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Abstract. In this paper, an initial boundary value problem of the space-time fractional
diffusion equation is studied. Both temporal and spatial directions for this equation
are discreted by the Galerkin spectral methods. And then based on the discretization
scheme, reliable a posteriori error estimates for the spectral approximation are derived.
Some numerical examples are presented to verify the validity and applicability of the
derived a posteriori error estimator.
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1 Introduction

Nowadays, fractional derivatives have become an important tool to describe many dif-
ferent types of complex mechanical and physical behaviors. Moreover, fractional cal-
culus theory has been successfully applied in many fields such as anomalous diffusion,
viscoelastic materials, geophysics and biomedical engineering. Generally speaking, frac-
tional calculus operator is non-local, so the numerical methods which are very effective
for calculating integral order differential equations may be completely invalid for frac-
tional differential equations (FDEs). Therefore, the numerical solution of fractional dif-
ferential equations has attracted more and more attention of mathematical workers [6,12,
20].
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During the last decades, there appears a growing interest in developing numeri-
cal methods for solving FDEs. And the early methods mainly include finite difference
method and finite element method. For example, Deng [5] discussed a finite element
method for the fractional Fokker-Planck equation and a convergence rate O(k2−α+hµ)
was obtained. Wang and Yang [22] studied finite element methods for variable-coefficient
conservative fractional elliptic differential equations and showed that the weak formu-
lation is well posed. Wang [21] investigated fast alternating-direction finite difference
methods for three-dimensional space-fractional diffusion equations, which effectively re-
duced the computation and storage requirements of each iteration. Nochetto, Otárola
and Salgado [19] studied the finite element approximation for parabolic equations with
fractional diffusion and the stability and error estimates of the scheme were given. Jin
et al. [10] analyzed Galerkin finite element methods for inhomogeneous fractional diffu-
sion equation and the L2- and H

α
2 -norm error estimates were derived for the semidiscrete

scheme and L2-norm error estimates were obtained for the fully discrete schemes. Zeng
et al. [28] proposed a numerical method based on a fractional linear multistep methods
in time and the FEM in space for time-fractional subdiffusion equation with Dirichlet
boundary conditions. Bu et al. [1] investigated finite difference/finite element method
for two-dimensional space and time fractional Bloch-Torrey equations, the stability and
convergence of the semidiscrete scheme and fully discrete scheme were proved. Hou,
Tang and Yang [8] considered the fully discretized Crank–Nicolson scheme for fractional-
in-space Allen-Cahn equations and showed that the numerical solutions satisfy discrete
maximum principle under reasonable time step constraint. Recently, there are many
works for the fractional differential equations [11,26]. For example, Yue et al. [27] consid-
ered a fully finite element adaptive adaptive algebraic multigrid (AMG) method for time-
space Caputo-Riesz fractional diffusion equations, which have the well robustness and
high efficiency compared with the classical AMG method. Xing and Wen [23] considered
a class of two-dimensional Riesz space-fractional diffusion equations by the alternating
direction implicit Crank-Nicholson (ADI-CN) method, which reduces the computational
complexity and is unconditionally stable. Gunzburger and Wang [7] studied the time
fractional partial differential equation by the Crank-Nicolson method, which achieves
second-order convergence in time under the regularity assumptions of the source and
initial data.

Fractional differential equations have non-local operators, which will inevitably lead
to the overall dependence of numerical solutions, i.e., the full algebraic system. So the
advantage of sparsity for the low-order method over the high-order method cannot be
reflected. As a global high-precision algorithm, spectral methods have apparent superi-
ority and become the preferred algorithm to solve this kind of equation. Several spectral
methods for FDEs have been proposed recently, for instance Lin and Xu [16] proposed
a numerical method based on a finite difference scheme in time and Legendre spectral
method in space for time fractional diffusion equation. They also proposed a space-time
spectral method for the time fractional diffusion equation and derived a priori error es-
timate [13]. Chen, Shen and Wang [4] considered the General Jacobi functions Petrov-
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Galerkin approximation for the fractional diffusion equation and showed that the true
spectral accuracy can be attained if the data are smooth enough. Mao and Shen [18] de-
veloped Efficient Spectral-Galerkin algorithms for multi-dimensional fractional elliptic
equations with variable coefficients in conserved form as well as non-conserved form and
the corresponding weighted error estimation was obtained. Huang et al. [9] considered
a nonpolynomial-based spectral collocation method and its well-conditioned variant are
proposed and analysed. In [24], the spectral collocation methods were adopted to solve
the time-fractional diffusion-wave equations and the corresponding convergence anal-
ysis was obtained. We proposed the spectral method for space-time fractional optimal
control problem with state constraint and in which a priori and a posteriori error esti-
mates were obtained [15]. As we all known, a posteriori error estimator is computable
and can reflect the information of the numerical solutions. Therefore it is the key to ob-
tain the possible optimal approximation by the least computation. There are some results
of a posteriori error estimates for fractional differential problems, see reference [2, 3, 25].

