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Abstract. The efficiency of recently developed gas-kinetic scheme for multimaterial
flows is increased through the adoption of a new iteration method in the kinetic non-
mixing Riemann solver and an interface sharpening reconstruction method at a cell
interface. The iteration method is used to determine the velocity of fluid interface,
based on the force balance between both sides due to the incidence and bounce back
of particles at the interface. An improved Aitken method is proposed with a simple
hybrid of the modified Aitken method (Aitken-Chen) and the Steffensen method. Nu-
merical tests validate its efficiency with significantly less calls to the function not only
for the average number but also for the maximum. The new reconstruction is based
on the tangent of hyperbola for interface capturing (THINC) but applied only to the
volume fraction, which is very simple to be implemented under the stratified frame-
work and capable of resolving fluid interface in mixture. Furthermore, the directional
splitting is adopted rather than the previous quasi-one-dimensional method. Typical
numerical tests, including several water-gas shock tube flows, and the shock-water
cylinder interaction flow show that the improved gas-kinetic scheme can capture fluid
interfaces much sharper, while preserving the advantages of the original one.
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1 Introduction

The compressible multimaterial flow is of great interest due to its importance in many
engineering applications. A big challenge for a CFD method to capture the instability
of fluid interface and the mixing of different fluids with the requirement of numerical
dissipation, resolution, conservation and robustness, especially for high Mach number
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and large density ratio [1,2]. Most existing studies are directly based on the macroscopic
governing equations, such as the Euler equations, and the Riemann problem is usually
solved to capture the field discontinuities for either a single fluid [3, 4] or across a fluid
interface [5–7]. On the basis of the mesoscopic gas-kinetic theory, different numerical
scheme can also be developed, which is suitable for not only continuum flows [8] but also
rarefied flows [9–11]. For multimaterial flows, different kinetic Riemann solvers have
been constructed such as those based on mass fractions of ideal gas mixtures [12–14],
separated transport of ideal gas species [15–18] and stiffened gases [19,20], as well as the
kinetic flux vector splitting for stiffened gas [21–24].

Recently, a new kinetic model has been proposed to solve the Riemann problem for
stiffened gas interface [25]. In this model each gas is reflected back from the fluid inter-
face which is moving with a velocity to achieve the force balance between both sides.
It is second-order accurate in both space and time. Different from the previous kinetic
Riemann solvers, the numerical mixing at the fluid interface is eliminated, which is dom-
inant when the grid cell size is much larger than the width of physical interface. This
numerical mixing may result in pressure oscillation near the material interface or contact
discontinuity, especially when using local thermodynamic equilibrium assumption [26].
Furthermore, the extension of the kinetic model to high-order accuracy and multidimen-
sional flows is straightforward. In addition, it is also simple to take into account the
viscous effect inside each fluid component.

Based on the kinetic Riemann solver and with the help of the idea of discrete equation
method [27] or stratified model [28,29] for fluid mixture, the gas-kinetic scheme for multi-
material flows (labeled as GKS-MMF) has been developed and shows good performance
in many typical flows [25]. The advantages of the scheme include the conservation of
each component, free of non-physical oscillations near fluid interface and the robustness
in the flow with strong shock waves or large density ratio. The mesoscopic description
of flow guarantees the inherent capability to characterize the complicated flow structures
such as shock waves and other discontinuities. Even for inviscid flow, the corresponding
numerical dissipation is more consistent and natural when compared with those based
on macroscopic models.

To further increase the computational efficiency, two improvements are worthy of
consideration. The first one is the iteration method in the kinetic Riemann solver to de-
termine the interface velocity where the bisection method is applied. Although it works
good but the convergence rate is slow which means more computational cost for the cal-
culation of forces on both side of a fluid interface from the distribution function. Better
alternative is required to reduce the iteration number, such as the Steffensen method.
The second one is the reconstruction technique to sharpen the fluid interface. It is neces-
sary for an interface capturing method where the numerical mixing can not be avoided
especially based on a fluid mixture model. The tangent of hyperbola for interface captur-
ing (THINC) technique is a good candidate which can effectively sharpen the interface
in both incompressible [30] and compressible flows [31, 32]. In the present study, the
scheme is improved through these two modifications and is validated by typical tests,
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including several water-gas shock tube flows, and the interaction of a shock wave and a
water cylinder.

2 Brief description of GKS-MMF

The previous proposed GKS-MMF [25] implements the homogeneous equilibrium mix-
ture (HEM) model in which different fluid components achieve the dynamic and thermal
equilibrium with equal temperature T, pressure p and velocity U=(U,V)T within a com-
putational cell during a time step. The stiffened equation of state for each component s is
considered,

p = ρ(s)R(s)T−p
(s)
c , R(s)=C

(s)
p (γ(s)−1)/γ(s), (2.1)

where the parameters (γ(s),C
(s)
p ,p

(s)
c ) are constants based on experimental data. pc repre-

sents the molecular attraction between molecules and it is zero for an ideal gas.
For a two-dimensional (2D) two-component flow, GKS-MMF updates the conserva-

tive variables using a finite volume formula,

Qn+1
ij =Qn

ij+
1

Sij
∑

m∈∂Sij

∆l(m) ·
∫ tn+∆t

tn
F(m)dt, (2.2)

where Sij is the area of computational cell (i, j) and ∆l(m) is the length vector of cell inter-
face m. The conservative variables are

Q=α(1)Q(1)+α(2)Q(2), (2.3)

where α(s), s= 1,2 is the volume fraction of component s, and Q(s) is the corresponding
conservative variables,

Q(1)=(ρ(1),0,ρ(1)U,(ρE)(1))T,

Q(2)=(0,ρ(2),ρ(2)U,(ρE)(2))T,

(ρE)(s)=
p+γ(s)p

(s)
c

γ(s)−1
+

ρ(s)|U|2

2
.

