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Abstract. The interaction force between likely charged particles/surfaces is usually
repulsive due to the Coulomb interaction. However, the counterintuitive like-charge
attraction in electrolytes has been frequently observed in experiments, which has been
theoretically debated for a long time. It is widely known that the mean field Poisson-
Boltzmann theory cannot explain and predict this anomalous feature since it ignores
many-body properties. In this paper, we develop efficient algorithm and perform the
force calculation between two interfaces using a set of self-consistent equations which
properly takes into account the electrostatic correlation and the dielectric-boundary ef-
fects. By solving the equations and calculating the pressure with the Debye-charging
process, we show that the self-consistent equations could be used to study the attrac-
tion between like-charge surfaces from weak-coupling to mediate-coupling regimes,
and that the attraction is due to the electrostatics-driven entropic force which is signif-
icantly enhanced by the dielectric depletion of mobile ions. A systematic investigation
shows that the interaction forces can be tuned by material permittivity, ionic size and
valence, and salt concentration, and that the like-charge attraction exists only for spe-
cific regime of these parameters.

PACS: 82.45.Un, 64.70.pv, 82.60.Lf

Key words: Like-charge attraction, self-consistent field model, dielectric-boundary effect, corre-
lation energy, Green’s function.

1 Introduction

The anomalous attraction between likely charged particles has been widely discussed
during the past decades [21] since the experimental observation in colloidal [19] and
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biological systems [1, 25]. The like-charge attraction (LCA) at strong-coupling regime
(high surface charge, multivalent counterions or low temperature) has been reported by
particle-based simulations and theoretical studies such as density functional theory and
strong-coupling theory [18, 32, 38, 39, 43–46]. Colloidal suspensions in monovalent elec-
trolytes are usually considered as systems in weak-coupling regime at which the mean-
field Poisson-Boltzmann (PB) theory is generally useful. The forces between charged
surfaces are usually modelled through the Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory, which combines the linearized PB equation with the Van der Waals interaction.
However, the PB theory always predicts repulsive interaction between like charges [48,
56], and the DLVO theory overestimates the repulsion or underestimates the attraction
[28], in contrast to the results of LCA experiments for colloids [34, 35], which demon-
strates many-body effects are still significantly important at weak-coupling conditions
and can not be ignored in order to understand the LCA phenomenon systematically.

For two colloidal particles with a small separation, the depletion force induced by the
entropic repulsion of smaller mobile ions in the solvent could result in an effective inter-
colloid attraction. The excluded volumes of small particles lead to a depletion layer.
When the separation between surfaces is at the range of the particle diameter, they are
attractive due to this depletion interaction [2, 55]. In electrolytes, the attractive distance
can be much larger, comparable with the Debye screening length due to the long-range
nature of electrostatic interaction [15]. In this sense, the attractive Van der Waals and
the Casimir force [14, 31, 54] can be ignored in the LCA analysis. In the presence of in-
homogeneous dielectric permittivity (whose properties have attracted wide recent inter-
est [5,16,17,20,30,59,63]), ions are repelled from the low dielectric surfaces by their image
charges, which has been shown in particle-based simulations [11, 24]. When the separa-
tion of surfaces becomes narrower, the repulsion becomes stronger, resulting in lower
ionic concentration between the surfaces, and thus leading to an entropic driven attrac-
tion. The electrical field can also influence the solvent alignment and dielectric property,
which is considered to be important for high ionic concentration or at the strong coupling
region. This solvent polarization effect could be modelled through the Langevin theory
to yield a field-dependent dielectric coefficient [4,7,8]. Recently, a continuum theory with
a set of self-consistent equations including fluctuation effects of ions is introduced as a
variational approach with general Gaussian ansatz [47,58], which have been generalized
to take into account the image charge effects on attractive forces between neutral plates
and in weak coupling region [57]. In the theory, the self energy of mobile ions is used as a
correction to the mean potential in the PB theory, leading to a more accurate approxima-
tion of the potential of mean force (PMF) in the Boltzmann distribution, which consists
of contributions from both the local ionic correlation and the ion-interface interaction en-
ergy. Although the LCA phenomenon has been predicted, it is less understood what is
the effects of salt property as well as the charged surface.

