to find the linear element matrix derived directly from the fine level ma-
trix, and thus the overall efficiency is greatly improved. The numerical results have
verified the efficiency of the resulting preconditioned conjugate gradient (PCG) meth-
ods which are applied to the solution of several typical aggregate models.
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1 Introduction

Concrete is considered as a type of composite consisting of three phases: cement paste,
coarse aggregate and interfacial transition zone (ITZ) on meso-level. The macroscopic
mechanical properties and failure modes of concrete materials are mainly determined
by the properties of component materials, the volume content and mixture ratio of ag-
gregates considered [1]. Therefore, it is necessary to establish appropriate mesoscopic
models in order to perform some numerical analysis. There are many methods for es-
tablishing random geometric models of concrete, see references such as [2–6]. Recently,
a hybrid realization method is proposed in order to rapidly obtain 3D concrete spherical
aggregate models with high volume fraction which can reach about 65% by combining
FORTRAN and ANSYS softwares [7]. This method can also easily generate the polyhe-
dron aggregate model with different shapes.

After the geometry of concrete aggregate model is obtained, a huge number of ele-
ments are often used in finite element computation because of different shapes of aggre-
gate and thin ITZs. Moreover, in order to ensure the high accuracy of the finite element
solution near the interfaces, it is necessary to use higher-order elements, for example, the
widely used FEM softwares as ANSYS and ABAQUS all provide the option of quadratic
elements. However, higher-order elements need more computer storage space and have
much higher computational complexity than the linear elements. Since the large differ-
ence between three phase materials in practice, the coefficient matrix of the system of
equations is a highly ill-conditioned matrix. The efficiency of the commonly used solvers
will be rapidly reduced. Therefore, it is important to design more efficient solving meth-
ods to improve the overall efficiency of finite element analysis for the concrete models
with random aggregates under the condition of ensuring the accuracy of numerical solu-
tion.

Multigrid method has recently been one of the most effective numerical methods for
solving the system of equations arising from the finite element discretizations of partial
differential equations, in which algebraic multigrid (AMG) method has become the re-
search focus since it has some advantages for solving large-scale system of equations on
unstructured grids [8–12]. If we can use the known information that is easily available in
most finite element applications, for instance, the type of the partial differential equation
considered, the number of physical unknowns residing in each grid and nodal coordi-
nates on the finest grid level, more robust and efficient AMG as the geometric-based
AMG (GAMG) methods can be obtained. There are quite a lot of research results, see
for example AMGe method [13, 14] and AMG method based on element agglomeration
scheme [15]. Several GAMG methods were designed and analyzed for some different
problems in references [16–18]. We would like to refer readers to [20–23] for the recent
efforts to apply AMG methods to the system of equations of low-order finite elements for
elasticity problems. Recently, some better research results on GAMG methods have been
developed in [24–26] for higher-order discretizations of linear elasticity. Hierarchical ele-
ments are often used in designing fast solving algorithms and this can help to reduce the
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computational cost and improve the operation efficiency [27–29].
In this paper, we firstly obtain four types of aggregate geometric models including

circular, elliptic, polygonal and mixed shapes with high volume fraction which can reach
between 60% and 70% by using the algorithm based on ANSYS parametric design lan-
guage (APDL). Two simple and efficient preconditioners are then designed for the system
of equations arising from the finite element discretizations of concrete aggregate models
by combining the hierarchical structure of the coefficient matrix and the properties of the
resulting block diagonal matrices. The basic idea of our method is to essentially turn the
quadratic discrete systems into mainly solving the corresponding linear discrete systems.
In this way, we can obtain preconditioned conjugate gradient (PCG) method whose effi-
ciency of inner iteration has been greatly improved by using the existing efficient GAMG
methods. Finally, numerical experiments have been performed for several typical aggre-
gate models to verify the efficiency and the robustness of the resulting methods.

The remainder of the paper is organized as follows. In the next section, we intro-
duce the geometric model of concrete aggregate, mesh generation and the corresponding
mathematical model and hierarchical finite element discretization. In Sections 3, two
types of preconditioners are introduced for the system of equations arising from the
hierarchical quadratic element discretizations. In Section 4, we present several typical
examples to verify the efficiency and robustness of the resulting PCG methods. Some
concluding remarks are discussed in the final section.

2 Aggregate model and hierarchical FEM discretization

2.1 Geometric model and mesh generation

In order to establish the geometric model of 3D concrete aggregate, we have designed a
special algorithm based on APDL in ANSYS software, see more details in [30]. Here, we
directly apply this algorithm to the geometric model of 2D concrete aggregate. The re-
sulting four types of aggregate geometric models are presented in Fig. 1(left) for a square
concrete specimen with size of 150mm×150mm, where the particle sizes of circular are
determined by two gradation, i.e., the diameter of small stone belongs to 5∼20mm, the
diameter of medium stone belongs to 20∼ 40mm and the corresponding proportion is
5.5:4.5. Then, a conforming quasi-uniform mesh with triangular elements is performed
for the determined. geometric model, where we always assume that the interfaces be-
tween the aggregates and cement paste are composed of the boundaries of the related
triangular elements. The corresponding meshes are also shown in Fig. 1(right).

