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Abstract

In this paper we propose an efficient and robust method for computing the analytic

center of the polyhedral set P = {x ∈ Rn | Ax = b, x ≥ 0}, where the matrix A ∈ Rm×n is

ill-conditioned, and there are errors in A and b. Besides overcoming the difficulties caused

by ill-conditioning of the matrix A and errors in A and b, our method can also detect

the infeasibility and the unboundedness of the polyhedral set P automatically during the

computation. Detailed mathematical analyses for our method are presented and the worst

case complexity of the algorithm is also given. Finally some numerical results are presented

to show the robustness and effectiveness of the new method.
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1. Introduction

The computation of the analytic center of a polytope has been discussed in many papers and

books as the development of interior point methods (IPMs) for linear programming (LP), see,

e. g., [1,9,30] and the references therein. In this paper, we will consider the following problem:

min −
n∑
j=1

lnxj

s.t. Ax = b,

xj > 0, j = 1, . . . , n,

(1.1)

where the matrix A ∈ Rm×n is ill-conditioned, b ∈ Rm, and there are errors in A and b which

may lead to an infeasible problem. Problem (1.1) comes from the study of determining the

neutron energy spectrum from multiple activation foils in nuclear physics which is based on the
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maximum entropy principle of thermodynamics and Boltzmann’s entropy formula, see [6, 35]

for more details.

In fact, problem (1.1) is equivalent to the computation of the analytic center of the polyhe-

dral set P = {x ∈ Rn | Ax = b, x ≥ 0} when P is solid (i.e., the set has at least one positive

feasible point) and bounded. Theory of IPMs for LP has established abundant results on the

computation of analytic center (see, e.g., [5, 24, 28, 30] and the references therein). If we solve

the problem (1.1) directly by some kind of interior point method, a linear system AD2AT y = h

or some equivalent linear systems will be formed with ill-conditioned matrices A and D. Al-

though M. H. Wright [27] and S. J. Wright [29] have shown that the ill-conditioning of matrix

D does not noticeably impair the accuracy of the computed primal-dual steps in certain cases,

the ill-conditioning of matrix A can cause serious numerical difficulties during computation,

let alone the errors in A and b. We have used some optimization tools in MATLAB which

are based on LIPSOL [34] and IPOPT [25] to solve some instances of problem (1.1), but their

numerical performances are unsatisfactory (which will be shown by numerical experiments in

Section 4). Despite the fact that some precondition techniques (see, e.g., [19,20] and references

therein) can effectively reduce the ill-conditioning of matrix A, the errors in A and b will still

prevent problem (1.1) from being solved effectively.

Based on the primal-dual infeasible-interior-point (IIP) method, we will propose an effi-

cient and robust method for problem (1.1) which can overcome the difficulties caused by ill-

conditioning of the matrix A and errors in A and b. The paper is organized as follows. In Section

2 we reformulate problem (1.1) into a problem which is equivalent to finding the analytic center

of the optimal solution set of a usually well-conditioned linear programming (LP) problem. The

reformulation not only can reduce the impact of errors in A and b but also can improve the

condition number and detect the infeasibility of the set P . Then in Section 3 we will consider

a hybrid primal-dual IIP algorithm for computing the analytic center of the optimal solution

set of an LP problem. Moreover, we will study a method in detail for detecting unboundedness

or infeasibility of the set P which may cause computational difficulty for general interior point

algorithms. The convergent properties and the worst case complexity of the algorithm are also

analysed. Finally some numerical results are presented to show the effectiveness and robustness

of our algorithm in Section 4, and some conclusions and remarks are given in Section 5.

2. Reformualtion

If the polyhedral set P = {x ∈ Rn | Ax = b, x ≥ 0} is unbounded or not solid, problem (1.1)

will have no optimal solution. Even when the set P is solid and bounded, the ill-conditioning

of matrix A will cause serious numerical difficulties in computation, and errors in A and b will

prevent us from using precondition techniques directly. Hence some reformulation of problem

(1.1) is needed.

Various reformulations for ill-posed problems have been proposed in literature, such as

Tikhonov regularization method and trust region method (see, e.g., [26]). However, these

methods can not be used directly to problem (1.1) because of the errors. Hence we consider

the following first phase problem for LP:

min eT y ≡
m∑
i=1

yi

s.t. Ax+ y = b,

x ≥ 0, y ≥ 0.

(2.1)
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where A ∈ Rm×n, e = (1, . . . , 1)T ∈ Rm, x = (x1, . . . , xn)T ∈ Rn, y = (y1, . . . , ym)T ∈ Rm. If

we balance the matrix A in advance, the coefficients matrix [A, I] is usually well conditioned

when m� n. In fact the following result has been proved in [6].

Lemma 2.1. Suppose A = (aij)m×n and
∑n
j=1 |aij | ≤ 1 for every i = 1, . . . ,m. Denote

B = [A, I]. Then the condition κ2(B) of the matrix B satisfies

κ2(B) ≤
√
m+ 1.

Hence problem (2.1) is usually well-conditioned when m� n by Lemma 2.1. Furthermore,

problem (2.1) can also reduce the impact of the errors in A and b by introducing the vector

variable y. In practical computation of determining neutron energy spectrum, the vector b is

usually much larger than desired. Hence we require that y ≥ 0. The vector y can be seen as

a correction for the errors in A and b. In fact, when the polyhedral set P = {x ∈ Rn | Ax =

b, x ≥ 0} is bounded and solid, the solution of problem (1.1) is just the analytic center of the

optimal solution set of problem (2.1). For completeness, we present the definition of analytic

center here, which can be found in many books on IPMs, see, e. g., [5, 24,30].

Definition 2.1 (Analytic center). Let the nonempty and bounded set T be the intersection

of an affine space in Rn with the nonnegative orthant of Rn. Define the support σ(T ) of T as

the subset of the full index set {1, 2, . . . , n} given by σ(T ) = {i : ∃x ∈ T such that xi > 0}. The

analytic center of T is defined as the zero vector if σ(T ) is empty; otherwise it is the vector in

T that maximizes the product ∏
i∈σ(T )

xi, x ∈ T .

When the set T is unbounded or empty, for simplicity we will say that the analytic center of

T does not exist, which is not in accordance with the generalized analytic center defined in [18].

Denote

P = {x ∈ Rn | Ax = b, x ≥ 0},
Q = {(x, y) ∈ Rn ×Rm | Ax+ y = b, x ≥ 0, y ≥ 0}.

(2.2)

It is obvious that P ⊂ Q in x-part. Without loss of generality, we will assume that b > 0

afterwards1) .

Lemma 2.2. 1. The polyhedral set Q is solid, i.e., it has a positive feasible point.

2. Denote the optimal objective value and the optimal solution set of problem (2.1) by g∗ and

P∗ respectively. Then P∗ 6= ∅. Moreover, we have P 6= ∅ if and only if g∗ = 0.

3. If P is nonempty and bounded, then the set P is the same as the set P∗ in x-part, and

so do their the analytic centers.

Proof. 1. By b > 0 we can find a positive integer p large enough such that A
(
e
p

)
< b, where

e = (1, 1, . . . , 1)T ∈ Rn. Then x0 = e
p , y0 = b−Ax0 is a positive feasible point of Q, and we get

the result.

1) First we may assume that b 6= 0 (Otherwise the set P is a cone and the analytic center does not exist for

nontrival case). If bi < 0 for some i, multiply the equation by −1; if bi = 0 for some i, add some equation with

bk > 0 to this equation and we get 0 < bi ← bi + bk.
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2. Since problem (2.1) is feasible and bounded below, we have P∗ 6= ∅. By the two-phase

simplex method for LP, we know that P 6= ∅ if and only if g∗ = 0.

3. It is obvious by item 2 and the definition of analytic center. �

In fact, when we do not know whether P is solid, problem (1.1) should be described as

min −
∑
j∈B

lnxj

s.t. Ax = b,

xj ≥ 0, j = 1, . . . , n.

(2.3)

where B = {i | there exists some x ∈ P such that xi > 0}. When P is nonempty and bounded,

problem (2.3) is equivalent to finding the analytic center of the optimal solution set P∗ of

problem (2.1) by Lemma 2.2. By Lemma 2.1 it should be more advisable to compute the

analytic center of the optimal solution set P∗ of problem (2.1) by some kind of primal-dual

interior point method instead of solving problem (1.1) directly for numerical stability. The dual

problem of the problem (2.1) is

max
w,r,s

bTw

s.t. ATw + r = 0,

w + s = e,

r ≥ 0, s ≥ 0.