In this paper, we study the interaction between plates in electrolytes by the self-
consistent field model developed in [41, 60] which includes a modified treatment of the
self energy. Through the modification, we include the ionic size effect to avoid the ion
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collapse in the original theory and are able to study systems from weak-coupling to
mediate-coupling regimes and with an inhomogeneous dielectric coefficient beyond the
point-charge models. We present a systematic analysis for effects of the surface charge
density, the bulk salt density, and salt species on the depletion-induced LCA. It is shown
that for symmetric electrolytes the interaction force between plates is repulsive when the
surface charge density is high or when the salt concentration is low. The force becomes
attractive at the opposite regimes, for which the strength will be stronger when the charge
density is decreased or the salt density is increased.

2 Self-consistent field model

Consider an equilibrium charged system with N species of mobile ions in solution. Given
the PMF of the ith species, wi(r), the ion distribution can be determined by the Boltzmann
distribution,

ci(r)= cb
i e−βwi(r), (2.1)

where cb
i is the bulk concentration, and β = 1/kBT is the inverse thermal energy with

kB the Boltzmann constant and T the absolute temperature. The PMF describes the free
energy change by moving the ion from the bulk region into the current position, which is
often given by particle simulations or advanced theory in statistical physics. If the PMF
is approximated by the mean potential energy wi=zieΦ, with Φ being determined by the
Poisson equation,

−ε0∇·ε∇Φ=
N

∑
i=1

zieci, (2.2)

where ε0 is the vacuum dielectric constant, ε is the relative permittivity of the media, and
zi is the valence, we obtain the PB equation since ci is now an explicit function of Φ.

To properly take into account the dielectric polarization and the correlation effects
of mobile ions, one should study the self energy or the intrinsic chemical potential of
a test ion, which is considered as a correction term to the mean potential to better ap-
proximate the PMF [3, 12, 13, 29, 40, 42, 47, 50, 57, 60]. In our model, we treat an ion as an
ion-inaccessible sphere of radius ai with the point charge zie at the center. This allows
us to deal with variable dielectric media where the ionic Born energy, which strongly
depends on the ion radius, is not constant and thus cannot be discarded. For a homo-
geneous system, the self energy of an ion can be described by the exact solution of the
Debye-Hückel equation [36],

Ui=
z2

i e2

2
ui =

z2
i e2κ

8πε0ε

1

1+κai
, (2.3)

where κ is the inverse Debye length of the electrolyte. In the vicinity of a surface, the
ionic distribution and the dielectric permittivity are space-dependent, and a direct use of
Eq. (2.3) by replacing κ by the space-dependent quantity cannot account for the nonlocal
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property of the electrostatic correlation. We assume that the ion size is small and that the
presence of a test ion does not influence the ionic distribution in the electrolyte except for
the region occupied by the ion due to the finite excluded volume. The self energy of the
ith ion species is then formulated through the generalized Debye-Hückel equation [60],




−ε0∇·ε i∇Gi(r,r′)+2IiGi(r,r′)=δ(r,r′),

ui(r)= lim
r′→r

[Gi(r,r′)−G0(r,r′)],
(2.4)

where the dielectric permittivity and the ionic strength locally depend on the site of the
test ion,

ε i(r,r′)=

{
1, if |r−r′|≤ ai,

ε(r), otherwise,
(2.5)

Ii(r,r′)=

{
0, if |r−r′|≤ ai,

I(r), otherwise,
(2.6)

with

I(r)=
1

2 ∑
i

βz2
i e2ci(r) (2.7)

being the mean ionic strength. The function G0 in Eq. (2.4) is the Green’s function in free
space, satisfying

−ε0∇
2G0=δ(r,r′), (2.8)

which is used to eliminate the singularity in Gi.
When ε and I are constant, the solution ui reduces to the Debye-Hückel theory (2.3).

The equation for Gi, Eq. (2.4), being considered as the generalization of the Debye-Hückel
equation is in the sense that the inverse Debye length depends on the space, κ(r) =√

I(r)/2πε0εW , where εW is relative dielectric constant of water. With the expression
for the self energy, we then obtain a modified PB equation,

−ε0∇·ε∇Φ=
N

∑
i=1

ziec̃b
i exp

[
−β

(
zieΦ+

z2
i e2

2
ui

)]
, (2.9)

where c̃b
i = cb

i exp
(
βz2

i e2ub
i /2
)

and ub
i is the bulk value of ui.