In addition, the effect of ITZ on the mechanical properties of concrete should be con-
sidered in practical application. Concrete aggregate model is regarded as a type of com-
posite consisting of three phases: cement paste, aggregate and ITZ. Four different ag-
gregate geometry models with ITZs and the corresponding meshes are shown in Fig. 2,
respectively.
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(a) Circular aggregate with volume fraction 73.0% (left) and mesh with 8270 elements (right)

(b) Elliptic aggregate with volume fraction 60.6% (left) and mesh with 8058 elements (right)

(c) Polygonal aggregate with volume fraction 60.1% (left) and mesh with 8708 elements (right)

(d) Mixed aggregate with volume fraction 60.4% (left) and mesh with 8162 elements (right)

Figure 1: Geometric models and conforming quasi-uniform meshes of four types of aggregates.
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(a) Circular aggregate with volume fraction 63.0% (left) and mesh with 15520 elements (right)

(b) Elliptic aggregate with volume fraction 60.6% (left) and mesh with 12328 elements (right)

(c) Polygonal aggregate with volume fraction 60.1% (left) and mesh with 13830 elements (right)

(d) Mixed aggregate with volume fraction 60.4% (left) and mesh with 12350 elements (right)

Figure 2: Geometric models and conforming meshes of four types of aggregates with ITZs.
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2.2 Mathematical model and hierarchical FEM discretization

The concrete aggregate model is considered as a type of weakly discontinuous problem
consisting of aggregates, cement paste and ITZ. If we limit the deformation in the linear
elastic range and assume that the combination of aggregates, cement paste and ITZs is
perfect, the corresponding mathematical model can be expressed as follows

µ∆u+(λ+µ)∇div u= f in Ω, (2.1a)
u=u on Γ0, (2.1b)
σ(u)·n=g on Γ1, (2.1c)

where Ω⊂R2 is a two-dimensional bounded domain with Lipschitz boundary, Γ0
⋂

Γ1=∅
and mes(Γ0) 6=0, u is the displacement vector, f is an external force and g is a surface force
on the boundary Γ1, whose unit outward normal vector is denoted by n, u=(u1, u2)

T is
the known displacement function and σ is the stress tensor denoted by u. The Lamé
constants λ and µ can be expressed with Young’s modulus E and Poisson’s ratio ν as
follows:

λ(l)=
E(l)ν(l)

(1−(ν(l))2
)

, µ(l)=
E(l)

2(1+ν(l))
, (2.2)

where l = 0,1,··· ,M,M+1,··· ,M+MI , the index ”0” denotes the cement paste, M is the
number of aggregate, MI is the number of ITZs. The domains of cement paste, aggre-
gate and ITZs are denoted by Ω0 and Ωl , l=1,··· ,M,M+1,··· ,M+MI , respectively. It is
obvious that

Ωl⊂Ω, Ω=
M+MI⋃

l=0

Ω̄l and Ωl
⋂

Ωm =∅,

for l 6=m.
Let H1

Γ :={v∈H1(Ω)2|v|Γ0=0}. In what follows, we consider the corresponding weak
formulation of the problem (2.1) by using the divergence theorem:

Find u−u∈H1
Γ such that

a(u,v)=
〈
f̃,v
〉

, ∀v∈H1
Γ, (2.3)

where

a(u,v)=
∫

Ω
ε(u) : σ(v)dΩ,

〈
f̃,v
〉
=
∫

Ω
f·vdΩ−

∫
Γ1

g·vdΓ1, ε(u) : σ(v)=∑ij ε(u)ijσ(v)ij,

in which ε(u) is the strain tensor denoted by u.
Let Th be a triangle partition of the domain Ω, where h is the maximal diameter of all

elements in Th. We introduce the Lagrangian finite element space of p (p≥ 2) order as
follows

V(p)
h ={v(p)

h |v
(p)
h ∈C(Ω̄)

2, v(p)
h |τ∈Pp(τ)

2, ∀τ∈Th}, (2.4)
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Figure 3: Quadratic elements (left) and the reference element (right).

where Pp is the set of polynomials of degrees not more than p.
The finite element solution of problem (2.3) up

h ∈Vp
h satisfies

a(u(p)
h ,v(p)

h )=
〈

f̃,v(p)
h

〉
, (2.5)

for any given v(p)
h ∈V(p)

h
⋂

H1
Γ.