(2.4)

where w ∈ Rm, r ∈ Rn, s ∈ Rm are the corresponding dual variables of the problem (2.1).

Lemma 2.3. Denote the optimal solution sets of problems (2.1) and (2.4) by P∗ and D∗ re-

spectively. Then D∗ is a nonempty convex compact set, and P∗ is bounded if and only if the

dual problem (2.4) has a positive feasible point.

Proof. By Lemma 2.2 and the strong duality theorem for LP we know that D∗ is nonempty.

Since both problems (2.1) and (2.4) are feasible, and problem (2.1) has a positive feasible point,

by Corollaries II.11 and II.12 in [24] we get the results. �

Corollary 2.1. If P is unbounded, the dual problem (2.4) has no positive feasible point.

Proof. Since P is unbounded, there exists some d ∈ Rn such that d 6= 0, Ad = 0, and d ≥ 0.

For any (x̄, ȳ) ∈ P∗ and λ ≥ 0, we have (x̄ + λd, ȳ) ∈ P∗. Hence P∗ is unbounded. Then by

Lemma 2.3 we get the result. �

According to Corollary 2.1, the dual problem (2.4) will have no positive feasible point when

P is unbounded, which may cause numerical difficulties for primal-dual interior-point methods.

Lemma 2.4. If problem (2.1) has a feasible solution (w0, r0, s0) with bTw0 > 0, then the set P

is empty, and problem (1.1) is infeasible.

Proof. Let (x̄, ȳ) be an optimal solution of problem (2.1), and g∗ be the optimal value. Then

we have g∗ = eT ȳ ≥ bTw0 > 0, and by item 2 of Lemma 2.2 we get the result. �

By Lemma 2.4, if we find a feasible point (w̄, r̄, s̄) of problem (2.4) with bT w̄ > 0 (which can

be detected during the computation), the set P is empty. However, when the set P is empty,

the dual problem (2.4) might have a positive feasible point or not, and we have the following

result.
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Lemma 2.5. The dual problem (2.4) have no positive feasible point if and only if there exists

a vector p ∈ Rn such that

Ap = 0, p ≥ 0, p 6= 0, (2.5)

and the set P is either empty or unbounded in this case.

Proof. The dual problem (2.4) have no positive feasible point is equivalent to the inequality

ATw > 0 has no solution. Then by Gordan’s theorem (see, e. g., Corollary 1 of Theorem 2.4.5

in [2]) we get (2.5).

By Lemmas 2.2 and 2.3, the set P cannot be “nonempty and bounded” when the dual

problem (2.4) have no positive feasible point. If P is nonempty, there exists some x̄ ∈ P . Then

by (2.5) we have x̄+ λp ∈ P for any λ ≥ 0(p 6= 0). Hence P is unbounded. �

By the above results, we know that problem (1.1) is equivalent to finding the analytic

center of the optimal solution set of the LP problem (2.1), which is usually well-conditioned

when m � n. We will discuss how to compute the analytic center of the optimal solution set

of (2.1) and detect the unboundedness of P during computation in the next section.

3. The Algorithm and Its Analysis

By the theory of primal-dual IPMs for LP, we know that the central path converges to

the analytic center of the optimal solution set. The basic primal-dual interior algorithm was

proposed by Kojima, Mizuno and Yoshise [11]. The most efficient implementations of IPMs

seem to be some variants of Mehrotra’s infeasible predictor-corrector primal-dual interior point

method, see, e. g., [12, 14, 34]. However, it is not guaranteed in theory that the iteration

sequences generated by these algorithms converge to the analytic center of the optimal solution

set of LP. Mizuno, Todd, and Ye [17] proposed simplified feasible version of Mehrotra’s method

with O(
√
nL) iteration complexity (where the parameter L means that we need to reduce the

residuals in feasibility and complementarity by a factor of 2−L), which we will call it the “MTY

algorithm” in the following text. The analysis of the MTY algorithm theoretically illuminates

why Mehrotra’s predictor-corrector method is so efficient. Then Ye et al. [31] and Mehrotra [15]

independently proved the sequence generated by the MTY algorithm is quadratically convergent

in duality gap. Bonnans and Gonzaga [3], Gonzaga and Tapia [8] proved that the iteration

sequence generated by the MTY algorithm converges to the analytic center of the optimal

solution set. Hence the MTY algorithm should be the best choice for computing the analytic

center of the optimal solution set of problem (2.1). The standard method to generate a proper

strictly interior point for the MTY algorithm to start is to transform the problem into a self-

dual form (see, e.g., [32]). However, in this way the optimal solution obtained by the MTY

algorithm would be the analytic center of the optimal solution set of the transformed problem

instead of the original problem itself. Hence we need to find a proper starting interior point

of problem (2.1) instead of transforming it into some self-dual form in order to solve problem

(1.1) by the MTY algorithm. However, in practical computations of problem (2.1) we found

out that it was very difficult to get an initial interior point for the MTY algorithm to start,

and the techniques proposed in [9] failed in our computations due to the ill-conditioning and

errors in A and b. Hence we would use the infeasible-interior-point (IIP) techniques proposed

in [12, 14, 34] to design and implement an algorithm to compute such a starting point and

overcome the numerical difficulties.
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Many papers have analysed the properties of IIP methods. It is Kojima, Megiddo and

Mizuno [10] who first proved the global convergence of a primal-dual IIP algorithm for LP. It

is Zhang [33] who first proved the worst case iteration complexity O(n2L) of a primal-dual IIP

algorithm. Soon after that, Mizuno [16] also proved that a modification of the algorithm in [10]

has O(n2L) iteration complexity, and proposed a predictor-corrector IIP algorithm with O(nL)

iteration complexity which is based on the MTY predictor-corrector algorithm. In the meantime

Potra [21] proposed a new IIP predictor-corrector method where the residuals in feasibility and

optimality are improved at the same rate, and proved that the algorithm is globally convergent

and has O(nL) iteration complexity. Bonnans and Potra [4] presented sufficient conditions

for the iteration sequence of infeasible path following algorithms for linear complementarity

problems converging to the shifted analytic center (but not the analytic center) of the optimal

face, and proposed an IIP algorithm which is quadratically convergent and has O(nL) iteration

complexity based on the feasible algorithm proposed in [7]. Roos [23] proposes a path-following

full-Newton step infeasible interior-point algorithm for LP and proves the algorithm also has

O(nL) iteration complexity.

It is worth pointing out that at the moment the best known complexity bounds O(nL) for

IIP methods are all obtained by following a narrow neighborhood of some infeasible central

path, and the iteration sequence generated by them usually will not converge to the analytic

center of the optimal solution set. It is indicated in [17] that the worst-case number of iterations

usually grows as a wider neighborhood of central path is used, and it is one of the ironies of

the IPM literature that algorithms which are more efficient in practice often have somewhat

worse complexity bounds, as pointed out in [22]. For computational efficiency and robustness,

we will use wide neighborhoods of an infeasible central path to design an algorithm, and the

convergent properties and the worst case iteration complexity O((m + n)2L) of the algorithm

will be given.

We first present some basic concepts in IPM (for more details, see, e.g., [24,30] and references

therein). The optimality condition for problem (2.1) and its dual (2.4) is (which is also called

as the KKT condition):

Ax+ y = b,

ATw + r = 0,

w + s = e,

rx = 0, r ≥ 0, x ≥ 0,

sy = 0, s ≥ 0, y ≥ 0.