So far, we have described a continuum model for inhomogeneous electrolytes through
a set of self-consistent field (SCF) Eqs. (2.4)-(2.9). This set of equations include the long-
range correlation by the solution of the generalized Debye-Hückel equation. However,
the model may make imprecise prediction for dense electrolytes or strongly-correlated
systems, because the hard-core correlation is neglected. In spite of this, it was reported
that the SCF model can capture correlation phenomena well for electrolyte systems up to
the coupling parameter Ξ∼50 [41], which is certainly in the regime of strong coupling.
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3 Method

3.1 Physical setup

We compute the interaction forces between two charged surfaces in a system schemati-
cally shown in Fig. 1. The two parallel planes are with surface charge densities σ1 and
σ2, respectively. The planes are orthogonal to the x axis, locating at x=±D/2. An elec-
trolyte is in between the two planes, and its relative dielectric permittivity is εW. The
outside space is filled with dielectric media characterized by the relative dielectric con-
stant εB. We assume negative surface charges on two planes, and study electrolytes with
two species of ions (counterions are positive ions). Since mobile ions have finite sizes,
there is a zone, i.e. the Stern layer, of the ion-radius thickness inaccessible by mobile ions
near each charged plane.

-
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-
-
-
-

-
-
-
-
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-
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-
-

εB εB

+

+

+
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Figure 1: A schematic description of electrolytes between two likely charged planes of separation D. Ions are of
finite sizes and are inaccessible to a zone of thickness a+ from the surfaces. If the dielectric constant outside
the electrolyte is much smaller than that of the solvent, a repulsive self energy will be acted on each mobile ion.

Due to the planar geometries, the ionic density is invariant along the y−z plane par-
allel to the surfaces. The modified PB equation (2.9) is one-dimensional, and can be it-
eratively solved by a finite-difference method, giving the self energy. In the calculation,
Neumann boundary conditions ∂Φ

∂x = 0 are applied on two ends of interval [−L,L] with
L>D/2 big enough to remove artifacts from the boundary. The surface charge placed at
±D/2 is approximated by the Kronecker delta with a coefficient inversely proportional
to the mesh size.

3.2 Numerical method

The generalized Debye-Hückel equation (2.4) is high dimensional and hard to solve. In
order to develop an efficient numerical method, we first employ an asymptotic treatment
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[41], which approximately separates the self energy into the sum of two contributions,

ui=uBorn
i +uCoul

i , (3.1)

under the assumptions that the ionic radius ai can be considered as a small parameter and
that the ionic strength is slowly varying. The first term in Eq. (3.1) is the Born solvation
energy [9, 58],

uBorn
i =

1

4πε0ai

(
1

ε
−1

)
. (3.2)

The second term containing the contribution from the long-range Coulomb correlation is
expressed as,

uCoul
i =

u

1+aiκb
, (3.3)

where κb is the inverse Debye length in the bulk. The value of u is determined by the
following equations,




−ε0∇·ε∇G(r,r′)+2IG(r,r′)=δ(r,r′),

u(r)= lim
r′→r

[G(r,r′)−G0(r,r′)].
(3.4)

This formulation (3.3) is similar to the description of the intrinsic chemical potential in
Ref. [53]. The form of −κb/(1+κba) as the correlation energy was also established by
the means of integral equation theory [49]. For homogeneous system I = κ2

bε0εW/2 and
ε(r)= εW, it is easy to see u=−κb/4πε0εW. However, for systems with strong inhomo-
geneity, such as those in our results, u can be largely different from −κb/4πε0ε. For such
systems, we find our asymptotic expression (3.3) works well. In the previous work [41],
another expression uCoul

i ≈ u/(1−4πε0εaiu) was used, which also works if u does not
become positive. In this study, u could become a large positive number near charged sur-
faces, thus this is essential to use expression (3.3) in order to avoid the zero-denominator
instability.