Thus the total density is ρ=α(1)ρ(1)+α(2)ρ(2). In addition, α(s) satisfies the constraint

α(1)+α(2)=1. (2.4)

It should be noted that, for concision, in the conservative variables an additional compo-
nent is included although it is zero, such as the second component in Q(1) and the first in
Q(2).
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Figure 1: One-dimensional model to separate the two-component flow transport into three parts: the transport
of each component and the interaction between different components, with reconstructed volume fraction

α
(1−1)
0 , α

(2−2)
0 and α

(1−2)
0 at the cell interface, respectively. The subscript ‘0’ of α indicates the location of cell

interface xi+1/2=0.

In GKS-MMF the numerical fluxes at a cell interface are computed from the solutions
of a set of Riemann problems, formed through a similar idea of stratified model [28,29] or
discrete equation method [27]. As shown in Fig. 1 for a one-dimensional (1D) two-fluid
flow these Riemann problems are corresponding to the transport of each component and

the interactions between different components, with volume fractions α
(1−1)
0 , α

(2−2)
0 and

α
(1−2)
0 , respectively. Here the subscript ‘0’ of α indicates the variable at cell interface

xi+1/2=0. They are determined by

α
(1−1)
0 =min(α

(1)l
0 ,α

(1)r
0 ),

α
(2−2)
0 =min(α

(2)l
0 ,α

(2)r
0 ),

α
(1−2)
0 = |∆α0|, ∆α0 =α

(1)r
0 −α

(1)l
0 , (2.5)

where the superscripts ‘l’, ‘r’ represent the left and right sides of a cell interface, respec-

tively. It can be easily verified that the constraint α
(1−1)
0 +α

(2−2)
0 +α

(1−2)
0 = 1 is automati-

cally satisfied.

Thus the total fluxes across cell interface xi+1/2=0 can be computed by

F=α
(1−1)
0 F(1−1)+α

(2−2)
0 F(2−2)+α

(1−2)
0 F(1−2). (2.6)

The fluxes for a single component F(1−1) and F(2−2) can be obtained through the usual
Riemann solver for a single-component flow and F(1−2) should be calculated with a Rie-
mann solver for a fluid interface. In short, the interaction between different fluid com-
ponents is taken into account through the Riemann problem for a fluid interface and the
HEM assumption in the projection procedure of the finite volume scheme. Thus the key
of GKS-MMF is to solve these two types of Riemann problem at a cell interface.
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Figure 2: Riemann problem for single-component flow (a) and for flow interface (b) from piecewise linear initial
distribution. The subscript ‘0’ indicates the flow at initial time t=0.

Different from traditional scheme based on the macroscopic Euler equations, GKS
solves [33] the Riemann problems through the distribution function f (s) for each compo-
nent s, which is a function of space x = (x,y)T, time t, particle velocity u= (u,v)T, and

internal variable ξ(s). As shown in Fig. 2, f
(s)
0 is the initial distribution function coming

from the reconstructed macroscopic conservative variables. In the Riemann problem for
a two-component interface, the component index on both sides can be determined,

sl =1+H[∆α0], sr =3−sl , (2.7)

in which H[x] is the Heaviside function.

2.1 Gas-kinetic Riemann solver for single-component stiffened gas flow

For a 2D single-component flow, the governing equation of distribution function f (s) is
the BGK equation,

∂ f (s)

∂t
+u·

∂ f (s)

∂x
=

g(s)− f (s)

τ(s)
, (2.8)

where g(s) is the equilibrium state approached by f (s). It is a Maxwellian distribution,

g(s)=ρ(s)
(

λ(s)/π
)(K(s)+2)/2

e−λ(s)(|u−U(s)|2+ξ(s)2),

where λ(s) is equal to 1/(2R(s)T(s)), R(s) is the gas constant, and T(s) is the temperature.
τ(s) is the particle collision time. For a 2D flow, the total number of degrees of freedom
K(s) in ξ(s) is equal to (5−3γ(s))/(γ(s)−1)+1, where the particle motion in the z-direction
is also included. The macroscopic conservative variables Q(s) and their fluxes along the
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xm direction, F
(s)
m , can be determined by taking moments of the distribution function f (s)

Q(s)=
∫

ψ(s) f (s)dΞ(s)+(0, 0, 0, 0, p
(s)
c )T, (2.9)

F
(s)
m =

∫

umψ(s) f (s)dΞ(s)+(0, 0, −p
(s)
c , 0, 0)T , m=1,2, (2.10)

where ψ(s) is the vector of moments

ψ(1)=
(

1,0,u,(|u|2+ξ(1)2)/2
)T

, ψ(2)=
(

0,1,u,(|u|2+ξ(2)2)/2
)T

.

and dΞ(s)=dudξ(s) is the volume element in the phase space. The second term on the
right side of Eqs. (2.9) and (2.10) comes from the pressure constant in the stiffened gas
model which only affects the total energy and the normal momentum flux when com-
pared with the ideal gas. In addition, one more component with zero value is employed
in the moment vectors for concise writing, similar to the macroscopic conservative vari-
ables and fluxes.