In the actual engineering computation, we often use quadratic elements with higher
precision. For example, the widely used FEM softwares as ANSYS and ABAQUS provide
the option of quadratic elements. In general, higher-order elements are not preferred to
be used because of the complexity of the calculation and the numerical instability such as
Runge phenomenon. Two typical triangle elements with straight and curved edges are
presented in Fig. 3(left).

Consider a reference quadratic element with 6 nodes in the local coordinate system
(ξη) as shown in Fig. 3(right). In order to establish multi-level iterations or precondition-
ers easily, we often use hierachical elements. The hierarchical basis is defined in terms of
local coordinates on the reference element. In this paper, the corresponding hierarchical
basis functions are chosen as follows

H1= ξ, H4=4ξη,
H2=η, H5=4η(1−ξ−η), 0≤ ξ,η≤1,
H3=1−ξ−η, H6=4ξ(1−ξ−η).

The unknowns associated with the vertices are ordered first and those associated with
the midside nodes are ordered last. By assembling the equations for all elements and
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considering the boundary conditions, we can obtain the global system of linear algebraic
equations with some block structure as follows

KU=F, (2.6)

or [
Kvv Kvm
Kmv Kmm

][
uv
um

]
=

[
Fv
Fm

]
, (2.7)

where U = [uv,um]
T = [U1,U2,··· ,UN ]

T is the displacement vector, F = [Fv,Fm]
T =

[F1,F2,··· ,FN ]
T is the node load vector, N = 2(nv+nm) in which nv and nm are the num-

ber of vertices and the number of midside nodes after the Dirichlet boundary conditions
have been applied, respectively. The global stiffness matrix K is symmetric and positive
definite. The block matrices Kvv, Kmm and Kvm =KT

mv are defined by the relations

(Kvvvv,wv)= a(vv,wv), ∀vv,wv∈Vv,
(Kmmvm,wm)= a(vm,wm), ∀vm,wm∈Vm,
(Kmvvm,wv)= a(vm,wv), ∀vv∈Vv, vm∈Vm,

where Vv and Vm is the FEM spaces spanned by the vertex and midside node basis func-
tions, respectively.

3 PCG methods for the hierarchical quadratic FEM
discretizations

3.1 Analysis of condition numbers

In what follows, we present the condition numbers of the quadratic element matrix K
and two diagonal block matrices Kvv and Kmm for the circular aggregate model. Con-
sider a square concrete specimen with size 150mm×150mm, where the particle sizes of
circular are determined by two gradation. Assume that E1 = 13.4GPa and ν1 = 0.25 for
cement paste, E2 =74.5GPa and ν2 =0.15 for aggregates, and E3 =11.0GPa and ν3 =0.20
for ITZs. The bottom surface of the domain is fixed and the top surface is applied a verti-
cal downward shear stress g=(0,t)T with t=28N/mm2 and not considering the gravity.
The corresponding geometric model and one sample of conforming quasi-uniform mesh
with 8270 elements is presented in Fig. 1(a), respectively, where the number of element
for aggregates is 5506. The geometric model with ITZs and one sample of conforming
mesh with 15520 elements is presented in Fig. 2(a), respectively, where the number of el-
ement for aggregates is 6498, and the number of element for ITZs is 4152. The condition
numbers of the quadratic element matrix K, Kvv and Kmm under five different meshes
are summarized in Table 1. Note that the symbol ”Cond(A)” denotes the condition num-
bers for any given matrix A, which can be defined by Cond(A)= λmax(A)

λmin(A)
, where λmax(A)
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Table 1: Condition number of the quadratic element matrices and two diagonal block matrices.

(a) Several problem sizes without ITZs
#element Cond(K̃) Cond(K) Cond(Kvv) Cond(Kmm)

8270 836096.48 254919.23 116770.16 82.73
14358 1463961.92 437218.49 228563.64 97.62
47824 5220618.08 1456830.72 780407.58 97.76
101838 1.015×107 2972006.39 1527511.39 93.16
196084 2.117×107 5843756.02 3844362.49 96.62

(b) Several problem sizes with ITZs
#element Cond(K̃) Cond(K) Cond(Kvv) Cond(Kmm)

15520 2825904.67 875431.18 337904.92 122.62
26958 4153749.29 1247665.96 547499.87 109.40
48778 7031946.25 2126596.20 1060885.99 99.85
102262 1.756×107 5037138.95 2692571.46 114.49
193198 2.963×107 8239802.92 5204949.95 100.55

and λmin(A) is the maximum eigenvalue and the minimum eigenvalue, respectively, here
A=K,Kvv and Kmm. In addition, we also present the condition numbers of the quadratic
element matrix K̃ obtained by using the standard node basis functions. The correspond-
ing results are also shown in Table 1.