(3.1)

The perturbed KKT system of the problem (2.1) and its dual (2.4) is:

Ax+ y = b,

ATw + r = 0,

w + s = e,

rx = µe, r ≥ 0, x ≥ 0,

sy = µe, s ≥ 0, y ≥ 0,

(3.2)

where the multiplications rx and sy are componentwise, and we will use this notation without

indication in the following paragraphs. When the set P = {x ∈ Rn | Ax = b, x ≥ 0} is

nonempty and bounded, by Lemmas 2.2 and 2.3 we know both problems (2.1) and (2.4) have

positive feasible points, which are also called as feasible interior points. Then by the well-known

interior-point condition of IPM, i.e., both the primal and the dual problems have positive

feasible points, the system (3.2) has a unique solution z(µ) = (x(µ), y(µ), w(µ), r(µ), s(µ)) for
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every µ > 0, and the curve z(µ) is smooth for µ > 0 by the implicit function theorem. The

curve z(µ) (µ > 0) is called as the central path of problem (2.1) and its dual (2.4). By the IPM

theory (see, e.g., [13]), it converges to the analytic center of the primal-dual optimal solution

set, which is the same as that of set P in x-part by Lemma 2.2.

Given a primal-dual interior point z = (x, y, w, r, s) (i.e., we have x > 0, y > 0, r > 0, s > 0,

which may be feasible or infeasible), the Newton direction of problem (3.2) at the point z is

determined by the following linear systems:

A∆x+ ∆y = −rb,
AT∆w + ∆r = −rc,
∆w + ∆s = −re,
R∆x+X∆r = σµ̂e− rx,
Y∆s+ S∆y = σµ̂e− sy,

(3.3)

where rb = Ax + y − b, rc = ATw + r, re = w + s − e are residuals of linear equations, and

σ ∈ [0, 1] is a factor to decrease the duality gap, and R,X, Y, S are diagonal matrices of vectors

r, x, y, s respectively. Denote v =

[
xr

ys

]
, define

δ(z, µ) = δ(x, y, w, r, s, µ) ≡
∥∥∥∥ vµ − e

∥∥∥∥ , (3.4)

µ(z) = µ(x, y, w, r, s) ≡ xT r + yT s

n+m
, (3.5)

δ(z) = δ(x, y, w, r, s) ≡ δ(z, µ(z)), (3.6)

N2(β) ≡
{
z = (x, y, w, r, s) | δ(z) ≤ β

}
, (3.7)

N−∞(γ) ≡
{
z = (x, y, w, r, s) | (x, y, r, s) > 0, xr ≥ γµe, ys ≥ γµe

}
, (3.8)

where µ(z) is the average duality gap at point z, the function δ(z) in (3.6) is used to measure

the proximity of interior point z to the central path, parameter β ∈ (0, 1), γ ∈ (0, 1), and

N2(β) and N−∞(γ) in (3.7)-(3.8) are usually called as the narrow neighborhood and the wide

neighborhood of the central path respectively.

In primal-dual interior point methods, system (3.3) is first solved to get the Newton direc-

tion, then we do line search to get a new point which is in some neighborhood of the central

path and to decrease the duality gap. The classical IIP algorithm for problem (2.1) and its

dual (2.4) (or equivalently problem (3.1)) can be described as follows:

Algorithm 3.1. The Classical IIP Algorithm for Problem (2.1)

Step 1. Give a point z(0) = (x(0), y(0), w(0), r(0), s(0)) with x(0) > 0, y(0) > 0, r(0) > 0, s(0) >

0, which may be feasible or infeasible. Set σ0 = 1, k = 0.

Step 2. Let z = z(k), σ = σk, µ = µ(z(k)) and solve linear system (3.3) to get the Newton

search direction ∆(k) = (∆x(k),∆y(k),∆w(k),∆r(k),∆s(k)).

Step 3. Compute a step αk > 0 such that z(k+1) = z(k) + αk∆(k) ∈ N2(β)(or ∈ N−∞(γ)).

Determine the parameter σk+1. Set k ← k + 1 and go to Step 2.
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The basic idea of our method is first using IIP method to compute a feasible initial interior

point for MTY algorithm to start, then using MTY algorithm to compute the analytic center.

However, when primal-dual problems (2.1) and (2.4) have no feasible interior point (which is

equivalent to that the dual problem (2.4) has no feasible interior point by Lemma 2.2), system

(3.2) will have no solution for any fixed parameter µ > 0 according to the theory of IPM, which

may cause numerical difficulties for primal-dual IPMs. By Lemma 2.5 we know that P is either

empty or unbounded in this case. Hence we need a method to detect the unboundedness or

emptiness of set P = {x ∈ Rn | Ax = b, x ≥ 0} during computation.

Denote residuals r
(k)
b = Ax(k) + y(k) − b, r(k)

c = ATw(k) + r(k), r
(k)
e = w(k) + s(k) − e. Since

z(k+1) = z(k) + αk∆(k), by (3.3) we get

r
(k+1)
b = (1− αk)r

(k)
b = νk+1r

(0)
b , (3.9)

r(k+1)
c = (1− αk)r(k)

c = νk+1r
(0)
c , (3.10)

r(k+1)
e = (1− αk)r(k)

e = νk+1r
(0)
e , (3.11)

where

νk = (1− αk−1)νk−1 =

k−1∏
i=0

(1− αi), k = 1, 2, . . . , (3.12)

and ν0 = 1.

According to Lemma 2.2, let (x(0), y(0)) be a positive feasible point of Q. Let w(0) = 0, r(0) =

e, s(0) = e. Then z(0) = (x(0), y(0), w(0), r(0), s(0)) is an initial interior point of system (3.2) and

we have:
r

(0)
b = Ax(0) + y(0) − b = 0,

r
(0)
c = ATw(0) + r(0) = e,

r
(0)
e = w(0) + s(0) − e = 0.

(3.13)

By (3.9)–(3.13), at the k-th iteration of Algorithm 3.1 we have

r
(k)
b = 0, r(k)

c = νke, r
(k)
e = 0, k = 1, 2, . . . (3.14)

which means that z(k) = (x(k), y(k), w(k), r(k), s(k)) is a feasible solution of system

Ax+ y = b, ATw + r = νke, w + s = e.

Hence we consider the following perturbed system of (3.2):

Ax+ y = b,

ATw + r = τa,

w + s = e,

rx = µe, r ≥ 0, x ≥ 0,

sy = µe, s ≥ 0, y ≥ 0,

(3.15)

where a > 0, τ > 0, and µ > 0 is fixed. Since the primal-dual linear system “Ax + y =

b, ATw + r = τa, w + s = e, x ≥ 0, y ≥ 0, r ≥ 0, s ≥ 0” has a primal-dual interior point

“x0 = x(0) > 0, y0 = y(0) > 0, w0 = 0, r0 = τa > 0, s0 = e > 0”, system (3.15) has a unique

solution for every τ > 0 by the interior point condition. In fact, it is easy to check that system

(3.15) is equivalent to the KKT optimal condition of the following problem:

min τaTx+ eT y − µ(
∑n
i=1 lnxi +

∑m
i=1 ln yi)

s.t. Ax+ y = b,

x ≥ 0, y ≥ 0,

(3.16)
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whose objective is strongly convex for any µ > 0.

Theorem 3.1. Let a ∈ Rn, a > 0, and µ > 0 be fixed. Then for every τ > 0, system (3.15) has

a unique solution (x(τ), y(τ), w(τ), r(τ), s(τ)). Denote F (τ, x, y) = τaTx+eT y−µ(
∑n
i=1 lnxi+∑m

i=1 ln yi), F
∗(τ) = F (τ, x(τ), y(τ)) and p(τ) = aTx(τ).

1. For any τ1 > τ2 > 0, we have p(τ1) < p(τ2) and F ∗(τ1) > F ∗(τ2).

2. If the dual problem (2.4) has a positive feasible point (in this case P = {x ∈ Rn | Ax =

b, x ≥ 0} is either empty or bounded ), system (3.2) has a unique solution (x̄, ȳ, w̄, r̄, s̄).

Moreover, we have x(τ) → x̄, y(τ) → ȳ as τ ↓ 0, and p(τ) ↑ aT x̄, F ∗(τ) ↓ [eT ȳ −
µ(
∑n
i=1 ln x̄i +

∑m
i=1 ln ȳi)] as τ ↓ 0.

3. If the dual problem (2.4) has no positive feasible points (in this case P = {x ∈ Rn | Ax =

b, x ≥ 0} is either empty or unbounded), we have p(τ) ↑ +∞ and F ∗(τ) ↓ −∞.

Proof. As noted above, the linear part of system (3.15) has an interior feasible point. Hence

system (3.15) has a unique solution for every τ > 0 by the well known interior-point condition.