BGK equation (2.8) has an integral solution,

f (s)(x,t,u,ξ(s))=
1

τ(s)

∫ t

0
g(s)(x′,t′,u,ξ(s))e−(t−t′)/τ(s)

dt′+e−t/τ(s)
f
(s)
0 (x−ut,u,ξ(s)). (2.11)

Here x′= x−u(t−t′) is the trajectory of a particle motion and f
(s)
0 (x,u,ξ(s)) is the initial

gas distribution function at the beginning of each time step (t= tn=0). The local constant
collision time can be calculated based on the local viscosity and pressure, τ(s)=µ(s)/p(s).

Once f
(s)
0 and g(s) are known, the time-dependent distribution function can be obtained

explicitly. For simplicity, the directional splitting method is adopted and the x direction

of the local coordinates is taken as an example in the following. f
(s)
0 can be constructed

based on the first-order Chapman-Enskog expansion to approach the N-S equations and
then the first-order Taylor expansion to achieve the second-order accuracy in space,

f
(s)
0 (x,u,ξ(s))= f

(s)l
0 (1−H[x])+ f

(s)r
0 H[x]

=(1+a(s)l x−τ(s)(a(s)lu+A(s)l))(1−H[x])g(s)l

+(1+a(s)rx−τ(s)(a(s)ru+A(s)r))H[x]g(s)r, (2.12)

where H[x] is used to account for the initial discontinuity. The equilibrium state g(s) is
also constructed through the first-order Taylor expansion for the second-order accuracy,

g(s)(x,t,u,ξ(s))=(1+(1−H[x])a(s)lx+H[x]a(s)rx+A
(s)

t)g
(s)
0 . (2.13)

The terms a(s)l,a(s)r,a(s)l,a(s)r,A(s)l,A(s)r and A
(s)

take the similar form, a(s)l = a
(s)l
χ ψ

(s)
χ ,

χ=1−5, where all coefficients, a
(s)l
χ ,··· ,A

(s)
χ , are local constants and determined uniquely

from the spatial and temporal slopes of the reconstructed conservative variables Q(s).
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Thus the time evolution of the distribution function at the cell interface x= 0 can be
obtained through Eq. (2.11),

f (s)(0,t,u,ξ(s))=(1−C0)g
(s)
0 +(t−τ+C1)A

(s)
g
(s)
0

+(−τ(s)+C1+C2)(a
(s)luH[u]+a(s)ru(1−H[u]))g

(s)
0

+(C0−(C1+C2)a
(s)lu−C1A(s)l)H[u]g(s)l

+(C0−(C1+C2)a
(s)ru−C1A(s)r)(1−H[u])g(s)r, (2.14)

where C0= e−t/τ(s)
, C1= τ(s)C0 and C2= tC0. It is a combination of Maxwellian distribu-

tions, thus the computational cost is comparable to traditional scheme based on macro-
scopic equations. Then the fluxes across the cell interface F(1−1) and F(2−2) in Eq. (2.6)
can be calculated with Eq. (2.10). Details of the scheme can be found in references [14,33].

2.2 Gas-kinetic Riemann solver for stiffened gas interface

A kinetic model was proposed for the Riemann problem with flow interface shown in
Fig. 2(b) in the previous study [25]. It can eliminate the flow mixing at the interface which
is different from the Riemann solver for single-component flows in which fluid particles
can transport across the initial discontinuities. The incident fluid particles on both sides
bounce back from the interface. Then the mean velocity Uint of the interface within a time
step can be determined by the constraint for normal stress (pressure) balance between
both sides. Once Uint is obtained, the density and other variables such as the fluxes can
be obtained simultaneously.

The flow for each component is continuous, thus the distribution function of the inci-
dent particles near the left side of the interface f l

inc can be constructed through a similar
procedure to Eq. (2.14),

f
(sl)
inc (t,u,v,ξ(sl))=(1−τ(sl)(a(sl)u+A(sl))+tA(sl))g

(sl)
0 . (2.15)

The initial equilibrium state g
(sl)
0 , the constants a(sl) and A(sl) are determined by the re-

constructed initial macroscopic variables Q
(sl)
0 and their spatial slopes ∂Q

(sl)
0 /∂x, respec-

tively.

For simplicity the distribution function of the reflecting particles is obtained through
the specific reflecting model,

f
(sl)
ref (t,u,v,ξ(sl))= f

(sl)
inc (t,2Uint−u,v,ξ(sl)). (2.16)

Thus the final gas distribution function on the left side of the interface can be written as

f (sl)(t,u,v,ξ(sl))= f
(sl)
inc (t,u,v,ξ(sl))|u>Uint

+ f
(sl)
ref (t,u,v,ξ(sl))|u<Uint

. (2.17)
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The averaged normal stress within a time step ∆t on the left side of the interface is
then computed through the integration of the above distribution function, which can be
simplified according to the symmetry about u=Uint,

P
l
11=

2

∆t

∫ ∆t

0

∫

u>Uint

(u−Uint)
2 f

(sl)
inc (t,u,v,ξ(sl))dΞ(sl)dt −p

(sl)
c . (2.18)

Similarly, the normal stress on the right side of the interface can be computed,

P
r
11=

2

∆t

∫ ∆t

0

∫

u<Uint

(u−Uint)
2 f

(sr)
inc (t,u,v,ξ(sr))dΞ(sr)dt −p

(sr)
c . (2.19)

Now the only unknown is the interface velocity Uint which can be determined uniquely
by the constraint of force balance,

P
l
11[Uint]−P

r
11[Uint]=0. (2.20)

An iteration method such as the bisection method is required to solve the above nonlinear
algebraic equation.