It can be seen that the condition number of the hierarchical stiffness matrices is much
smaller than the standard stiffness matrices. However, the hierarchical stiffness matrices
are still highly ill-conditioned with increasing problem size. The efficiency of the conju-
gate gradient (CG) method will be greatly reduced. The diagonal block matrix Kvv is an
ill-conditioned matrix with the increase of the problem size, but another diagonal block
matrix Kmm is a well-conditioned matrix whose condition number is independent of the
mesh size and only related to the material parameters considered. Besides, the hierar-
chical stiffness matrix is also a highly ill-conditioned matrix due to the large difference
between three phase materials, and the convergence rate of CG method will deteriorate.
Therefore, the preconditioned conjugate gradient (PCG) method is necessary to be used
to solve the resulting highly ill-conditioned discrete system of equations in order to im-
prove the overall efficiency.

3.2 Two preconditioners

Assume that B is a preconditioner of matrix K, then a simple outline of the PCG algorithm
is presented as follows:

Algorithm 3.1 (PCG iteration).

Step 1 Given an initial guess U0, compute r0=F−KU0, z0=Br0, p0=z0, ρ0=(z0,r0) and
let j=0.
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Step 2 Perform the following sub-steps:

(1) αj =
(rj,zj)

(Kpj,pj)

(2) Uj+1=Uj+αjpj

(3) rj+1= rj−αjKpj

(4) zj+1=Brj+1, ρj+1=(zj+1,rj+1)

(5) β j =
(rj+1,zj+1)

(rj,zj)

(6) pj+1=zj+1+β jpj.

Step 3 If ρj+1
ρ0

< ε is true, then stop, where ε is a given control precision; otherwise, let
j= j+1, then go to Step 2.

It is obvious that the key of PCG algorithm is to present an appropriate approach of
computing z=Br, where r is certain given vector. A good preconditioner should have the
properties that the action of K−1r is easy to compute and Cond(BK) is much smaller than
Cond(K). In what follows, we shall design and analyze two types of preconditioners.
(1) AMG-based block diagonal preconditioner

Using the resulting hierarchical structure of matrix K, we take

KD =diag(K)=

[
Kvv

Kmm

]
. (3.1)

Let B = BLP(Bv,Bm) = K−1
D , then z = Br can be decomposed into two decoupled sub-

systems as follows: {
Kvvzv = rv,
Kmmzm = rm.

(3.2)

Firstly, let us consider the first system of equations Kvvzv = rv. Since the matrix Kvv
is the linear part of the hierarchical quadratic discretizations, that is to say, Kvv is the
matrix obtained by using the usual linear Lagrange polynomial basis functions on all
vertices. As we all know, AMG method is one of the most efficient solvers to the system of
equations arising from the linear FEM discretizations on unstructured meshes, in which
the so-called GAMG methods [16, 18, 19, 21] developed in recent years are widely used
in solving the system of equations derived from the vector elliptic partial differential
equations because of the high efficiency and better robustness.

In this paper, we shall use GAMG method presented in [21] to solve the system of
equations Kvvzv = rv. In what follows, we briefly introduce this GAMG method.

Note that the system of equations Kvvzv = rv can be rewritten in the following form:[
Kxx

vv Kxy
vv

Kyx
vv Kyy

vv

][
zx

v
zy

v

]
=

[
rx

v
ry

v

]
, (3.3)
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where zx
v and zy

v are the x and y components of the displacement fields. Our coarsen-
ing process and the construction of prolongation operator for the system matrix Kvv are
mostly based on the application of the scalar AMG for each block matrix Kxx

vv and Kyy
vv.

More precisely, the main idea is first to construct prolongations Pv
i , i= x,y, for example,

by applying RS coarsening techniques given in [10] to each block matrix Kxx
vv and Kyy

vv in
the scalar AMG, and then form the global prolongation operator Pvv for Kvv simply as
follows:

Pvv =

[
Pv

x 0
0T Pv

y

]
. (3.4)

The coarse-grid operator is finally formed by the usual Galerkin approach

Kc
vv =PT

vvKvvPvv. (3.5)

Note that the coarse-grid matrix obtained in above way is still of block structure as
shown in (3.3). Thus, we can get the prolongations and the coarse-grid matrix on next
grid by repeating the steps above for Kc

vv. We denote the resulting AMG method by
GAMG. The corresponding approximate solution is denoted by z̃v after calling only one
DAMG iteration to solve the system of equations Kvvzv= rv. For convenience, the result-
ing preconditioner can be represented as B̃v =BGAMG

v .
Next, we consider the second first system of equations Kmmzm = rm. As we know

in Section 3, the matrix Kmm is a well-conditioned matrix, whose condition number is
independent of the mesh size but depends on Young’s modulus E and Poisson’s ratio ν.
Therefore, we can call the CG method to solve the system of equations Kmmzm = rm. In
practical computation, the number of midside nodes is usually very large. In order to
improve the efficiency of computation, we choose

C−1
mm =diag(Kmm)=

[
Kxx

mm
Kyy

mm

]
. (3.6)

Thus, Kmmzm = rm can be transformed into Cmmzm = rm or{
Kxx

mmzx
m = rx

m,
Kyy

mmzy
m = ry

m.
(3.7)

The corresponding approximate solutions are denoted by z̃x
m and z̃y

m after calling one
AMG iteration to solve each system of equations in (3.7), respectively. This AMG method
is very efficient for the solution of linear systems arising from the discretization of scalar
elliptic PDE. Let z̃m=(z̃x

m,z̃y
m)

T
, then we can obtain zm≈ z̃m. The resulting preconditioner

can be denoted by B̃m =BAMG
m .