1. By the equivalence of system of (3.15) and problem (3.16), and the strong convexity of

F (τ, x, y) on variables (x, y), we have

F ∗(τ1) = τ1a
Tx(τ1) + eT y(τ1)− µ

(
n∑
i=1

lnxi(τ1) +

n∑
i=1

ln yi(τ1)

)

< τ1a
Tx(τ2) + eT y(τ2)− µ

(
n∑
i=1

lnxi(τ2) +

m∑
i=1

ln yi(τ2)

)
, (3.17)

F ∗(τ2) = τ2a
Tx(τ2) + eT y(τ2)− µ

(
n∑
i=1

lnxi(τ2) +

n∑
i=1

ln yi(τ2)

)

< τ2a
Tx(τ1) + eT y(τ1)− µ

(
n∑
i=1

lnxi(τ1) +

m∑
i=1

ln yi(τ1)

)
. (3.18)

By adding the above two inequalities we get

(τ1 − τ2)(aTx(τ1)− aTx(τ2)) < 0.

Since τ1 > τ2, we get p(τ1) = aTx(τ1) < aTx(τ2) = p(τ2).

By τ1 > τ2, aTx(τ) > 0 for any τ > 0 and formula (3.18) we get

F ∗(τ2) < τ1a
Tx(τ1) + eT y(τ1)− µ

(
n∑
i=1

lnxi(τ1) +

m∑
i=1

ln yi(τ1)

)
= F ∗(τ1).

2. By Lemmas 2.2 and 2.3 we know that both problems (2.1) and (2.4) have nonempty

interiors in this case. Hence system (3.2) has a unique solution (x̄, ȳ, w̄, r̄, s̄) for any µ > 0

with x̄ > 0, ȳ > 0, r̄ > 0, s̄ > 0. Since (x̄, ȳ, w̄, r̄ + τa, s̄) is a feasible interior point of system

“Ax + y = b, ATw + r = τa, w + s = e, x ≥ 0, y ≥ 0, r ≥ 0, s ≥ 0” for every τ ≥ 0, the

perturbed system (3.15) has a unique solution z(τ) = (x(τ), y(τ), w(τ), r(τ), s(τ)) for every

τ ≥ 0 by the interior-point condition, and z(τ) = (x(τ), y(τ), w(τ), r(τ), s(τ)) is a continuously

differentiable function of τ on [0,+∞). Hence we have z(τ) → z(0) = (x̄, ȳ, w̄, r̄, s̄) as τ ↓ 0,
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and x(τ) → x̄, y(τ) → ȳ as τ ↓ 0. Then by the monotonicity of p(τ) and F ∗(τ) we obtain

p(τ) ↑ aT x̄ and F ∗(τ) ↓ [eT ȳ − µ(
∑n
i=1 ln x̄i +

∑m
i=1 ln ȳi)] as τ ↓ 0.

3. We first prove that p(τ) ↑ +∞ by contradiction. If p(τ) is bounded on (0, 1], by

monotonicity of p(τ) on (0, 1] we have p(τ) = aTx(τ) ↑ p̄ as τ ↓ 0 for some p̄ > 0. Hence

0 < p = aTx(1) ≤ aTx(τ) ≤ p̄ on (0, 1]. Since a > 0, there exists a constant ξ1 > 0 such that

0 < x(τ) ≤ ξ1 on (0, 1]. Then we know that y(τ) is bounded by Ax(τ) + y(τ) = b in (3.15).

Denote ψ(t) = t− µ ln t. By monotonicity of F ∗(τ), for any τ ∈ (0, 1] we have

F ∗(1) ≥ F ∗(τ) = τaTx(τ)− µ
n∑
i=1

lnxi(τ) +

m∑
i=1

ψ(yi(τ)). (3.19)

Since ψ(t) = t − µ ln t ≥ µ(1 − lnµ), 0 < x(τ) ≤ ξ1 and 0 < τaTx(τ) ≤ p̄ for τ ∈ (0, 1], by

(3.19) we know there exist constants ξ0 and M such that 0 < ξ2 ≤ x(τ) and ψ(yi(τ)) ≤M for

any τ ∈ (0, 1] and every i = 1, . . . ,m. By the fact that ψ(t) is strictly decreasing in (0, µ), and

strictly increasing in (µ,+∞), and limt→0+ ψ(t) = limt→+∞ ψ(t) = +∞, there exist constants

tM2 > tM1 > 0 such that tM1 ≤ yi(τ) ≤ tM2 for any τ ∈ (0, 1] and every i = 1, . . . ,m. Then by

sy = µe in (3.15) we know s(τ) (τ ∈ (0, 1]) is bounded, and w(τ) (τ ∈ (0, 1]) is bounded by

w+s = e in (3.15), and r(τ) (τ ∈ (0, 1]) is bounded by ATw+r = τa in (3.15). Hence there exists

a sequence {τk}+∞k=0 ⊂ (0, 1] with τk → 0 such that z(τk) = (x(τk), y(τk), w(τk), r(τk), s(τk))

converges to some point ẑ = (x̂, ŷ, ŵ, r̂, ŝ) as k → +∞. By (3.15) and let k → +∞ we know

ẑ = (x̂, ŷ, ŵ, r̂, ŝ) is a solution of (3.2), and (ŵ, r̂, ŝ) is an interior point of the dual problem

(2.4), which is a contradiction. Hence we have p(τ) = aTx(τ) ↑ +∞ as τ ↓ 0.

Now let (x(0), y(0)) be an interior point of the set Q described in Lemma 2.2, and denote

x(0) = (x0
1, . . . , x

0
n)T , y(0) = (y0

1 , . . . , y
0
m)T . By Lemma 2.5 we have formula (2.5), and (x(0) +

λp, y(0)) is feasible for problem (3.16) for any λ ≥ 0. Define φ(τ, λ) = F (τ, x(0) + λp, y(0)) and

φ∗(τ) = minλ≥0 φ(τ, λ). Then φ∗(τ) ≥ F ∗(τ), and we only need show φ∗(τ) → −∞ as τ ↓ 0.

Let J = {i : pi > 0}, then

φ(τ, λ) = τaT (x(0) + λp) + eT y(0) − µ

[
n∑
i=1

ln(x0
i + λpi) +

m∑
i=1

ln y0
i

]
= λτ

∑
i∈J

aipi − µ
∑
i∈J

ln(x0
i + λpi) + τaTx(0) + C, (3.20)

where C = eT y(0) − µ(
∑
i/∈J lnx0

i +
∑m
i=1 ln y0

i ). It is obvious that φ(τ, λ) is a strong convex

function of λ. Let λ(τ) = arg minλ≥0 φ(τ, λ). Then λ(τ) satisfies:

φ′λ(τ, λ) = τ
∑
i∈J

aipi − µ
∑
i∈J

pi
x0
i + λpi

= 0. (3.21)

Since
∑
i∈J aipi > 0, µ > 0, and pi > 0 for every i ∈ J , we know that equation (3.21) has a

unique solution λ(τ) > 0 for every τ > 0, and λ(τ) ↑ +∞ as τ ↓ 0. By (3.20) and (3.21) we get

φ∗(τ) = µ

(∑
i∈J

λ(τ)pi
x0
i + λ(τ)pi

−
∑
i∈J

ln(x0
i + λ(τ)pi)

)
+ τaTx(0) + C,

which diverges to −∞ as λ(τ) ↑ +∞ and τ ↓ 0. Hence we have F ∗(τ) ↓ −∞ as τ ↓ 0. �

By Theorem 3.1, we could detect the unboundedness or the emptiness of P if we keep an eye

on the variation of F ∗(νk) and p(νk) when νk is small enough and µ is fixed during computation.
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Hence we propose the following IIP algorithm for computing an initial feasible interior point

where the MTY algorithm can start. In the following algorithm we denote

µk ≡ µ(z(k)) =
(x(k))T r(k) + (y(k))T s(k)

n+m
, δk ≡ δ(z(0)) =

∥∥∥∥∥
[

x(k)r(k)

µk

y(k)s(k)

µk

]
− e

∥∥∥∥∥ (3.22)

for k = 0, 1, . . . . Comparing with the algorithm proposed in [6], the new algorithm can detect

the unboundedness or emptiness of P .