In this study, Let Ω := Λ× I, where Λ = (0,1) and I = (0,1] are space and time do-
main respectively throughout the paper, we consider the following space-time fractional
diffusion equation:


0∂α

t u(x,t)−λ0∂
β
xu(x,t)= f (x,t), x∈ (0,1), t∈ (0,1],

u(0,t)=0, u(1,t)=0,
u(x,0)=0,

(1.1)

where the derivative operators are Riemann-Liouville derivatives and α, β, λ are real
numbers such that 0<α<1, 1<β<2, λ≥0.

The article layout is as follows. Some basic concepts and relevant properties of frac-
tional derivatives are introduced in Section 2. In Section 3, the variational formulation
of problem (1.1) is discussed and the existence and stability of the variational formula-
tion are given. In Section 4, the Galerkin spectral methods are proposed to obtained the
numerical solution. Moreover, a posteriori error estimates are derived. Numerical im-
plementation and numerical examples are showed in Section 5. Finally, we conclude this
article with a conclusion in Section 6.

2 Preliminaries

In this section, we first review some basic concepts and relevant properties of fractional
derivatives and introduce the solution space, which are useful to our analysis hereafter.

Definition 2.1 (Riemann-Liouville fractional derivative, [6,20]). For ∀x∈(a,b), s∈[n−1,n),
n∈N, the left-hand side and right-hand side Riemann-Liouville fractional derivative of
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order s are defined respectively as follows:

a∂s
xv(x)=

1
Γ(n−s)

dn

dxn

∫ x

a

v(t)
(x−t)s−n+1 dt, (2.1a)

x∂s
bv(x)=

(−1)n

Γ(n−s)
dn

dxn

∫ b

x

v(t)
(t−x)s−n+1 dt, (2.1b)

where Γ(·) is the usual Gamma function.

Definition 2.2 (Caputo fractional derivative, [6, 20]). For ∀x∈ (a,b), s∈ [n−1,n), n∈N,
the left-hand side and right-hand side Caputo fractional derivative of order s are defined
respectively as follows:

C
a ∂s

xv(x)=
1

Γ(n−s)

∫ x

a

vn(t)
(x−t)s−n+1 dt, (2.2a)

C
x ∂s

bv(x)=
(−1)n

Γ(n−s)

∫ b

x

vn(t)
(t−x)s−n+1 dt. (2.2b)

One can verify by integration by parts that, for ∀x ∈ (a,b), s ∈ [n−1,n), Riemann-
Liouville and Caputo fractional derivatives have the following relationships:

a∂s
xv(x)=C

a ∂s
xv(x)+

n−1

∑
k=0

vk(a)
Γ(1+k−s)

(x−a)k−s, (2.3a)

x∂s
bv(x)=C

x ∂s
bv(x)+

n−1

∑
k=0

(−1)kvk(b)
Γ(1+k−s)

(b−x)k−s. (2.3b)

Let C be the positive real number independent of any functions. For the sake of brevity,
we denote A.B, (A&B) by A≤CB, (A≥CB) respectively. And the notation A∼=B means
that A.B.A.