After Uint is determined, the last fluxes in Eq. (2.6) can be computed,

F(1−2)=(1−H[ζ])
∫

uψ(sl) f (sl)dΞ(sl)+H[ζ]
∫

uψ(sr) f (sr)dΞ(sr)

+(0, 0, −(1−H[ζ])p
(sl )
c −H[ζ]p

(sr)
c , 0, 0)T. (2.21)

Here the variable ζ =∆α0Uint is used to indicate which component is moving across the
cell interface. To reduce the computational cost, when ∆α0 < 5ǫ the Riemann solver is
replaced by a simple upwind scheme to calculate the fluxes F(1−2). Here the small value
ǫ=10−5∼10−7 is simply chosen in the mixture model to represent the void fraction of one
fluid inside the other ‘pure’ component in the initial flow fields. Numerical experiments
show that the simulated results are not sensitive to ǫ when it is less than about 10−4.

It should be mentioned that it is simple to implement the present GKS-MMF because
the subroutines of GKS for a single-component flow [14] can be directly adopted in the
code for the above-mentioned two Riemann solvers. For the stiffened gas, only an addi-
tional modification of the normal stress is required, that is, to minus the pressure constant
pc [19]. Additionally, the updated and stored quantities are the conservative variables Q,
thus the volume fraction α(s) should be computed from the components of Q by solving
a quadratic equation. Then other variables such as pressure p and temperature T can be
determined. Details can be found in the previous study [25].

3 Acceleration of the iteration with an improved Aitken method

In the previous study, a simple bisection method is adopted to calculate the interface
velocity Uint. Considering the computational cost to calculate the normal stress through
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Eq. (2.20), it is worth adopting a better iteration method to reduce the number of iteration.
The Steffensen method is tried which has much better convergence rate than the bisection
method and is free of additional slope computations for the equation to be solved when
compared with the Newton method.

To use the Steffensen method, Eq. (2.20) is rewritten as

Uint=F [Uint],Uint+
P

l
11[Uint]−P

r
11[Uint]

M
, (3.1)

where the variable M=ρlcl+ρrcr is determined by the density and sound speed on both
sides. The Steffensen iteration function is

U∗
int=F [U

(k)
int ], U∗∗

int=F [U∗
int],

U
(k+1)
int =U

(k)
int −

(

U∗
int−U

(k)
int

)2

U∗∗
int−2U∗

int+U
(k)
int

, k=0,1,2,··· . (3.2)

The convergence criteria is

min
(

|U∗
int−Uk

int|, |U
∗∗
int−U∗

int|, |U
(k+1)
int −U

(k)
int |

)

< ε̂/M, (3.3)

where ε̂ is a small value. Unless otherwise specified ε̂= 10−8min(pl ,pr) is chosen in the
present study. The initial value for the iteration is chosen as

U
(0)
int =(ρlUl+ρrUr)/(ρl+ρr). (3.4)

In the Steffensen method, there are two calls to the function F in each iteration. To
reduce the number of calls, a modified Aitken method, called Aitken-Chen method is
also tried [34],

U
(k+1)
int =U

(k)
int −

(

U
(k)
int −U

(k−1)
int

)(

F [U
(k)
int ]−U

(k)
int

)

F [U
(k)
int ]−F [U

(k−1)
int ]+U

(k−1)
int −U

(k)
int

, k=0,1,2,··· . (3.5)

In this method the values at the previous step U
(k−1)
int and F [U

(k−1)
int ] are used in the slope

approximation of the Aitken method, thus only one call to the function is required for
each iteration. The convergence criteria is

min
(

|F [U
(k)
int ]−Uk

int|, |U
(k+1)
int −U

(k)
int |

)

< ε̂/M. (3.6)

This method works well in the present GKS-MMF, except that for some interface cells,
it can hardly converge. Thus a hybrid method is adopted. The Aitken-Chen method
is implemented at first. If it does not converge after 4 iterations, then the Steffensen
method is tried, starting with the initial value from the Aitken-Chen method. It is labeled
as improved Aitken method here. Numerical tests show a successful reduction of both
average and maximum numbers of calls to the function F .
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4 Hyperbolic tangent reconstruction for volume fraction

The second improvement is the adoption of the idea of THINC [30,31] to sharpen the fluid
interface. In the present gas-kinetic scheme for compressible flows, it is only used for the
reconstruction of the volume fraction, similar to the treatment of Nonomura et al. [32]. It
works well for non-mixing flows. However, for mixture flows or near the thick interface
due to numerical mixing, oscillation can be observed. Thus the upper and lower bounds
are determined by the local neighboring cells [31], rather than two limiting values ‘0’ and
‘1’. For simplicity the 1D reconstruction is implemented under the directional splitting
framework.

To reconstruct the volume fraction in a computational cell i, the first step is to identify
whether it is inside a fluid interface, based on the cell averaged volume fraction αi. The
assessment criterion is

ε<αi <1−ε, (αi+1−αi)(αi−αi−1)>0, (4.1)

where ε is a small positive parameter.
If αi satisfies the above criterion, then the hyperbolic tangent reconstruction is imple-

mented,

α(x)=αmin+
∆α

2

(

1+σi tanh

[

β

(

x−xi−1/2

∆xi
− x̃i

)])

,

σi =sign[αi+1−αi−1], x∈ [xi−1/2, xi+1/2], ∆xi = xi+1/2−xi−1/2. (4.2)

Here β is a constant to control the thickness of the volume fraction jump ∆α=αmax−αmin

and set as β=2.3 in the present study. The bounds of the jump are determined from the
neighboring cells,