Eq. (3.4) can be derived through the field theoretical approach [47] and has been stud-
ied as the self energy of a point charge. The advantage of Eq. (3.4) compared to Eq. (2.4) is
that it removes the multiple length scales in the model and can be numerically computed
efficiently [61]. Then the equation can be better understood if we write it into the form:
AG= δ where A=−ε0∇·ε∇+2I is an operator which can be viewed as a matrix and δ
can be viewed as the identity matrix. Since we are only interested in the diagonal entries
of G, the selected inversion algorithm [37] could be used and it is very efficient. Consid-
ering the geometric symmetry, we employ the Fourier transform in the y−z coordinates
to the Green’s function equation,

[
−ε0

∂

∂x
ε

∂

∂x
+ε0εω2+2I(x)

]
Ĝ(ω;x,x′)=

1

2π
δ(x−x′). (3.5)
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In domain x ∈ [−L,L], we could discrete the equation by finite-difference method with
periodic boundary conditions, which is in the form of: AnĜ = In, where An is a n×n
symmetric sparse matrix and In is the identity matrix. Then the diagonal part of G can
be solved by the selected inversion method, whose computational cost is at the order of
Cholesky factorization. The divergent part of the self-Green’s function is eliminated by
numerically solving Ĝ0(ω;x,x) by the same scheme, then Ĝ−Ĝ0 is convergent with the
refinement of the mesh size. The self energy is then determined by the inverse Fourier
transform [61].

We should also notice that, as G0∼1/|r−r′ | decays very slowly, we can hardly guar-
antee the precision of G0 without choosing relatively large computational domain. To
avoid this inconvenience, instead of solving −ε0∇2G0=δ(r,r′), we solve −∇2G̃0+k2G̃0=
δ(r,r′)/ε0 where k>0 is a constant and use the fact that limr′→r(G̃0−G0)=−k/4πε0.

Now we have described the method for solving the self energy of ions with given
ionic distributions. With the numerically computed self energy, Eq. (2.9) for the electric
potential is discretized through the finite difference method of second order accuracy.
Since the ionic distributions are nonlinear functions of the electric potential, we employ
the quasi-Newton method for the iteration in solving the nonlinear PDEs. Then the up-
dated ionic concentrations are given by Boltzmann’s distribution and the whole system
is solved through the fixed-point iteration until the final self energy and electrical po-
tential are self-consistent to the required precision (error less than 10−8). After solving
the set of self-consistent equations, we obtain the equilibrium electrical potential, ionic
concentrations as well as the self energy.

3.3 Free energy and pressure

In order to measure the interaction force between the two planes, we first calculate the
grand potential per unit area as the function of the separation,

F(D)=
∫ D/2

−D/2

[
ε0ε(∂xΦ)2

2
+kBT∑

i

ci

(
log

ci

cb
i

−1

)
+ ffl

]
dx, (3.6)

where ffl is the contribution of fluctuation, given by the Debye charging process [6, 57],

ffl=∑
i

z2
i e2ci

∫ 1

0
λ

[
uλ

1+aiλκb
+

1

4πε0ai

(
1

ε
−1

)]
dλ, (3.7)

and uλ is determined by,




−ε0∇·ε∇Gλ(r,r′)+2λ2 IGλ(r,r′)=δ(r,r′),

uλ(r)= lim
r′→r

[Gλ(r,r′)−G0(r,r′)].
(3.8)

The fist two terms in Eq. (3.6) represent the electrostatic and ideal-gas entropic contri-
butions on the free energy. The third term is the correlation free energy. It should be
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emphasized that the entropy of mobile ions should have additional contribution due to
the finite size, e.g., by the modified fundamental measure theory [51, 52, 62]. For elec-
trolytes without dense ionic particles, this contribution has minor effect.

The integral in Eq. (3.6) is calculated through the trapezoidal rule, which has a second
order of accuracy. The main difficulty of evaluating the free energy and pressure is to
compute the charging process (3.7). When λ is small, due to the weak screening, the
precision of Gλ requires a large computational domain. Although no explicit solution is
valid, we could not use the same technique as for G0. It is noticed that the leading term of
Gλ−G0 is proportional to λ when λ is small. So, we can choose a relatively small number
α, inversely proportional to the computational domain L, which could guarantee that the
accuracy of Gα. If λ< α, we use the linear interpolation of G0 and Gα instead of solving
(3.8). Thus, the integration in Eq. (3.7) can be divided into two parts: (1) for small λ,
the integration from 0 to α is integrated analytically ; (2) the integration from α to 1 is
computed with Gauss quadrature. The error from both parts could be well controlled.

With the grand potential, the osmotic pressure per unit area is determined by

P=−∂DF−P∞, (3.9)

where P∞=− lim
D→∞

∂DF is the bulk osmotic pressure.