Now, we recall some spaces endowed with norms. It is well known that the inner
product and norm of the space L2(Λ) are defined by

(u,v)Λ =
∫

Λ
uvdΛ, ‖u‖0,Λ =(u,u)

1
2
Λ , (2.4)

respectively.
Let C∞

0 (Λ) be the space of smooth functions with compact support in Λ. Let Hs(Λ)
and Hs

0(Λ) be the usual Sobolev spaces equipped with usual norms ‖·‖s,Λ, where s is a
nonnegative real number. Then we know that the space Hs

0(Λ) is denoted as the closure
of C∞

0 (Λ) with respect to the norm ‖·‖s,Λ.
Now, we define the space

Bs,θ (Ω) :=Hs
0
(

I,L2(Λ)
)
∩L2

(
I,Hθ

0(Λ)
)

, (2.5)
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equipped with the norm:

‖v‖Bs,θ(Ω) :=
(
‖v‖2

Hs
0(I,L2(Λ))+‖v‖

2
L2(I,Hθ

0 (Λ))

) 1
2
, (2.6)

where ‖v‖Hs
0(I,L2(Λ)) :=‖‖v(·,t)‖0,Λ‖s,I , ‖v‖L2(I,Hθ

0 (Λ)) :=‖‖v(·,t)‖θ,Λ‖0,I .
One can verified that Bs,θ(Ω) is a Banach space.

Definition 2.3 ([14]). Let s>0, we define the space:

Hs
l (Λ) :={v|‖v‖Hs

l (Λ)<∞}, (2.7)

endowed with semi-norm and norm

|v|Hs
l (Λ) :=‖0∂s

xv‖0,Λ , ‖v‖Hs
l (Λ) :=

(
‖v‖2

0,Λ+|v|2Hs
l (Λ)

) 1
2
.

Definition 2.4 ([14]). Let s>0, we define the space:

Hs
r (Λ) :={v|‖v‖Hs

r (Λ)<∞}, (2.8)

equipped with semi-norm and norm

|v|Hs
r (Λ) :=‖x∂s

1v‖0,Λ, ‖v‖Hs
r (Λ) :=

(
‖v‖2

0,Λ+|v|2Hs
r (Λ)

) 1
2
.

Definition 2.5 ([14]). Let s>0, we define the space:

Hs
c(Λ) :={v|‖v‖Hs

c (Λ)<∞}, (2.9)

equipped with semi-norm and norm

|v|Hs
c (Λ) := |(0∂s

xv,x∂s
1v)Λ|

1
2 , ‖v‖Hs

c (Λ) :=
(
‖v‖2

0,Λ+|v|2Hs
c (Λ)

) 1
2
.

The following lemma shows the relationship between the spaces Hs
l (Λ), Hs

r (Λ), Hs
c(Λ)

and Hs
0(Λ), which can be reference in [13].

Lemma 2.1. Let s>0, s 6=n+ 1
2 , then the semi-norms and norms of spaces Hs

l (Λ), Hs
r (Λ), Hs

c(Λ)
and Hs

0(Λ) are equivalent in space C∞
0 (Λ).

For the sake of discussion of the weak formulation, the following lemmas are needed.

Lemma 2.2 ([14]). If 0< s<2, s 6=1, w,v∈H
s
2
0 (Λ), then

(0∂s
xw,v)Λ =

(
0∂

s
2
x w,x∂

s
2
1 v
)

Λ
. (2.10)

Lemma 2.3 ([13]). If the real number s>0, then for v∈Hs
0(Λ), we have

(0∂s
xv,x∂s

1v)Λ
∼=cos(πs)‖0∂s

xv‖2
0,Λ . (2.11)
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3 Variational formulation

Now we consider the weak formulation of problem (1.1). Multiplying both sides of
Eq. (1.1) by v(x,t) ∈ B

α
2 , β

2 (Ω) and then integrating both sides of equation over Ω, we
obtain

(0∂α
t u(x,t), v)Ω−λ

(
0∂

β
xu(x,t),v

)
Ω
=( f ,v)Ω. (3.1)

One can derive the following weak formulation of problem (1.1) by using Lemma 2.2: for
f ∈B

α
2 , β

2 (Ω)′, find u∈B
α
2 , β

2 (Ω) such that

a(u,v)=( f ,v)Ω, ∀v∈B
α
2 , β

2 (Ω), (3.2)

where the bilinear form a(u,v) as follows:

a(u,v) :=
(

0∂
α
2
t u, t∂

α
2
1 v
)

Ω
−λ

(
0∂

β
2
x u, x∂

β
2
1 v
)

Ω
.