In this way, we can get the approximate solutions z̃=(z̃v,z̃m)
T by combining the above

two steps. The final preconditioner is obtained as follows

B1≈ B̃=BLP(B̃v,B̃m)=diag(BGAMG
v ,BAMG

m ). (3.8)

The corresponding algorithm of computing z=B1r is summarized as follows:
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Algorithm 3.2 (Compute B1r).

Step 1 Obtain two block diagonal matrices Kxx
vv and Kyy

vv, and then get the GAMG compo-
nents as interpolation operators, restriction operators and coarse grid matrices on
all grids. By choosing efficient smoothers such as Gauss-Seidel or SOR iteration,
establish the GAMG method.

Step 2 Given an initial guess z(0)v , call one GAMG iteration to solve Kvvzv = rv, and get
the approximate solution z̃v.

Step 3 Given the initial guesses (z(x)
m )

(0)
and (z(y)m )

(0)
, call one AMG iteration to solve

Kxx
mm zx

m=rx
m and Kyy

mmzy
m=ry

m, respectively, and get the approximate solution z̃m=

(z̃x
m, z̃y

m)
T
.

Step 4 Let z̃=(z̃v,z̃m)
T and get the solution z=Br≈ z̃.

(2) Parallel preconditioner based on auxiliary variational problem
In this subsection, we present another preconditioner denoted by B2 as a combina-

tion of a smoother and a coarse level solver that requires the solution of the system of
equations arising from discretizations by linear conforming elements. The corresponding
algorithm and the theoretical analysis for the condition number of the proposed precon-
ditioner are presented in reference [25]. Since the hierarchical basis functions are used,
we need not present those algebraic criterions to judge the relationships between the un-
known variables and the geometric node types, and the grid transfer operators are also
trivial. This makes it easy to design the algorithm for computing the preconditioner. The
algorithm of computing B2r can be simply described as follows:

Algorithm 3.3 (Compute B2r).

Step 1 Given an initial guess z(0)h , compute the residual w = r−Kz(0)h , and let w =

(wv,wm)
T.

Step 2 Call one symmetric Gauss-Seidel iteration to solve Kz=w on the quadratic FEM
space V(2)

h , and the corresponding approximate solution is denoted by zh.

Step 3 Call one GAMG iteration to solve Kvvzv =wv on the linear FEM space V(1)
h , and

the corresponding approximate solution is denoted by zv
h.

Step 4 Obtain that B2r=z=zh+

(
zv

h
0

)
.

This method needs very little programming effort in that it consists of only one iter-
ation of simple relaxation method and only one iteration of certain existing robust AMG
solver for linear conforming FEM equations. In addition, the process of Step 2 and Step
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3 in Algorithm 3.3 can be performed in parallel. This implies that the proposed PCG
method is appropriate for large-scale computations that often arise in the rapidly devel-
oping area.

4 Numerical experiments

In this section, some numerical experiments are performed to verify the efficiency and
robustness of the resulting PCG methods based on two preconditioners proposed in Sec-
tion 3 for solving the hierarchical quadratic system of Eq. (4.1) of the concrete aggregate
models.

Example 4.1. Consider a square concrete specimen with size of 150mm×150mm, where
the particle sizes of circular are determined by two gradation. Assume that E1=13.4GPa
and ν1=0.25 for cement paste, E2=74.5GPa and ν2=0.15 for aggregates, and E3=11.0GPa
and ν3=0.20 for ITZs. The bottom surface of the domain is fixed and the top surface is ap-
plied a vertical downward shear stress g=(0,t)T with t=28N/mm2 and not considering
the gravity. The corresponding geometric models without ITZs and with ITZs and one
sample of conforming meshes for four types of concrete aggregate models are presented
in Fig. 1 and Fig. 2, respectively.