αmin =min[αr
i−3/2, αl

i+3/2], αmax=max[αr
i−3/2, αl

i+3/2], (4.3)

where αr
i−3/2 is the volume fractions at the left boundary of cell i−1 and αl

i+3/2 the right
boundary of cell i+1. They are computed through a usual reconstruction, such as us-
ing the van Leer limiter. Thus the only unknown is the center location x̃i which can be
determined by the conservation of volume fraction,

1

∆xi

∫ xi+1/2

xi−1/2

α(x)dx=αi. (4.4)

It gives the value

x̃i= ln[(D1D2−1)/(1−D1/D2)]/(2β), D1=e(1−2αi)β/σi , D2=eβ. (4.5)

Thus the volume fraction at the cell interface can be obtained using Eq. (4.2),

αr
i−1/2=αmin+(∆α/2)(1+σi tanh[−βx̃i]),

αl
i+1/2=αmin+(∆α/2)(1+σi tanh[β(1− x̃i)]). (4.6)
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This hyperbolic tangent reconstruction for volume fraction labeled as ‘TH0’ can dra-
matically reduce the thickness of fluid interface. However a very small early variation
may be observed near the upstream of a fluid interface. An improvement is adopted
through a simple hybrid method,

αi+1/2=ωαTH0
j+1/2+(1−ω)αN

j+1/2, (4.7)

where αTH0
i+1/2 is computed through the above-mentioned hyperbolic tangent reconstruc-

tion and αN
i+1/2 from the usual reconstruction such as with the van Leer limiter. The

weighting factor ω is chosen as

ω=

{

(1+tanh[(αi−(αmin+εc))/∆ε])/2, αi < (αmin+αmax)/2,

(1−tanh[(αi−(αmax−εc))/∆ε])/2, else,

∆ε= ε2−ε1, εc=(ε1+ε2)/2. (4.8)

The hybrid bounds are simply set as ε1=2ε, ε2=8ε where the small value ε is the same as
in Eq. (4.1). Numerical tests show that the results are not sensitive to the value of ε1, ε2,
and even ε. This hybrid reconstruction is labeled as ‘TH’.

The above-mentioned interface sharpening method is simple and effective. Noting
that it only requires the manipulation of volume fraction, this is equivalent to modify
the portion of numerical fluxes from different interaction in Eq. (2.6) under the stratified
framework. Thus the advantages of original GKS-MMF can be well preserved, such as
the conservation, no non-physical oscillations near fluid interface, and robustness in the
multimaterial flow with strong shock waves or large density ratio.

5 Numerical tests

Several typical gas-water flows are simulated to validate the present improved GKS-
MMF, including the 1D shock tube problems with different initial pressure and volume
fraction jumps, and the shock-water cylinder interaction. Unless otherwise stated, in
these numerical examples all variables are presented using SI units. The constants for air
are

(γg,Rg,pc)=(1.4,288,0) (5.1)

and
(γw,Cpw,pc)=(1.9276,8076.6,1.1373×109 ) (5.2)

for water. For simplicity the volume fraction of fluid 1, α(1) is written as α. For shock
tube problems, the computational domain is [0,10] divided by N=200 uniform cells. The
initial discontinuity is located at x=5. The small values ǫ=10−5 and ε=2ǫ are chosen in
all tests. The CFL number is set to 0.6. These cases are inviscid and the collision time is
calculated by

τ=Cτ1∆t+Cτ2∆t|pl−pr |/(pl+pr), (5.3)
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where pl ,pr are the reconstructed pressure at two sides of a cell interface. The values
of constants Cτ1,Cτ2 can be set between 0 and 1. In the present work, Cτ1 = 0.1 and
Cτ2=0.2 are chosen and the computation is not sensitive to them. For 2D cases, the code
is parallelized with MPI (message passing interface) [35].

5.1 Moving contact discontinuity problem

The first shock tube flow is considered to validate the capability to capture a pure fluid
interface. The initial field is set as [29]

(α,U,p,T)l =(1−ǫ,100,105 ,300), (α,U,p,T)r =(ǫ,100,105,300).

The corresponding analytical solution is a moving contact discontinuity with constant
velocity and the pressure is uniform throughout the flow field. Fig. 3 shows the results
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Figure 3: Profiles of air volume fraction and the enlarged view (a, b), density (c) and pressure (d) for air-water
moving contact discontinuity problem.
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at time t= 0.03 computed by the present GKS-MMF with different reconstruction of the
volume fraction. The contact discontinuity is well predicted and no oscillation can be
observed. The relative variation across the interface is at the magnitude of 10−8 for pres-
sure and 10−10 for velocity, respectively. In addition, the positivity of volume fraction is
preserved during the simulation.

With the help of THINC technique labeled by ‘TH’ and ‘TH0’, the predicted fluid in-
terface is much sharper, with only three cells inside the interface, while about nine cells
is required when using the van Leer limiter [25]. Thus the resolution of fluid interface
is dramatically enhanced. Furthermore, in the volume fraction predicted by the original
THINC reconstruction (TH0) a very small early variation can be observed near the up-
stream of fluid interface, as shown in Fig. 3(b). Through the hybrid of THINC and the
van Leer limiter, this flaw is effectively remedied.

5.2 Air-to-water shock tube problem

This flow contains a strong initial discontinuity with large pressure ratio of 104 where the
gas pressure is higher than that in water [29]:

(α,U,p,T)l =(1−ǫ,0,109,300), (α,U,p,T)r =(ǫ,0,105,300).