4 Results and discussion

In this section, we present numerical solutions of the self-consistent equations for the
modified PB theory and show different aspects of the LCA phenomenon. Without spe-
cial statement, we take relative dielectric constants εB =2.5 and εW =80. The differential
equations are calculated in a very fine mesh (mesh size ∆x=0.01nm) in order to accurately
approximate the solutions. All systems are at room temperature, i.e., ℓB =0.714nm. Only
electrolytes with two ion species are studied, we will use ± for subscript i to distinguish
cations and anions.

Before proceeding the calculation for the LCA, we demonstrate that the SCF model
numerically satisfies the contact value theorem [27] and thus the model is reliable from
this point. The theorem for monovalent electrolytes is an exact relation between the total
contact ionic concentration, the system pressure P and the surface charge density σ,

kBT∑
i

ci(xsurf)=P+
2πσ2

ε0ε
, (4.1)

where ci(xsurf) is the ionic density of the ith species on the surface at xsurf. the classical
PB theory satisfies this relation approximately by assuming the pressure is the ideal-gas
pressure in the bulk. Recent study has studied the contact value theorem for the SCF
for the point-charge case [22]. Our model is more complicated because we cannot find
explicit expressions for both the pressure and the contact concentration. We use 0.1M
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Figure 2: Numerically calculated contact values. (a) The profiles as function of pressure for given surface charge

densities σ=[−0.01,−0.1]e/nm2. In the calculation, D increases from 0.6nm to 1.4nm such that P and CV are

varied. (b) The profile as function of σ2 for given pressure. In the calculation, the surface separation is fixed to
be 3nm so that the system pressure can be viewed as a constant equal to the electrolyte bulk pressure.

1:1 electrolytes with a±= 0.2nm and the dielectric permittivity is 80 in whole space. We
calculate the normalized contact values numerically, CV=∑i ci(xsurf)/cb

i , as functions of
P for given σ and σ2 for given P, respectively. The two panels in Fig. 2 show the linear
relations for both cases, which demonstrate that the contact value theorem is fulfilled.
Compared to the classical PB theory, the SCF model presents more accurate results since
the approximation for the pressure with the ideal-gas pressure is not necessary.

4.1 Symmetric electrolytes

The pressure between surfaces depends on the difference in ionic densities between the
bulk electrolyte and the mediated electrolyte. This is certainly relevant to the surface
charge density σ and bulk ionic number density. For symmetric electrolytes, the bulk
ionic densities for both species are equal, cb

+=cb
−=cb. Higher σ increases the total ions in

the mediated electrolyte, as a result the attraction between surfaces is reduced. Fig. 3 (a)
and (b) show pressure curves as functions of the effective separation for systems of 1:1
electrolytes with uniform ionic sizes, a±=0.2nm, where the abscissa represents the effec-
tive distance between two interfaces, Deff=D−a+−a−. The surface charge density takes
−0.01 and −0.015e/nm2, corresponding to the coupling parameter Ξ= 0.032 and 0.048,
respectively, in a weak-coupling regime. For colloid-colloid interaction, one important

characteristic length is the Debye length ℓD, defined by ℓ
−1
D =

√
∑i ciz

2
i e2/(ε0εWkBT). For

a 0.1M electrolyte, it is ℓD = 0.96nm. From Panel (a), the pressure remains positive for
separation much smaller or much larger than the Debye length, and shows an attrac-
tive pressure when the separation distance is comparable to ℓD, for which the attractive
strength decreases with the increase of σ. With the decrease of the bulk salt concentra-
tion, the ionic density becomes smaller, reducing the entropic effect. This may reverse
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Figure 3: Results for 1:1 electrolytes with uniform ionic sizes of radius a±= 0.2nm. (a) Pressure of different

surface charge densities as function of separation distance in an electrolyte of bulk concentration cb
±= 0.1M;

(b)Pressure of planes with the same charge density σ1 = σ2 =−0.01e/nm2 in electrolytes of different bulk
concentrations; (c) Phase diagram for the LCA boundary of surface-charge and salt-concentration with the

same σ on two planes; (d) Ionic densities when Deff = 0.58 and 1.42nm for systems of cb
±= 0.1M from Panel

(b).

the attractive force at a certain concentration (shown in Panel (b)). We can see the at-
traction occurs when the distance is at the scale of the Debye length for the two denser
cases, which is consistent with the particle-based simulation results [24]. The pressure
does not depend much on the asymmetry in surface charge densities, but the strength
of the densities. By this observation, we will only study planes with the same σ in the
following.