Algorithm 3.2. The IIP Algorithm for an Initial Point of the MTY Algorithm

Step 0a. Balance matrix A = (aij)m×n, i.e., for i = 1, . . . ,m, compute ti =
∑n
j=1 |aij |. If

ti > 1, set aij ← aij/ti for j = 1, . . . , n, and bi ← bi/ti.

Step 0b. Compute an interior point (x(0), y(0)) of the set Q according to the method de-

scribed in the proof of Lemma 2.2, i.e., find a proper positive number h0 such that

x(0) = h0e and y(0) = b − Ax(0) > 0. Set w(0) = 0, r(0) = e, s(0) = e. Set

r
(0)
b = 0, r

(0)
c = ATw(0) + r(0) = e, r

(0)
e = 0. Set a convergence tolerance parame-

ter ε > 0. Compute µ0, δ0 and ξ = min{x
(0)
j r

(0)
j

µ0
, j = 1, . . . , n;

y
(0)
i s

(0)
i

µ0
, i = 1, . . . ,m}.

Set γ ∈ [10−8, 10−3], β > 0, τ0 ∈ [2ε, 100ε],M ∈ [3, 10]. Set σ0 = 1, µ̂ = µ0, µ̄ =

min{0.1µ0, 0.5}, ν0 = 1, k = 0.

Step 1. If ‖r(k)
c ‖∞ = νk ≤ ε and bTw(k) > ε, the set P is empty and stop.

If δk ≤ β with ‖r(k)
c ‖∞ = νk ≤ ε, stop and return the results, we find the initial point

for MTY algorithm to start.

Otherwise, if νk ≤ τ0, and pk = eTx(k) still increases a lot, and Fk = νkpk + eT y(k) −
µ̂(
∑n
i=1 lnx

(k)
i +

∑m
i=1 ln y

(k)
i ) still decreases a lot for M consecutive iterations, the

polyhedral set P should be empty or unbounded by Theorem 3.1, stop.

Otherwise go to next step.

Step 2. Let z = z(k), σ = σk, rb = 0, rc = r
(k)
c , re = 0 and solve (3.3) to get the Newton

search direction

∆k = (∆x(k),∆y(k),∆w(k),∆r(k),∆s(k)).

Compute

t = min
{

(x(k))−1∆x(k), (y(k))−1∆y(k), (r(k))−1∆r(k), (s(k))−1∆s(k)
}
,

ζ =
−1

min{t,−0.5}
, αmax = min{1, 0.9995 ∗ ζ}.

Step 3. If αmax = 1, set z(k+1) = z(k) + ∆k. Otherwise use backtracking technique to

compute the smallest nonnegative integer p with αk = θpαmax (where θ < 1) such

that

z(k+1) = z(k) + αk∆k ∈ N−∞(γ),

µ̄ ≤ µ(z(k+1)).
(3.23)



854 Z.H. WANG, Y.H. DAI AND F.M. XU

Moreover, if δk > β, the new point z(k+1) should also satisfy

G(z(k+1)) ≤ (1− 0.01αk)G(z(k)), (3.24)

where G(z) = ‖v − µ(z)e‖ with v =

[
xr

ys

]
.

Step 4. Compute νk+1 = (1−αk)νk, r
(k+1)
c = νk+1e, µk+1 = µ(z(k+1)) and δk+1 = δ(z(k+1))

according to (3.22).

If νk ≥ τ0 and νk+1 < τ0, set µ̃ = max{µk+1, 2µ̄}.

If νk+1 < τ0, set µ̂ = µ̃, σk+1 = 1. Otherwise, if µk+1 > 10µ̄ and αk > 0.5 with

νk+1 ≥ τ0, set σk+1 = 0.2, µ̂ = µk+1; otherwise µk+1 ≤ 10µ̄ or αk ≤ 0.5 with νk+1 ≥ τ0,

set σk+1 = 1, µ̂ = max{µk+1, 2µ̄}. Set k ← k + 1 and go to step 1.

In the above algorithm, we first balance the ill-conditioned matrix A in Step 0a according to

Lemma 2.1. In Step 0b we compute an initial infeasible interior point and set parameters, where

the parameter ε is the convergence tolerance, and the parameter γ is used to determine the wide

neighborhood of the central path N−∞(γ), and νk is the decreasing factor of infeasibility in

k-th iteration which is determined by formula (3.12). Since the purpose of Algorithm 3.2 is to

compute an initial feasible interior point for MTY algorithm to start, we use the parameter µ̄ to

prevent the duality gap µk from becoming too small, which may cause numerical difficulties due

to the ill-conditioning. In fact the parameters σk and µ̂ which are used in system (3.3) will be

fixed when νk or µk is small enough according to Step 4 in the above algorithm. Parameters τ0
and M are used to determine whether the set P is unbounded or empty according to Theorem

3.1. If we find a feasible point z(k) with bTw(k) > ε, the set P is empty by the duality theory of

LP. By Theorem 3.1, when the dual problem (2.4) has a positive feasible point, the sequences

pk = eTx(k) and Fk = νkpk+eT y(k)−σkµ̂(
∑n
i=1 lnx

(k)
i +

∑m
i=1 ln y

(k)
i ) will converge as k → +∞.

On the contrary, when the dual problem (2.4) has no positive feasible point, the set P is either

empty or unbounded by Lemma 2.5, and we will have pk ↑ +∞, Fk ↓ −∞ as k → +∞.

Therefor in Step 1 of Algorithm 3.2 we will keep an eye on the sequences {pk} and {Fk}, and

stop immediately when we find the variations of the sequences {pk} and {Fk} are still very big

for M consecutive iterations when νk < τ0. We usually set M = 3 in the implementation of

the algorithm. We could have more certainty about the emptiness or unboundedness of the

set P when we use bigger M . However, this parameter should not be too big to affect the

performance of the algorithm.

Lemma 3.1. In Algorithm 3.2, for any ε > 0, there exists a constant C > 0 such that αk ≥
C

(n+m)2 for all k = 0, 1, . . . , where C
(n+m)2 < 1.

The proof of Lemma 3.1 is a little long, but the techniques used are standard in IIP analyses

which have been proposed in [10,16,28,33], etc. For brevity and clarity, we put the proof in the

appendix. It is worth pointing out that the parameter C is a constant relative to the problem,

and it does not depend on m and n (for more details, please read the the proof in the appendix).

With the help of Lemma 3.1, we get the following result.

Theorem 3.2. For any ε > 0, Algorithm 3.2 will stop in finite steps, and its worst case

complexity is O((n+m)2(ln 1
ε )).



A Robust Interior Point Method for Analytic Center 855

Proof. By Lemma 3.1, (3.12) and (3.14), we have

νk = (1− αk−1)νk−1 =

k−1∏
i=0

(1− αi) ≤
[
1− C

(n+m)2

]k
,

‖r(k)
c ‖∞ = ‖νke‖∞ = νk ≤

[
1− C

(n+m)2

]k
.

(3.25)

By the fact ln(1 + x) ≤ x for x > −1, we have
[
1− C

(n+m)2

]k
≤ ε when k ≥ (n+m)2

C ln 1
ε . Let

k1 = d (n+m)2

C ln 1
εe. Then by (3.25) we have νk = ‖r(k)

c ‖∞ ≤ ε ≤ τ0 when k ≥ k1. If P is empty

or unbounded, the algorithm will stop after another M consecutive iterations according to Step

1 of Algorithm 3.2. Hence the algorithm will stop in O((n+m)2(ln 1
ε )) iterations. Otherwise the

set P is bounded and nonempty, and the generated iteration sequence {z(k)} lies in a compact

set. We have δk > β when k ≥ k1 according to Step 1 of Algorithm 3.2 in this case. Then by

Step 3 of Algorithm 3.2 for k > k1 we have

G(z(k)) ≤ (1− 0.01αk−1)G(z(k−1)) ≤ · · · ≤
k−1∏
j=k1

(1− 0.01αj)G(z(k1)).