As shown in Fig. 4, the fluid interface, the very strong shock in water and the rar-
efaction wave in air are well captured, which is in good agreement with the analytical
solution and numerical study using the stratified model and AUSM+-up scheme [29].
Again, no non-physical oscillation can be found not only near the fluid interface, but
also around the strong shock waves. When compared with the previous study [25], the
present predicted fluid interface is obviously sharper, which can be clearly observed in
the volume fraction and density fields. The THINC reconstruction works well in this
challenging flow with large density ratio and pressure ratio across the initial discontinu-
ity. It is interesting that the temperature across the interface seems not to change much,
when compared with the result predicted without THINC. Further investigation is re-
quired.

5.3 Water-air mixture shock tube problem

To the present GKS-MMF based on mixture model, the performance in mixture flow is
of great important. In fact, the fluid interface is also like a mixture, as it is usually across
several computational cells. Thus the shock tube problem in water-gas mixture [36] is
simulated. The constants for water are set as (γw,Cpw,pc)=(2.8,4186,8.5×108) for better
comparison with previous studies [19, 25]. The initial flow field is given by

(α,U,p,T)l =(0.25,0,2×107,308.15), (α,U,p,T)r =(0.1,0,107,308.15).

Fig. 5 shows the predicted expansion wave, shock wave and the contact discontinuity,
which are in good agreement with the previous studies using a mixing gas-kinetic model
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Figure 4: Profiles of air volume fraction (a), density (b), pressure (c), velocity (d) and temperature (e) for

air-water shock tube problem at time t=2.4×10−3.
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Figure 5: Profiles of air volume fraction (a), density (b), pressure (c), velocity (d) and temperature (e) for
shock tube problem in water-air mixture at time t=6×10−3.
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at fluid interfaces [19] and adopting the non-mixing kinetic model but without THINC
technique [25]. Again, THINC sharpens the fluid interface effectively, while numerical
oscillation can hardly be observed.

It should be noted that GKS-MMF handles the fluid mixing to the equilibrium state
only through the projection procedure with different fluxes from cell boundary, which is
not included in the flux evaluation. Thus the numerical diffusion seems a bit larger near
the rarefaction wave and the shock wave when compared with the results by the mixing
kinetic model at fluid interfaces. Of course, here the inviscid assumption is considered.
In order to capture the physical mixing, the viscous effect can not be neglected. Then a
numerical method for viscous multimaterial flow is required.

5.4 Shock-water cylinder interaction

A 2D flow is simulated to further validate the present GKS-MMF. A planar shock wave is
traveling with Mach number 3.0 in the stationary air with pressure pis =1.0×105Pa and
density 1.0kg/m3, and then hitting a water cylinder with diameter 3.5mm [29]. The initial
locations for shock wave and cylinder center are x = 8mm and x = 10mm, respectively.
The computational domain is chosen as [0, 40mm]×[0, 20mm], which is discretized by
1440×600 rectangular mesh cells and the minimal cell size is ∆x=∆y=0.01mm in the core
region, [5mm, 15mm]×[0, 4mm]. The streamwise length of the domain is long enough to
allow the free evolution of flow structures, thus flow variables are set as the initial values
on the left and right boundary. The solid wall condition is set on the top boundary and the
symmetrical condition is adopted on the bottom boundary due to the symmetry about
the horizontal center line. In this test case the convergence criterion to obtain the interface
velocity is set as ε̂=max(10−9 pis,10−8min(pl ,pr)) to avoid the difficulty near the strong
expansion region of water where the pressure is extreme low.

Fig. 6 shows the numerical schlieren photo at different times, which is based on the
function (1+(1−α)2)ln(|∇ρ|+1) to accentuate the weak waves inside water cylinder
[29]. The complicated flow structures during the interaction of the moving shock wave
and the water cylinder are well captured, including the formation of bow shock before
the cylinder (see Fig. 6(a), (b)), the transmitting wave into the water and its primary
and secondary reflecting from the rear interface (Fig. 6(c), (d), (e), (f)), along with the
formation and disappearance of a low pressure region. In addition, the shock diffraction
in the air and the development of complex wave structures behind the cylinder can be
clearly observed. These flow characteristics are generally in good agreement with the
existing results [29] and the fluid interface is much more sharp when compared with the
previous study [25] due to the adoption of directional splitting and THINC techniques.

In Fig. 6(e), (f) small rumples can be observed at the front edge of the water cylin-
der. They can not be found in the previous results at the same times [25] which shows
the good accuracy and resolution of the present improved numerical scheme. As time
increases, these rumpled structures grow gradually and even detach from the cylinder,
as shown in Fig. 7 at a late stage t = 24µs. Although the viscosity and interfacial ten-
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(c) (d)

(e) (f)

Figure 6: Instantaneous pressure (upper half) and numerical schlieren photo (lower part) at times 1µs (a), 2µs
(b), 3µs (c), 4µs (d), 6µs (e) and 8µs (f) for shock-water cylinder interaction.



162 Q. B. Li / Commun. Comput. Phys., 27 (2020), pp. 145-166

(a) (b)

(c)

Figure 7: Instantaneous normalized temperature (upper half) and numerical schlieren photo (lower part) at
time 24µs for shock-water cylinder interaction predicted with (a) 720×300 cells, (b) 1440×600 cells and (c)
2880×1200 cells.

sion are not taken into account, the present predicted deformation of the water cylinder
and the corresponding flow structures including the front bow shock wave, very com-
plicated waves and vortices in the wake region qualitatively agree with other numerical
and experimental studies [2, 29, 37].