Now, we turn to proof problem (3.2) is well-posed. With the aid of the continuity and
coercivity of bilinear form a(u,v), we can derive the following theorem.

Theorem 3.1. For ∀α∈(0,1), β∈(1,2) and f∈B
α
2 , β

2 (Ω)′, problem (3.2) exists a unique solution.
Moreover, if u is the solution of (3.2), then

‖u‖
B

α
2 , β

2 (Ω)
.‖ f ‖

B
α
2 , β

2 (Ω)′
. (3.3)

4 Galerkin spectral method

In this section, the Galerkin spectral methods are proposed to numerically solve the vari-
ational formulation (3.2). Then a posteriori error estimates for the spectral approximation
is derived.

Let
P0

M (I) :=PM(I)∩H
α
2
0 (I), (4.1)

where PM(I) defined by the polynomials space of degree less than or equal to M with
respect to time t. And let PN(Λ) be the polynomials space of degree less than or equal to
N, then we denote the spectral approximation space with respect to space x:

P0
N(Λ) :=PN(Λ)∩H

β
2

0 (Λ). (4.2)

Let L :=(M,N) and we define the space-time spectral approximation space as follows:

SL =P0
N(Λ)⊗P0

M(I). (4.3)
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So the space-time Galerkin spectral approximation to problem (3.2) as follows: find uL∈
SL, such that

a(uL,vL)=( f ,vL), ∀v∈SL. (4.4)

Since SL is a subspace of B
α
2 , β

2 (Ω), then the well-posedness of the weak formulation (4.4)
can be derived immediately.

Theorem 4.1. For ∀α∈(0,1), β∈(1,2) and f∈B
α
2 , β

2 (Ω)′, problem (4.4) exists a unique solution.
Moreover, if uL is the solution of (4.4), then

‖uL‖
B

α
2 , β

2 (Ω)
.‖ f ‖

B
α
2 , β

2 (Ω)′
. (4.5)

In order to obtain the error analysis of the Galerkin spectral method, we introduce the
following lemma, which can be found in [14, 17].

Lemma 4.1. Let p, s be real numbers and such that

p 6=n+
1
2

, 0≤ s≤ p.

Then there exists an operator Πs,0
p,N : Hp∩Hs

0→Ps
N , such that for ∀ϕ∈Hσ∩Hs

0, we have∥∥∥ϕ−Πs,0
p,N ϕ

∥∥∥
Hν(Λ)

≤CNν−σ‖ϕ‖Hσ(Λ) , ∀0≤ν≤ p≤σ, (4.6)

where C is a constant and Ps
N denotes PN∩Hs

0.

From the above Lemma, let the operations

Π0,0
α
2 ,M : H

α
2
0 (I)→P0

M(I), (4.7)

by ∀v∈H
α
2
0 (I), Π0,0

α
2 ,Mv∈P0

M(I)

Π
β
2 ,0
β
2 ,N

: H
β
2

0 (Λ)→P0
N(Λ), (4.8)

by ∀v∈H
β
2

0 (Λ), Π
β
2 ,0
β
2 ,N

v∈P0
N(Λ).

Then we construct the approximation operator

Π0,0
α
2 ,MΠ

β
2 ,0
β
2 ,N

: B
α
2 , β

2 (Ω)→SL, (4.9)

by ∀v∈B
α
2 , β

2 (Ω), Π0,0
α
2 ,NΠ

β
2 ,0
β
2 ,M

v∈SL.

Based on the residual error estimation, we deduce a posteriori error estimates by us-
ing the Galerkin orthogonality and Cauchy-Schwarz inequality. And a posteriori error
estimates of the spectral approximation solution are given by the following theorem:
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Theorem 4.2. Let 0 < α < 1, 1 < β < 2. u,uL be the solutions of problems (1.1) and (4.4),
respectively. If u∈B

α
2 , β

2 (Ω), then

‖u−uL‖0,Ω≤‖u−uL‖
B

α
2 , β

2 (Ω)
.η, (4.10)

where
η=

(
M−

α
2 +N−

β
2

)
·
∥∥∥0∂α

t uL−λ0∂
β
xuL− f

∥∥∥
0,Ω

.