By Lemma 3.1 we get

G(z(k)) ≤
k−1∏
j=k1

(1− 0.01αj)G(z(k1)) ≤
[
1− 0.01C

(n+m)2

]k−k1
G(z(k1)). (3.26)

In the same way as above we get G(z(k)) ≤ βµ̄ when k−k1 ≥ 100(n+m)2

C ln G(z(k1))
βµ̄ . Since β, µ̄, ε

are positive constants, and G(z(k)) is bounded on a compact set, we have 100(n+m)2

C ln G(z(k1))
βµ̄ =

O((n+m)2(ln 1
ε )). Hence after O((n+m)2(ln 1

ε )) iterations, by (3.23) and the above formulae

we have

δ(z(k)) =
G(z(k))

µ(z(k))
≤ G(z(k))

µ̄
≤ β,

and the algorithm will stop according to Step 1. �

After getting an initial point for the MTY algorithm to start, we will implement the MTY

algorithm until we get the analytic center of the set P , or find the set P is infeasible. For

completeness, we present the full algorithm as follows.

Algorithm 3.3. The Algorithm for Computing the Analytic Center

Step 1. Call Algorithm 3.2 with β = 0.25. If Algorithm 3.2 get an initial point z(i) =

(x(i), y(i), w(i), r(i), s(i)) satisfying ‖r(i)
c ‖ ≤ ε and δ(z(i)) ≤ β = 0.25 at i-th iteration,

set k = i, β = 0.25 and go to Step 2. Otherwise, stop.

Step 2. If bTw(k) > ε, by Lemma 2.2 we know P = ∅, stop.

Step 3. (Predictor) Set σ = 0, z = z(k) = (x(k), y(k), w(k), r(k), s(k)), µ̂ = µ(z) and solve (3.3)

to get the direction ∆z = (∆x,∆y,∆w,∆r,∆s).



856 Z.H. WANG, Y.H. DAI AND F.M. XU

Step 4. Compute the largest α̂ ∈ (0, 1] such that ẑ = z + α̂∆z ∈ N (2β), which can be done

by solving two quadratic equations in one variable.

Step 5. (Corrector) Set σ = 1, µ̂ = (1−α̂)µk, z = ẑ and solve (3.3) to get the search direction

∆z = (∆x,∆y,∆w,∆r,∆s), and set z̄ = ẑ + ∆z.

Step 6. If (n + m)µ < ε, stop and return the solution; Otherwise set k ← k + 1, z(k) = z̄

and go to Step 3.

According to the results gotten in [17], [31], [3] and [8], we have the following results.

Theorem 3.3. Suppose the set P = {x ∈ Rn | Ax = b, x ≥ 0} is nonempty and bounded. Then

the sequence z(k) = (x(k), y(k), w(k), r(k), s(k)) generated by the above MTY algorithm converges

to z∗ = (x∗, y∗, w∗, r∗, s∗) which is the analytic center of the primal-dual optimal solution set

of problem (2.1) and its dual (2.4) with y∗ = 0, and x∗ is the analytic center of the polytope P .

The local convergence rate in duality gap is quadratic, and the worst case complexity of Step

3–Step 6 in Algorithm 3.3 is O(
√

(n+m) ln 1
ε ).

4. Some Numerical Results

In this section we will present some numerical results for academic purpose. All test problems

are constructed by using the well-known Hilbert matrices, which are seriously ill-condtioned as

the dimension increases. All the numerical tests are done under the MATLAB environment

in Windows 7 system on a laptop computer. The MATLAB version we used is R2018b. The

parameters of Algorithm 3.3 are set as ε = 10−6, τ0 = 10−5,M = 3, γ = 10−8 for all test

problems, and its corresponding numerical results will be denoted by “IIPMTY”.

Letting Hm be an m × m Hilbert matrix, i.e., we have H = ( 1
i+j−1 )m×m. First let us

consider the following ill-conditioned polytope

Pm =
{
x ∈ Rn | Ax = b, x ≥ 0

}
,

where A = [Hm, Hm], b = Hme, and n = 2m. It is easy to check that the analytic center of Pm
is x̄ = (0.5, . . . , 0.5).

For comparison, we will use the interior point method used in MATLAB’s optimization tool

linprog to solve the following problem:

min 0Tx

s.t. Ax = b,

x ≥ 0.

(4.1)

The corresponding numerical results is denoted by “linprog-1”. We also use the interior point

method in linprog to solve problem (2.1) and denote corresponding numerical results by “linprog-

2”. We can first use the function “optimoptions” in MATLAB to set the options of the tool

linprog :

options = optimoptions(‘linprog’,‘Algorithm’, ‘interior-point’,...

‘Display’, ‘iter’, ‘OptimalityTolerance’, 1e-6,‘maxiter’, 1000);
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Then we call the optimization tool linprog in MATLAB by using the parameter options.

We will also use the interior methods in MATLAB’s optimization tool fmincon to compute

the following problem

min −
n∑
j=1

lnxj

s.t. Ax = b,

x ≥ 0.

(4.2)

The corresponding numerical results will be denoted by “fmincon”. The options for fmincon is

set as follows:

options = optimoptions(@fmincon,‘SpecifyObjectiveGradient’,true, ...

‘Display’, ‘iter’, ‘Algorithm’, ‘interior-point’,...

‘OptimalityTolerance’, 1e-6, ‘maxiter’, 1000);

which means that fmincon will use its interior-point algorithm to compute.

Numerical results for computing the analytic center of Pm are collected in Table 4.1. The

column “m” in the table is the dimension of the Hilbert matrix H. The column “Algo.”

indicates which method is used. The columns f and g are the function values of

f(x) = −
n∑
j=1

lnxj and g(x) = ‖Ax− b‖

at the numerical solution x̄ obtained by the corresponding algorithm respectively. The function

value f(x̄) indicates whether the solution x̄ is the analytic center, and g(x̄) indicates whether

the solution x̄ is feasible. In this two columns, the symbol “—” means that the corresponding

method failed to obtain a solution, and in column “f” the symbol “+∞” means that there exists

at least one xj whose value is 0 in the solution. The column “No.” represents the iteration

number of the corresponding algorithm needed to obtain the solution x̄. The column “Opt.”

indicates whether the corresponding method stops with its optimality measure being satisfied,

with the symbol “Y” meaning “Yes”, the symbol “N” meaning “No”, and the symbol “P”

meaning “possible optimal”. The column “Time” is the CPU time (in seconds) needed by the

corresponding algorithm to compute the problem.

By the results in Table 4.1, we can see that only for m = 10, the method “linprog-1”

succeeded in obtaining the optimal solution. For other problems it failed, and at the end of its

computation it displayed either

Solver stopped prematurely. Linprog stopped because it exceeded the iteration limit,

options.MaxIterations = 1000.

when the iteration No. = 1000, or

Linprog stopped because it was unable to find a point that satisfies the constraints

within the default value of the constraint tolerance.

when the iteration No. < 1000.

The method “linprog-2” succeeded in obtaining optimal solutions according to its optimiza-

tion measure for m = 10, 20, 50, 100. But it failed for m = 300, 500, and displayed similar

messages as the method “linprog-1”. Comparing numerical results obtained by “linprog-1”

with “linprog-2”, we can see that problem (2.1) is much more stable than problem (4.1), as
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Table 4.1: Numerical Results for Am = [Hm, Hm], b = Hme.

m Algo. No. f g Opt. Time(s)

linprog-1 6 +∞ 4.110e-07 Y 0.235

linprog-2 5 +∞ 1.421e-09 Y 0.243
10

fmincon 39 13.863 1.286e-13 Y 1.392

IIPMTY 11 13.863 8.674e-09 Y 0.071

linprog-1 1001 — — N 0.285

linprog-2 5 +∞ 1.101e-08 Y 0.266
20

fmincon 15 27.726 1.528e-13 Y 0.763

IIPMTY 13 27.726 3.589e-11 Y 0.092

linprog-1 1001 — — N 0.820

linprog-2 6 +∞ 6.305e-08 Y 0.241
50

fmincon 14 69.315 2.336e-13 Y 1.021

IIPMTY 16 69.315 1.780e-10 Y 0.127

linprog-1 337 — — N 1.062

linprog-2 5 +∞ 1.299e-07 Y 0.246
100

fmincon 13 138.629 1.483e-13 Y 1.117

IIPMTY 18 138.629 1.096e-10 Y 0.390

linprog-1 1001 — — N 41.905

linprog-2 19 — — N 1.401
300

fmincon 156 415.888 3.855e-13 N 166.530

IIPMTY 22 415.888 2.379e-11 Y 3.600

linprog-1 676 — — N 149.613

linprog-2 8 — — N 3.548
500

fmincon 77 693.147 6.652e-13 P 385.377

IIPMTY 24 693.147 6.288e-11 Y 11.828

indicated by Lemma 2.1. By numerical results obtained by ‘linprog-2” in column “f”, we can

see that the interior method used in linprog, which is based on LIPSOL [34], can not guarantee

the iteration sequence generated converges to the analytic center of the optimal solution set.