To check the grid effect, two additional computational grids are tried, with 720×300
cells for the coarse one and 2880×1200 the fine. Very similar large-scale flow structures
are predicted by different grid systems. For small-scale structures it is not surprising that
there exists difference such as in the rumples and wake vortices, as the present computa-
tion is for inviscid flow. With the fine grid the flattening of water cylinder, the rumpling
of fluid interface, the detaching of some water and the entrainment into the air can be
clearly captured which are the typical characteristics in the early stage of a cylindrical
water drop breakup. As shown in Fig. 8 the predicted shape parameters of the water
cylinder by different grid system also show good agreement. Again, due to the rumpling
and entrainment near the side edge, more deviation can be observed in these positions.

At last the performance of different iteration method to determine the interface ve-
locity is evaluated in this complicated flow. The initial lower and upper limits for the
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Figure 8: Space-time diagrams of feature points for the shock-water cylinder interaction: UE – upstream edge,
DE – downstream edge, SE – side edge of the water cylinder. Dash-dot line represents the results for 720×300
cells, solid line for 1440×600 and long dash line for 2880×1200.

bisection method are given by U
(0)
int ±0.1max(Ul

s,U
r
s) where Us is the sound speed. The

number of calls to the function F in Eq. (3.1) for each method is recorded after a seep of
flux computation in the i direction based on the flow filed at time t= 24µs. The results
are shown in Table 1. When compared with the bisection method, great reduction (nearly
in order of magnitude) can be observed by the Steffensen method not only for the aver-
age number to compute the force difference, but also for the maximum. The Aitken-Chen
method can further reduce the average value but the maximum at some special interfaces
looks very large, which means the convergence is not satisfactory and is not good for par-
allel computing. With the hybrid of these two methods in the present improved Aitken
method, the average number shows some decrease and more importantly the maximum
is successfully suppressed. Thus the efficiency of GKS-MMF is significantly increased.

Table 1: Numbers of calls to force difference function for different methods to obtain the interface velocity.

Bisection Steffensen Aitken-Chen Improved Aitken

Maximum 43 6 721 7

Average 36.3 4.7 4.2 4.1

6 Conclusions

The recently developed GKS-MMF is improved in two ways. This scheme is based on
a non-mixing kinetic Riemann solver for stiffened gases, as well as the HEM model in a
cell and the stratified idea to calculate the fluxes at cell interface. An improved Aitken
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method is proposed to obtain the interface velocity in the kinetic Riemann solver, which
is a hybrid of the modified Aitken method (Aitken-Chen) and the Steffensen method to
reduce the calls to the function. Numerical tests validate the improvement of the present
iteration method with significantly less calls to the function not only for the average num-
ber but also for the maximum, when compared with existing bisection and Aitken-Chen
methods. Considering the computational cost for the force balance function to determine
the interface velocity, the reduction of calls is important to the efficiency of the kinetic
solver.

The second improvement is the adoption of the THINC reconstruction for the vol-
ume fraction and its further hybrid with the van Leer limiter. Compared with existing
THINC methods, the present method is very simple under the stratified framework to
compute numerical fluxes at a cell interface. It is also capable of resolving fluid inter-
face in mixture. Furthermore, the directional splitting method is used rather than the
previous quasi-one-dimensional method in 2D flows. Typical numerical tests, including
several water-gas shock tube flows, and the 2D shock-water cylinder interaction flow
show that the improved GKS-MMF can capture fluid interfaces much sharper. Mean-
while, the advantages of the original scheme are preserved, including the conservation,
robustness and no numerical oscillation at fluid interfaces in the flow with large density
ratio and strong shock waves.

The present study shows the strong robustness, high accuracy and efficiency of GKS-
MMF. To further enhance the scheme, more investigations can be considered, including
the combination of moving mesh or adaptive mesh techniques. The expansion to three-
dimensional or axisymmetric flows is also under consideration.

Acknowledgments

This work is supported by Science Challenge Project (TZ2016001), National Natural Sci-
ence Foundation of China (U1430235) and Special Program for Applied Research on Su-
per Computation of the NSFC-Guangdong Joint Fund (the second phase). The author
would like to thank the technical support of PARATERA and the “Explorer 100” cluster
system of Tsinghua National Laboratory for Information Science and Technology.

References

[1] R. Abgrall, S. Karni, Computations of compressible multifluids, J. Comput. Phys. 169 (2001)
594–623.

[2] C.-H. Chang, X. Deng, T. G. Theofanous, Direct numerical simulation of interfacial insta-
bilities: A consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys. 242
(2013) 946–990.

[3] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of
the equations of hydrodynamics, Math. Sbornik 47 (3) (1959) 271–306.



Q. B. Li / Commun. Comput. Phys., 27 (2020), pp. 145-166 165

[4] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics : A Practical Intro-
duction, 3rd Edition, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2009.

[5] S. K. Godunov, A. V. Zabrodin, M. I. Ivanov, A. N. Kraiko, G. P. Prokopov, Numerical solu-
tion of multidimensional gas dynamics problems, Izdatel’stvo Nauka, Moscow, 1976.

[6] G. Chen, H. Tang, P. Zhang, Second-order accurate Godunov scheme for multicomponent
flows on moving triangular meshes, J. Sci. Comput. 34 (1) (2008) 64–86.

[7] M. W. Crochet, K. A. Gonthier, A Riemann problem solution methodology for a class of
evolutionary mixture equations with an arbitrary number of components, Appl. Numer.
Math. 76 (2014) 145–165.

[8] K. Xu, A kinetic method for hyperbolic-elliptic equations and its application in two-phase
flow, J. Comput. Phys. 166 (2) (2001) 383–399.

[9] C. Liu, K. Xu, A unified gas-kinetic scheme for continuum and rarefied flows v: Multiscale
and multi-component plasma transport, Commun. Comput. Phys. 22 (2017) 1175–1223.