The resulting PCG methods are then applied to the solution of the hierarchical
quadratic discrete system of Eq. (4.1). The corresponding numerical results are summed
as follows. The corresponding stopping criteria is defined by∥∥∥Br(k)

∥∥∥/∥∥∥Br(0)
∥∥∥≤10−6, (4.1)

where r(k) is the residual vector at the k-th iteration. We choose zero vector as our initial
guess. In order to illustrate the advantages and disadvantages of several PCG methods,
we have numerically compared them with several widely used PCG methods, which are
the popular ILU(0)-PCG described in [31], which is the preconditioned CG method with
a popular ILU(0) preconditioner, the AGMG-FCG method, which is the flexible conjugate
gradient (FCG) preconditioned with an aggregation-based algebraic multigrid (AGMG)
recently proposed in [32] based on the unsmoothed interpolation matrix, and the AMG-
PCG method by selecting coarse points based on MIS technique (i.e., PCG method based
on AMG01 presented in [19]). In all the tables, the symbols ”# element” denotes the num-
ber of elements, ”#dof” and ”Iter” denote the total degree of freedom and the number of
iterations required to achieve control accuracy and ”CPU/s” denotes the CPU time in
seconds. The numerical experiments in this paper are performed on the PC computer
with the Inter(R) Xeon(R) CPU E3-1230 V6 under Windows10 environment.
(1) Case of circular aggregates

The corresponding iteration counts and CPU time of four PCG methods for the hier-
archical quadratic system of equations are summed in Table 2.
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Table 2: Iteration counts and CPU time of several PCG methods for circular aggregate models.

(a) Several problem sizes without ITZs
ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG

#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s
8270 33332 218 2.51 – – 153 4.89 25 1.38 24 0.79

14358 57768 280 5.30 213 11.05 184 10.20 22 2.14 22 1.22
47824 191896 491 28.25 346 53.09 347 62.20 23 7.40 21 3.86
101838 408224 701 82.51 501 161.57 502 193.22 23 13.62 22 8.48

(b) Several problem sizes with ITZs
ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG

#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s
15520 62380 – – – – 209 12.87 26 2.77 25 1.50
26958 108232 – – 276 24.95 270 28.84 25 4.65 24 2.46
48778 195712 513 30.08 409 64.59 371 70.97 25 8.73 23 4.21
102262 409908 786 95.54 579 190.60 531 209.63 29 16.87 23 8.94

Table 3: Iteration counts and CPU time of several PCG methods for elliptic aggregate models.

(a) Several problem sizes without ITZs
ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG

#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s
8058 32484 211 2.40 171 4.61 157 5.21 24 1.28 23 0.73

15898 63948 294 6.11 237 12.41 214 13.75 23 2.44 22 1.36
47498 190592 449 25.99 400 61.56 358 66.64 23 7.35 22 3.98
101288 406024 695 81.98 577 187.81 516 202.27 27 15.85 24 9.32

(b) Several problem sizes with ITZs
ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG

#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s
12328 49552 – – 216 10.18 182 9.03 28 2.64 27 1.40
26840 107760 – – 308 27.82 267 28.63 26 4.73 24 2.44
48760 195640 505 29.72 419 66.45 374 65.83 24 8.75 23 4.25
102378 410372 790 93.41 535 177.26 533 213.23 26 15.52 24 9.33

(2) Case of elliptic aggregates
The iteration counts and CPU time of four PCG methods for the hierarchical quadratic

system of equations for elliptic aggregate models are summed in Table 3.

(3) Case of polygonal aggregates
The iteration counts and CPU time of four PCG methods for the hierarchical quadratic

system of equations for polygonal aggregate models are summed in Table 4.

(4) Case of mixed aggregates
The iteration counts and CPU time of four PCG methods for the hierarchical quadratic

system of equations for mixed aggregate models are summed in Table 5.

Remark 4.1. The symbol ”–” in all tables above means that the method chosen has failed
to solve the resulting system of equations. For the concrete aggregate models with ITZs,
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Table 4: Iteration counts and CPU time of several PCG methods for polygonal aggregate models.

(a) Several problem sizes without ITZs
ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG

#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s
8708 35084 246 3.19 183 5.68 165 5.62 24 1.59 23 0.89

16904 67972 326 7.16 243 13.61 218 14.09 23 2.64 22 1.46
49438 198352 485 29.13 397 63.48 357 66.59 23 7.64 22 4.16

104530 418992 698 88.42 570 190.78 509 189.13 26 15.64 22 8.96
(b) Several problem sizes with ITZs

ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG
#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s

13830 55560 – – 268 14.26 211 10.98 26 2.83 26 1.54
27252 109408 – – 301 29.81 285 29.43 25 5.43 25 2.87
50892 204168 554 33.96 422 70.48 384 72.83 23 10.02 22 4.32

109402 438468 763 94.58 612 223.61 552 215.71 29 18.11 24 9.96

Table 5: Iteration counts and CPU time of several PCG methods for mixed aggregate models.