When we used the tool fmincon to solve problem (4.2), it also met some numerical difficulties

during computation and displayed the following message

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate.

RCOND = 1.013015e-016.

or something alike. However, the method fmincon still obtained optimal solutions for m =

10, 20, 50, 100, 300 according to its optimization measure, i.e., stopped with the “exitflag = 1”.

For m = 500, the method fmincon stopped with the “exitflag = 2”, and displayed the following

message:

Local minimum possible. Constraints satisfied.

Change in x was less than options.StepTolerance and maximum constraint violation

was less than options.ConstraintTolerance.

For all test problems, the method fmincon got the approximate analytic center according to

the column f in Table 4.1. However, its CPU time is much more than our method “IIPMTY”
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for all test problems. For every test problem, our method “IIPMTY” terminated with the

optimal rule being satisfied, and got the approximate analytic center with the least CPU time

(in seconds). From the numerical results in Table 4.1, we can see that the performance of our

method “IIPMTY” is the most effective and robust one.

Next we consider computing the analytic center of the following polyhedral set

P̃m =
{
x ∈ Rn | Ax = b, x ≥ 0

}
,

where A = [Hm,−Hm], b = Hme, n = 2m, and m = 10, 20, 50, 100, 300, 500. It is easy to

check that the polyhedral set P̃m is unbounded, hence the analytic center of P̃m does not exist.

For this kind of problems, we only compare our method “IIPMTY” with “fmincon”, since

there is no sense to compare it with the methods “linprog-1” and “lingprog-2” for this kind of

problems. The method “fmincon” was not able to find the unboundedness of the set P̃m for all

test problems with m = 10, 20, 50, 100, 300, 500, and did a lot of unnecessary computations until

they cannot move any further. They also gave some wrong judgements about the solution they

got. For example, sometimes the method “fmincon” reported that it find a local minimum, but

in fact there is no local minimum by the strong convex properties of problem (4.2). However,

for all this kind of test problems with m = 10, 20, 50, 100, 300, 500 our method “IIPMTY”

succeeded in detecting the unboundedness of the set P̃m only by 13 iterations.

5. Conclusions

In this paper we have discussed how to compute the analytic center of the polyhedral set

P = {x ∈ Rn | Ax = b, x ≥ 0}, where the matrix A ∈ Rm×n may be badly ill-conditioned with

errors in A and b. After some studies, it is surprising to find that we only need to transform the

problem into the well-known first-phase problem in the simplex method for LP, and compute

the analytic center of the optimal solution set of the transformed problem. The new method can

effectively reduce the ill-conditioning of the coefficient matrix A, and can detect the infeasibility

or the unboundedness of the set P during computation. In this new method, we proposed a

robust and efficient algorithm for computing the initial point for the MTY algorithm to start.

Then we combined it with the well-known MTY algorithm the compute the analytic center of

the set P . The mathematical correctness of our method is rigorously proved, and its convergent

properties and worst case complexity analysis are presented. Finally, some numerical tests only

for academic purposes are given, which show the robustness and effectiveness of our method.

In our computations, we find out that the parameter β in the MTY algorithm sometimes is

too restrictive which would slow the convergence rate before the quadratic convergence property

of the algorithm is shown. When the analytic center of the optimal solution set is needed, one

simple way to improve the efficiency of the MTY algorithm is to combine it with the Mehrotras

predictor-corrector method proposed in [14] while ensuring that the generated iteration sequence

converges to the analytic center. We will do further studies in this direction.
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Appendix A. Proof of Lemma 3.1

Proof. According to Step 0b, Step 3, and Step 4 of Algorithm 3.2, we always have:

µ̄ ≤ µk ≤ µ̂ ≤ 2µk, σkµk ≥ 2µ̄, σkµ̂ ≥ 2µ̄. (A.1)

For simplicity, denote Ã = [A, I], x̃ =

[
x

y

]
, s̃ =

[
r

s

]
, w̃ = w, c =

[
0

e

]
. Then the

system (3.2) can be described as

Ãx̃ = b,

ÃT w̃ + s̃ = c,

x̃s̃ = µe,

x̃ ≥ 0, s̃ ≥ 0,

(A.2)

and the corresponding Newton system (3.3) can be described as

Ã∆x̃ = −r̃b,
ÃT∆w̃ + ∆s̃ = −r̃c,
s̃∆x̃+ x̃∆s̃ = σµ̂e− x̃s̃,
x̃ > 0, s̃ > 0,

(A.3)

where r̃b = Ãx̃− b, r̃c = ÃT w̃ + s̃− c. Let (x̃(k), w̃(k), s̃(k)) be the iteration sequence generated

by Algorithm 3.2. Denote r̃
(k)
b = Ãx̃(k) − b, r̃(k)

c = ÃT w̃(k) + s̃(k) − c, by Step 3 of Algorithm

3.2 and (A.3) we have

(x̃(k+1), w̃(k+1), s̃(k+1)) = (x̃(k), w̃(k), s̃(k)) + αk(∆x̃(k),∆w̃(k),∆s̃(k)),

r̃
(k+1)
b = Ãx̃(k+1) − b = r̃

(k)
b − αkr̃

(k)
b = (1− αk)r̃

(k)
b ,

r̃(k+1)
c = ÃT w̃(k+1) + s̃(k+1) − c = r̃(k)

c − αkr̃(k)
c = (1− αk)r̃(k)

c .

(A.4)

Denote A = {(x,w, s) | Ãx = b, ÃTw + s = c}. With (x̂(0), ŵ(0), ŝ(0)) ∈ A, we construct the

following feasible auxiliary sequences according to [33]:

x̂(k+1) = x̂(k) + αk(x̃(k) + ∆x̃(k) − x̂(k)),

ŵ(k+1) = ŵ(k) + αk(w̃(k) + ∆w̃(k) − ŵ(k)),

ŝ(k+1) = ŝ(k) + αk(s̃(k) + ∆s̃(k) − ŝ(k)).

(A.5)

It is easy to check that (x̂(k), ŵ(k), ŝ(k)) ∈ A for k = 0, 1, · · · . Denote

ηxk = x̃(k) − x̂(k), ηwk = w̃(k) − ŵ(k), ηsk = s̃(k) − ŝ(k),

then by (A.4)and (A.5) we have

ηxk = x̃(k) − x̂(k) = (1− αk−1)(x̃(k−1) − x̂(k−1)) = νkη
x
0 ,

ηwk = w̃(k) − ŵ(k) = (1− αk−1)(w̃(k−1) − ŵ(k−1)) = νkη
w
0 ,

ηsk = s̃(k) − ŝ(k) = (1− αk−1)(s̃(k−1) − ŝ(k−1)) = νkη
s
0,

(A.6)

where νk is defined by (3.12).

Since (x̂(k), ŵ(k), ŝ(k)) ∈ A, for any (x̄, w̄, s̄) ∈ A, we have

(x̂(k) − x̄)T (ŝ(k) − s̄) = 0.
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By x̂(k) = x̃(k) − ηxk , ŝ(k) = s̃(k) − ηsk and the above formula we get

(x̃(k))T (ηsk + s̄) + (s̃(k))T (x̄+ ηxk)

= x̄T s̄+ (x̃(k))T s̃(k) + (ηxk)T ηsk + x̄T ηsk + s̄T ηxk . (A.7)

By Lemmas 2.2 and 2.3 the primal-dual optimal solution set S of (2.1) and its dual (2.4) (which

is equal to the solution set of system (3.1)) is nonempty. Let (x̃∗, w̃∗, s̃∗) ∈ S and in (A.7) set

(x̄, w̄, s̄) = (x̂(0), ŵ(0), ŝ(0)) = (x̃∗, w̃∗, s̃∗),

then by (A.6), x̄s̄ = 0 in (3.1) and νk < 1 we get

νk

(
(s̃(0))T x̃(k) + (x̃(0))T s̃(k)

)
≤ (x̃(k))T s̃(k) + ν2

k(η̄x0 )T η̄s0 + νk(x̄T η̄s0 + s̄T η̄x0 ),

where η̄x0 = x̃(0) − x̃∗, η̄s0 = s̃(0) − s̃∗. Denote ñ = n + m, ξ0 = min{x̃(0)
i , s̃

(0)
i , i = 1, . . . , ñ}, by

µk ≥ µ̄, 1 ≥ νk and (x̃(k))T s̃(k) = ñµk we get

νk(‖x̃(k)‖1 + ‖s̃(k)‖1) ≤ C1µk, (A.8)

where

C1 =
1

ξ0

(
ñ+

νk((η̄x0 )T η̄s0 + x̄T η̄s0 + s̄T η̄x0 )

µ̄

)
= O(ñ).