[10] S. M. Hou, Z. H. Li, X. Y. Jiang, S. Zeng, Numerical study on two-dimensional micro-channel
flows using the gas-kinetic unified algorithm, Commun. Comput. Phys. 23 (2018) 1393–1414.

[11] D. Pan, C. Zhong, C. Zhuo, An implicit discrete unified gas-kinetic scheme for simulations
of steady flow in all flow regimes, Commun. Comput. Phys. 25 (2019) 1469–1495.

[12] Y. S. Lian, K. Xu, A gas-kinetic scheme for reactive flows, Comput. Fluids 29 (7) (2000) 725–
748.

[13] S. Jiang, G. X. Ni, A gamma-model BGK scheme for compressible multifluids, Int. J. Numer.
Methods Fluids 46 (2) (2004) 163–182.

[14] Q. B. Li, S. Fu, K. Xu, A compressible Navier-Stokes flow solver with scalar transport, J.
Comput. Phys. 204 (2) (2005) 692–714.

[15] K. Xu, BGK-based scheme for multicomponent flow calculations, J. Comput. Phys. 134 (1)
(1997) 122–133.

[16] A. D. Kotelnikov, D. C. Montgomery, A kinetic method for computing inhomogeneous fluid
behavior, J. Comput. Phys. 134 (2) (1997) 364–388.

[17] Y. S. Lian, K. Xu, A gas-kinetic scheme for multimaterial flows and its application in chemical
reactions, J. Comput. Phys. 163 (2) (2000) 349–375.

[18] L. Pan, J. X. Cheng, S. H. Wang, K. Xu, A two-stage fourth-order gas-kinetic scheme for
compressible multicomponent flows, Commun. Comput. Phys. 23 (2017) 1123–1149.

[19] Q. B. Li, S. Fu, A gas-kinetic BGK scheme for gas-water flow, Comput. Math. Appl. 61 (12)
(2011) 3639–3652.

[20] L. Pan, G. P. Zhao, S. H. Wang, A gas-kinetic scheme for the modified Baer-Nunziato model
of compressible two-phase flow, Int. J. Numer. Methods Fluids 72 (3) (2013) 320–340.

[21] H.-Z. Tang, H.-M. Wu, Gas-kinetic flux-vector splitting methods for multifluid flow calcula-
tion, Comput. Fluid Dyn. J. 41 (5) (2001) 723–734.

[22] Y. Chen, S. Jiang, A non-oscillatory kinetic scheme for multi-component flows with the equa-
tion of state for a stiffend gas, J. Comput. Math. 29 (6) (2011) 661–683.

[23] S. Qamar, M. Ahmed, A high order kinetic flux-vector splitting method for the reduced five-
equation model of compressible two-fluid flows, J. Comput. Phys. 228 (2009) 9059–9078.

[24] S. Zia, M. Ahmed, S. Qamar, A gas-kinetic scheme for six-equation two-phase flow model,
Applied Mathematics 5 (03) (2014) 453–466.

[25] Q. B. Li, A gas-kinetic Riemann solver for stiffened gas interface and its application in mul-
timaterial flows, Commun. Comput. Phys. 25 (2) (2019) 416–447.

[26] R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and mul-
tiphase flows, J. Comput. Phys. 150 (1999) 425–467.



166 Q. B. Li / Commun. Comput. Phys., 27 (2020), pp. 145-166

[27] R. Abgrall, R. Saurel, Discrete equations for physical and numerical compressible multi-
phase mixtures, J. Comput. Phys. 186 (2) (2003) 361–396.

[28] H. B. Stewart, B. Wendroff, Two-phase flow: models and methods, J. Comput. Phys. 56
(1984) 363–409.

[29] C.-H. Chang, M.-S. Liou, A robust and accurate approach to computing compressible mul-
tiphase flow: Stratified flow model and AUSM+-up scheme, J. Comput. Phys. 225 (1) (2007)
840–873.

[30] F. Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme using hyperbolic
tangent function, Int. J. Numer. Methods Fluids 48 (9) (2005) 1023–1040.

[31] K.-M. Shyue, F. Xiao, An Eulerian interface sharpening algorithm for compressible two-
phase flow: The algebraic THINC approach, J. Comput. Phys. 268 (2014) 326–354.

[32] T. Nonomura, K. Kitamura, K. Fujii, A simple interface sharpening technique with a hyper-
bolic tangent function applied to compressible two-fluid modeling, J. Comput. Phys. 258
(2014) 95–117.

[33] K. Xu, A gas-kinetic BGK scheme for the Navier-Stokes equations, and its connection with
artificial dissipation and Godunov method, J. Comput. Phys. 171 (2001) 289–335.

[34] S.-X. Chen, S.-N. Wang, New linear iterative algorithm and its application in seeking solu-
tion of criterion equations of structural optimization, J. Eng. Design 12 (2005) 270–272.

[35] W. D. Gropp, W. Gropp, E. Lusk, A. Skjellum, A. D. F. E. E. Lusk, Using MPI: Portable
Parallel Programming with the Message-Passing Interface, Vol. 1, MIT press, 1999.

[36] Y.-Y. Niu, Y.-C. Lin, C.-H. Chang, A further work on multi-phase two-fluid approach for
compressible multi-phase flows, Int. J. Numer. Methods Fluids 58 (8) (2008) 879–896.

[37] T. Theofanous, Aerobreakup of Newtonian and viscoelastic liquids, Annu. Rev. Fluid Mech.
43 (2011) 661–690.