These above observations can be explained as that the pressure is resulted from the
competition of the electrostatic repulsion and the entropically driven attraction [15], and
the LCA happens at the condition of smaller surface charge density for which the elec-
trostatic repulsion is weak, or denser ionic density for which the entropically driven at-
traction is strong. This is in agreement with Wang and Wang [57] although they consider
the ions as point charges and can not reach systems with higher surface charges due to
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the instability of the point-charge model [61]. To study the behavior of higher surface
charge density, we find the finite ion size is essential. The competition results in a phase
boundary which separates the attractive region and the repulsive region in the σ−cb

phase diagram, shown in Fig. 3 (c). We see at the phase boundary, the relation is close
to cb ∝ σ2, and accurate for small concentration up to cb ∼3M. The numerical results are
shown for the bulk concentration up to ∼6M, which illustrate the planes can be attractive
for surface charge about 0.1e/nm2, corresponding to a system in the mediated-coupling
regime. The electrolyte with concentration as high as 6M is used in electrochemical ex-
periments [33]. This square law can be understandable since the electrostatic interaction
is proportional to σ2 at the weak-coupling regime, and the entropic contribution has the
form of cb log(cb).

To a closer look at the mechanism, in Fig. 3 (d), we plot the ionic densities for systems
of cb

±=0.1M and the surface charge densities σ1=σ2=−0.01e/nm2, corresponding to the
solid circle line in Fig. 3 (b) with separation 0.58 and 1.42nm. It shows clearly that when
the planes are attractive, the ionic densities are much smaller than the bulk densities,
leading to a significantly less pressure due to the ionic depletion.

4.2 Asymmetric valences and nonuniform sizes

The ionic size effect of ions is important for systems with nano-scale confinements. The
inclusion of the ionic excluded volume and multivalent ions leads to a large change of
the local correlation strength in self energy, and the consequence on the interface struc-
ture and interaction is not well investigated. In this section, we perform numerical cal-
culation for two groups of asymmetric systems. One group takes 1:1 electrolytes with
variable ionic sizes; the other one takes uniform ionic sizes a± = 0.2nm but varies the
ionic valences. The surface charge density and the bulk charge density remain constants,
σ=−0.01e/nm2 and z+c+=0.1M. The results are shown in Fig. 4.

The ionic size matters in two aspects: 1) the thickness of the Stern layer where ions
are inaccessible; and 2) the self energy. From Fig. 4 (a), we observe strong effects on
pressure curves due to the non-uniformity of counterions and coions. For symmetric
ionic sizes, the thickness of the Helmholtz layer is less important as we can see that the
curves of a± = 0.2nm and a± = 0.4nm are similar while the other two curves are totally
different. For the effect of ionic size in the self energy, we should recall the formulation
of the effective self energy, the difference between ui and ub

i ,

ui−ub
i =

u+κb/4πε0ε

1+aiκb
, (4.2)

multiplied by the factor z2
i e2/2. The leading contribution of u is about −κ(r) plus the

boundary contribution including the image charge. If the ion is not too close to the sur-
face, u is in general a negative quantity, with−u<κb due to the ion depletion. As a result,
the self-energy contribution of a larger ion is less than that of a smaller ion, and hence the
a±=0.4nm curve behaves a weaker attraction than the a±=0.2nm curve. If the ion size is
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Figure 4: Pressure and charge distribution for asymmetric electrolytes with z+cb
+=0.1M between two planes of

charge density σ=−0.01e/nm2. (a) Pressure between two planes for 1:1 electrolytes of variable ionic sizes; (b)
Pressure between two planes for asymmetric electrolytes and uniform ionic sizes; (c)(d) Total charge density
distribution along the x-axis in electrolytes for (c) Deff=0.7nm and (d) Deff=1.9nm.

very small which allows u> 0, then the image charge effect dominates in this area. The
image charge effect becomes weaker as the ionic size gets larger, again ensuring a weaker
attraction.