Denote d(k) =
√
x̃(k)/s̃(k), where the operations are componentwise. By the third equation

in (A.3) we have

(d(k))−1∆x̃(k) + d(k)∆s̃(k) = hk,

where hk = σkµ̂√
x̃(k)s̃(k)

−
√
x̃(k)s̃(k). Hence

(d(k))−1(∆x̃(k) + ηxk) + d(k)(∆s̃(k) + ηsk) = hk + (d(k))−1ηxk + d(k)ηsk. (A.9)

Since Ãηxk = Ãx̃(k) − b = r̃
(k)
b and ÃT ηwk + ηsk = ÃT w̃(k) + s̃(k) − c = r̃

(k)
c , by (A.3) we have

Ã(∆x̃(k) + ηxk) = −r̃(k)
b + r̃

(k)
b = 0,

ÃT (∆w̃(k) + ηwk ) + (∆s̃(k) + ηsk) = −r̃(k)
c + r̃(k)

c = 0.
(A.10)

Hence (∆x̃(k) + ηxk) ∈ N(Ã), (∆s̃(k) + ηsk) ∈ R(ÃT ), where N(Ã) is the null space of Ã and

R(ÃT ) is the range space of ÃT , and we have (∆x̃(k) + ηxk)T (∆s̃(k) + ηsk) = 0. Denote by P̃ the

orthogonal projection onto the subspace N(ÃDk), where Dk = diag(d(k)), by (A.9) and (A.10)

we get

(D(k))−1∆x̃(k) = P̃ hk − (I − P̃ )(D(k))−1ηxk + P̃D(k)ηsk,

D(k)∆s̃(k) = (I − P̃ )hk + (I − P̃ )(D(k))−1ηxk − P̃D(k)ηsk.
(A.11)

For convenience, we will denote (D(k))−1∆x̃(k), (D(k))−1ηxk andD(k)ηsk as (d(k))−1∆x̃(k), (d(k))−1

ηxk and d(k)ηsk respectively, where the multiplications between vectors are all componentwise.

Since P̃ and I − P̃ are orthogonal projections, we have

‖(d(k))−1∆x̃(k)‖ ≤ ‖hk‖+ ‖(d(k))−1ηxk‖+ ‖d(k)ηsk‖,

‖d(k)∆s̃(k)‖ ≤ ‖hk‖+ ‖(d(k))−1ηxk‖+ ‖d(k)ηsk‖.
(A.12)
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Since x̃
(k)
i s̃

(k)
i ≥ γµk and 0.2 = σmin ≤ σk ≤ σmax = 1 according to Algorithm 3.2, by (A.1) we

have

‖hk‖2 = ‖ σkµ̂√
x̃(k)s̃(k)

−
√
x̃(k)s̃(k)‖2

=

ñ∑
i=1

(
(σkµ̂)2

x̃
(k)
i s̃

(k)
i

− 2σkµ̂+ x̃
(k)
i s̃

(k)
i

)
≤ ñ

(
4σ2

max

γ
− 2σmin + 1

)
µk.

By (A.8) we get

‖(d(k))−1ηxk‖ = ‖
√

1

x̃(k)s̃(k)
s̃(k)νkη

x
0‖

≤ 1

γµk
νk‖s̃(k)‖1‖ηx0‖ ≤

C1‖ηx0‖√
γ

√
µk.

Similarly we have

‖d(k)ηsk‖ = ‖
√

1

x̃(k)s̃(k)
x̃(k)νkη

s
0‖ ≤

C1‖ηs0‖√
γ

√
µk.

Then by (A.12) we get

‖(d(k))−1∆x̃(k)‖ ≤ C2
√
µk, ‖d(k)∆s̃(k)‖ ≤ C2

√
µk, (A.13)

where

C2 =

√
ñ(

4σ2
max

γ
− 2σmin + 1) +

C1(‖ηs0‖+ ‖ηx0‖)√
γ

= O(ñ).

By (A.13) we get

|(∆x̃(k))T∆s̃(k)| ≤ C2
2µk, ‖∆x̃(k)∆s̃(k)‖ ≤ C2

2µk. (A.14)

Denote t1 = (∆x̃(k))T ∆s̃(k)

ñ . By 0 < γ < 0.1, ñ > 1 and (A.14) we get

‖∆x̃(k)∆s̃(k) − γt1e‖ ≤ C2
2µk + γ

√
ñ
C2

2µk
ñ
≤ (1 + γ)C2

2µk, (A.15a)

‖∆x̃(k)∆s̃(k) − t1e‖ ≤ C2
2µk +

√
ñ
C2

2µk
ñ
≤ 2C2

2µk. (A.15b)

Denote x(α) = x̃(k) + α∆x̃(k), s(α) = s̃(k) + α∆s̃(k), by (A.3) we have

x(α)s(α) = (1− α)x̃(k)s̃(k) + ασkµ̂e+ α2∆x̃(k)∆s̃(k), (A.16)

µ(α) =
(x(α))T s(α)

ñ
= (1− α)µk + ασkµ̂+ t1α

2. (A.17)

Define

ᾱ = min

{
σmin

2C2
2

,
0.99β

2C2
2

}
. (A.18)
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Then for any α ∈ [0, ᾱ], by (A.1), (A.14)–(A.18) and 0 < γ < 0.1, we get

g1(α) = x(α)s(α)− γµ(α)e = (1− α)(x̃(k)s̃(k) − γµke)

+ ασkµ̂(1− γ)e+ α2(∆x̃(k)∆s̃(k) − γt1e)

≥ α[σkµ̂(1− γ)− α‖∆x̃(k)∆s̃(k) − γt1e‖]e
≥ α[σminµk(1− γ)− ᾱ(1 + γ)C2

2µk]e

≥ α
(

0.9σmin − 1.1 · σmin

2C2
2

· C2
2

)
µke > 0, (A.19)

µ(α) = (1− α)µk + ασkµ̂+ t1α
2 ≥ (1− α)µ̄+ αµ̄+ α

(
0.5σkµk −

C2
2µk
ñ

α

)
≥ µ̄+ αµk

(
0.5σmin − C2

2 ·
σmin

2C2
2

)
≥ µ̄. (A.20)

When δk > β, which means ‖x̃(k)s̃(k) − µke‖ > βµk, then for any α, 0 ≤ α ≤ ᾱ we have

g2(α) = ‖x(α)s(α)− µ(α)e‖

= ‖(1− α)(x̃(k)s̃(k) − µke) + α2(∆x̃(k)∆s̃(k) − t1e)‖

≤ (1− 0.01α)‖x̃(k)s̃(k) − µke‖

− α(0.99‖x̃(k)s̃(k) − µke‖ − α‖∆x̃(k)∆s̃(k) − t1e)‖)

≤ (1− 0.01α)‖x̃(k)s̃(k) − µke‖ − α[0.99βµk − α(2C2
2µk)]

≤ (1− 0.01α)‖x̃(k)s̃(k) − µke‖ − αµk[0.99β − 0.99β

2C2
2

(2C2
2 )]

= (1− 0.01α)‖x̃(k)s̃(k) − µke‖. (A.21)

By (A.19)–(A.21) and Step 3 in the algorithm, we have αk ≥ θᾱ = for each k = 0, 1, · · · . By

the definition of C2 below (A.13), and by the definition of ᾱ in (A.18), there exists a constant

C̃ > 0 such that ᾱ ≥ C̃
θñ2 . Therefore we have αk ≥ C

ñ2 for each k = 0, 1, · · · , where C = C̃
θ .
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