(a) Several problem sizes without ITZs
ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG

#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s
8162 32900 231 2.84 – – 155 5.17 26 1.44 26 0.82

16352 65764 319 6.83 235 12.98 213 13.45 24 2.84 23 1.47
47820 191880 459 26.90 397 61.66 356 64.59 23 7.44 22 3.97

102452 410680 672 80.57 566 183.84 516 202.04 26 15.52 23 8.93
(b) Several problem sizes with ITZs

ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG
#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s

12350 49640 – – 215 9.98 183 9.00 33 2.89 33 1.68
26598 106792 586 19.04 303 27.29 276 28.73 26 5.03 30 2.93
49092 196968 516 31.29 413 66.86 375 70.69 24 8.95 22 4.12

102706 411684 748 92.87 583 194.45 537 208.68 31 17.99 25 9.58

the corresponding mesh quality is poor because of thin ITZs if the number of elements
is not much enough or the distorted elements appear on local domains. The ILU(0) pre-
conditioner of hierarchical quadratic element discrete system do not satisfy the positive
definiteness, which will lead to failing for the corresponding PCG method. Two local
enlarged drawing of meshes are presented in Fig. 4 near a certain aggregate under dif-
ferent element numbers for case of polygonal aggregates with ITZs. It can be seen that
the quality of mesh is obviously poor for case of Fig. 4(a), while for case of Fig. 4(b), the
quality of mesh is much better and thus five PCG methods are all convergent.

Finally, we present the contour maps of displacement for the mixed aggregate models
without ITZs discretized by using hierarchical quadratic elements with 8162 elements as
shown in Fig. 5 and Fig. 6, respectively.

From these numerical results, it can be seen that the hierarchical finite element
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(a) Local enlarged drawing of meshes with 13830 elements

(b) Local enlarged drawing of meshes with 50892 elements

Figure 4: Two local enlarged drawing of meshes near a certain aggregate under different element numbers for
case of polygonal aggregates with ITZs.

(a) Standard quadratic element (b) Hierarchical quadratic element

Figure 5: The contour maps of displacement in the x direction.
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(a) Standard quadratic element (b) Hierarchical quadratic element

Figure 6: The contour maps of displacement in the y direction.

method has the same convergence as the standard finite element method. The proposed
preconditioners have good computational efficiency and robustness for solving the hi-
erarchical quadratic element discrete systems of different shape aggregate models, es-
pecially for the aggregate models with ITZs. When there are certain poor elements or
ill-conditioned elements, ILU(0)-PCG and AGMG-FCG methods fail but the methods de-
signed in this paper still succeed in solving the resulting system of equations considered.
Since the hierarchical FEM method is used, we need not to take extra computational cost
in constructing grid transformation operators as restriction operator and interpolation
operator and the linear FEM matrix used in the two-level PCG method. Considering that
the matrix Kvv does not change in running PCG iteration, we generate only one time all
the information including the grid transfer operators and the coarse grid matrices needed
for the GAMG method. Thus, the efficiency of inner iterative method and further the re-
sulting PCG methods can be greatly improved by fully utilizing the advantages of AMG
and GAMG methods in solving large-scale linear FEM system of equations on unstruc-
tured grids.

Example 4.2. Consider a square concrete specimen with size of 200mm×200mm as shown
in Fig. 7(a), in which there is a small crack at the middle point on the left. The sizes
of mixed shape aggregates with ITZ are determined by two gradation. Assume that
E1 =30GPa and ν1 =0.20 for cement paste, E2 =60GPa and ν2 =0.18 for aggregates, and
E3 = 15GPa and ν3 = 0.25 for ITZs. The bottom surface of the domain is fixed and the
top surface is applied a vertical downward shear stress g = (0,t)T with t = 500N/mm2

and not considering the gravity. A conforming mesh with 43137 elements is presented in
Fig. 7(b), where local mesh refinement is done near crack tip.
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(a) Geometrical domain (b) One FEM mesh

(c) Local enlarged drawing near crack

Figure 7: Geometric models of mixed aggregates with ITZs and small crack and conforming mesh with 43137
elements.

We first present the condition numbers of the quadratic element matrices K and K̃ and
two diagonal block matrices Kvv and Kmm of K as shown in Table 6. The corresponding
iteration counts and CPU time of the resulting two PCG methods proposed in this paper

Table 6: Condition number of the quadratic element matrices and two diagonal block matrices for crack problem.

#element Cond(K̃) Cond(K) Cond(Kvv) Cond(Kmm)
43137 6683450.13 2103343.79 765162.35 86.57

114357 1.608×107 4857306.45 1823339.72 74.46
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Figure 8: Displacement nephograms the x direction (left) and in the y direction (right) with 43137 elements.

(a) σxx (b) σyy

(c) τxy

Figure 9: Stress nephograms for the aggregate models with ITZs and crack, where #element is 43137.
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Table 7: Iteration counts and CPU time of two resulting PCG methods for crack problem.