For asymmetric ionic sizes, if counterions (cations) are bigger than coions (anions), the
Helmholtz layer of counterions is thicker than coions’. Coions can be getting close to the
charged surfaces, which effectively increases the density of the surface charge, thus the
attractive force between interfaces is weakened or the interfaces become repulsive. This
is shown by the curve of a−=0.2nm and a+=0.4nm. In contrast, if coions are bigger, the
surface charge density is effectively attenuated, leading to a stronger attractive potential
(see the curve of a−=0.4nm and a+=0.2nm). In this case, the planes of short separation
remain attractive.

Let us look at the results in Fig. 4 (b), the effects of valence asymmetry. Since the self
energy has quadratic relation with the valence, ui∼z2

i , while ion-surface electrostatic force
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is roughly proportional to zi, the multivalent counterion receives very strong repulsion
from the surface. If coions have smaller valence, which causes less repulsion, equiva-
lently the surface charge density is increased, thus the attractive force is weakened. The
results have shown this situation: the planes in 2:1 electrolytes have weaker attraction
(becomes pure repulsion) than those in 1:1 and 1:2 electrolytes. The attractive distance
also increases as the Debye length increases.

The panels (c) and (d) of Fig. 4 present the total charge distribution along the normal
direction of the interfaces for two separations Deff = 0.7nm and 1.9nm from panel (b). It
can be observed that the 2:1 electrolyte does show negative value near interfaces, validat-
ing the preceding analysis that the high-valence counterions increase the effective surface
charge density. It should be mentioned that the curve for the 1:2 electrolyte in panel (d)
is concave, different from the other three curves. Near the middle point, the total charge
reverses the sign, illustrating a charge inversion, another important electrostatic many-
body phenomenon [10, 26]. Again, it is owing to the strong repulsion of multivalent
anions (counterions) by their image charge.

4.3 Dielectric variation effect

We calculate the pressure between planes by varying the dielectric constant of the me-
dia outside the surfaces, εB, from 2.5 to 160. The results given in Fig. 5(a) illustrate a
monotonic increase of the minimum pressure with εB. Compared to the homogeneous
permittivity εB =80, the low dielectric constant of the boundary media greatly enhances
the LCA. Interestingly, the planes become always repulsive when εB is much larger than
the water dielectric constant, e.g., εB =160. This shows a counter-intuitive phenomenon
that the conducting limit of the planes tends to be repulsive due to the entropic forces.
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Figure 5: Effects on dielectric permittivity on the pressure between two planes. The 1:1 electrolytes with
a±=0.2nm (a) Water dielectric constant εW =80 and varying boundary dielectric constant εB. Surface charge

σ =−0.01e/nm2, bulk concentration 0.05M; (b) Boundary dielectric constant εB = 2.5 and field-dependent

dielectric permittivity for water. Surface charge σ=−0.03e/nm2, concentration 0.5M.
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In Fig. 5(b), we show the comparison with a variable permittivity in water. Since wa-
ter molecule is polarizable, the dielectric permittivity of the water medium depends on
the strength of the electrostatic field due to the orientation of dipole molecules against the
field. A more ordered orientation leads to smaller permittivity, which can be described
by the Langevin model [23],

ε(|∇Φ|)=1+3(εW −1)L(βp0|∇Φ|)/βp0 |∇Φ|, (4.3)

where L(y) = coth(y)−1/y is the Langevin function, and p0 is the permanent dipole
moment. We take p0=4.8D and εW=80. With the weak surface charge density, the results
show the electric field near the surfaces slightly increases the interface-interface pressure
which is due to a stronger electrostatic interaction in lower dielectric permittivity.

5 Conclusions

In summary, we study the phenomenon of the LCA between charged planes from a
recently-developed self-consistent field model. We investigate the influence of different
parameters of the electrical double layer on the many-body phenomenon. It is shown the
depletion-induced LCA depends on the surface charge density and the bulk salt concen-
tration, and the dielectric mismatch significantly changes the pressure strength between
two planes. We find the mechanism of inducing LCA is mostly the depletion effect be-
tween the charged surfaces. It is more likely to observe LCA for low surface charge, high
salt concentration and the attraction can be greatly enhanced by small permittivity of the
dielectric media outside the electrolyte. However, as the distance between charged sur-
faces which have LCA is comparable with Debye length, high salt concentration might
lead to very narrow separation.
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