ILU(0)-PCG AGMG-FCG AMG-PCG B1-PCG B2-PCG
#element #dof Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s Iter CPU/s

43137 173378 517 28.24 356 52.37 324 52.52 24 7.91 22 4.03
114357 458670 Out of memory 538 210.99 Out of memory 31 18.93 25 9.79

and other three commonly used PCG methods for the hierarchical quadratic system of
equations are summed in Table 7. The displacement and stress nephograms under the
case of 43137 elements are presented in Fig. 8 and Fig. 9, respectively. It can be seen that
the ill-condition of the hierarchical quadratic FEM matrix for the aggregate model with
crack is mainly determined by the corresponding linear FEM matrix, and the matrix Kmm
assembled by midpoint nodes is a well-conditioned matrix. The two PCG methods are
also very efficient for solving hierarchical quadratic system of equations for this crack
problem, and by contrast, the B2- PCG method has better computational efficiency and
robustness. By taking the case of 43137 elements as an example, the iteration counts and
the CPU times of the B2- PCG method are 22 and 4.03 seconds, respectively, which are
better than the B1-PCG method with 24 iterations and 7.91 seconds.

5 Concluding remarks

In FEM analysis of the concrete aggregate models, using higher-order elements can
greatly improve the accuracy of the numerical results, especially can ensure the accu-
racy of the numerical solutions near the ITZs. It is necessary to design more efficient
solvers for the resulting system of equations in order to improve the overall efficiency of
FEM method. In this paper, two simple and efficient preconditioners are proposed for
the hierarchical quadratic system of equations. The resulting two-level hierarchical PCG
methods have better computational efficiency. These preconditioners are essentially de-
duced into solving the linear system of equations. Thus, the efficiency of inner iterative
method and further the resulting PCG methods can be greatly improved by using the
existing efficient GAMG methods to solve the linear system of equations.

While only limited numerical experiments have been performed, the numerical re-
sults are still quite encouraging. More extensive numerical experiments and theoretical
estimate for the condition number of the proposed two preconditioners for the hierar-
chical matrices of multi-phase materials are further expected. Some robust and efficient
preconditioners can be obtained by using the known information that is easily available
in most FEM applications, for instance, the type of the partial differential equation con-
sidered, the number of physical unknowns residing in each grid and nodal coordinates
on the finest grid level and by combining the existing efficient AMG methods. Besides,
the proposed algorithms can also be extended to nonlinear FEM numerical simulation of
concrete materials and structures, for example, cracking failure, dynamic analysis and so
on. Such areas will be a subject of our future research.



1396 Y. X. Xiao, H. Chen and L. J. Xie / Adv. Appl. Math. Mech., 11 (2019), pp. 1376-1397

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China
(Grant No. 11601462), the Hunan Provincial Natural Science Foundation of China (Grant
No. 14JJ2063) and the Scientific Research Fund of Hunan Provincial Education Depart-
ment (Grant No. 15A183).

References

[1] MA HUAIFA, CHEN HOUQUN AND LI BAOKUN, Review on micro-mechanics studies of concrete,
J. China Institute Water, 2(2) (2004), pp. 124–130.

[2] SONG LAIZHONG, SHEN TAO AND YU BO, The approach to establishing a two-dimensional pa-
rameterized aggregate model for concrete simulation, Eng. Mech., 30(10) (2013), pp. 5–13.

[3] X. F. WANG, Z. J. YANG, J. R. YATES, A. P. JIVKOV AND CH ZHANG, Monte Carlo simulations
of mesoscale fracture modelling of concrete with random aggregates and pores, Construction and
Building Materials, 75 (2015), pp. 35–45.

[4] GAO ZHENGGUO AND LIU GUANGTING, Two-dimensional random aggregate structure for con-
crete, Journal of Tsinghua University (Science & Technology), 43(5) (2003), pp. 710–714.

[5] SONG XIAOGANG AND YANG ZHICHUN, A new method to simulate round concrete aggregate
generation, Eng. Mech., 27(1) (2010), pp. 154–159.

[6] SIAMAK SHAHBAZI AND IRAJ RASOOLAN, Meso-scale finite element modeling of non-
homogeneous three-phase concrete, Case Studies in Construction Materials, 6 (2017), pp. 29–42.

[7] GUO RUIQI, XIAO YINGXIONG AND TANG XIANQIONG, A fast hybrid realization method for
three-dimensional concrete aggregate models, Journal of Civil, Architectural & Environmental
Engineering, 39(5) (2017), pp. 100–107.

[8] A. BRANDT, S. MCCORMICK AND J. RUGE, Algebraic Multigrid (AMG) for Sparse Matrix
Equations, in Sparsity and its Applications, Evans DJ (ed.), Cambridge University Press:
Cambridge, 1984, pp. 257–284.

[9] A. BRANDT, Algebraic multigrid theory: the symmetric case, Appl. Math. Comput., 19 (1986),
pp. 23–56.
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