Proof. It is obvious that the left side of inequality holds. Let e=uL−u, then Π0,0
α
2 ,MΠ

β
2 ,0
β
2 ,N

e∈
SL. Thus we have

‖uL−u‖2

B
α
2 , β

2 (Ω)
. a(e,e)= a

(
e,e−Π0,0

α
2 ,MΠ

β
2 ,0
β
2 ,N

e
)

=a
(

uL,e−Π0,0
α
2 ,MΠ

β
2 ,0
β
2 ,N

e
)
−a
(

u,e−Π0,0
α
2 ,MΠ

β
2 ,0
β
2 ,N

e
)

=

(
0∂α

t uL−λ0∂
β
xuL,e−Π0,0

α
2 ,MΠ

β
2 ,0
β
2 ,N

e
)

Ω
−
(

f ,e−Π0,0
α
2 ,MΠ

β
2 ,0
β
2 ,N

e
)

Ω

.‖0∂α
t uL−λ0∂

β
xuL− f ‖0,Ω ·

∥∥∥∥e−Π0,0
α
2 ,MΠ

β
2 ,0
β
2 ,N

e
∥∥∥∥

0,Ω
. (4.11)

Now we turn to investigate the error
∥∥e−Π0,0

α
2 ,MΠ

β
2 ,0
β
2 ,N

e
∥∥

0,Ω∥∥∥∥e−Π0,0
α
2 ,MΠ

β
2 ,0
β
2 ,N

e
∥∥∥∥

0,Ω
≤
∥∥∥e−Π0,0

α
2 ,Me

∥∥∥
0,Ω

+

∥∥∥∥Π0,0
α
2 ,Me−Π0,0

α
2 ,MΠ

β
2 ,0
β
2 ,N

e
∥∥∥∥

0,Ω

.
∥∥∥e−Π0,0

α
2 ,Me

∥∥∥
0,Ω

+

∥∥∥∥e−Π
β
2 ,0
β
2 ,N

e
∥∥∥∥

0,Ω
.
(

M−
α
2 +N−

β
2

)
·‖uL−u‖

B
α
2 , β

2 (Ω)
. (4.12)

And the last inequality is obtained by employing Lemma 4.1. Then the theorem is imme-
diately obtained.

5 Numerical results

In this section, we present some numerical examples to show the efficiency of the pro-
posed Galerkin spectral method. Now, we introduce the implementation of proposed
method.

Let LN be the Legendre polynomial of degree N. {ξi}N
i=0 be a set of Legendre-Gauss-

Lobatto nodes, which defined by

ξ0=−1, ξN =1, L
′
N(ξi)=0, i=1,··· ,N−1,
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and the associated weights of the Legendre-Gauss-Lobatto quadrature formula are de-
noted by ωi,0≤ i≤N. Then the (N+1)×(M+1) Legendre-Gauss-Lobatto points (xi,tj)

in Ω and corresponding weights ω̂N
i ω̂M

j , i=0,··· ,N, j=0,··· ,M are defined by

(xi,tj) :=
( ξN

i +1
2

,
ξM

j +1

2

)
,

ω̂N
i :=

ωN
i

2
, ω̂M

j :=
ωM

j

2
.

Consider the problem (4.4) with numerical quadratures as follows:(
0∂

α
2
t uL,t∂

α
2
1 vL

)
N
−λ
(

0∂
α
2
x uL,x∂

α
2
1 vL

)
M
=( f ,vL)L, ∀v∈SL, (5.1)

where (·,·)N ,(·,·)M and (·,·)L are denoted by, for u,v∈C(Λ)

(u,v)N :=
N

∑
i=0

∫
I
u(xi,t)v(xi,t)ω̂N

i dt,

(u,v)M :=
M

∑
j=0

∫
Λ

u(x,tj)v(x,tj)ω̂
M
j dx,

(u,v)L :=
N

∑
i=0

M

∑
j=0

u(xi,tj)v(xi,tj)ω̂
N
i ω̂M

j .

Let {hi(x)}N
i=0, {hj(t)}M

j=0 be the Lagrangian polynomials associated with Legendre-
Gauss-Lobatto points {xi}N

i=0 and {tj}M
j=0 respectively. This means hi(x) and hj(t) such

that
hi(xk)=δki, hj(tk)=δkj, (5.2)

where δ is the Kronecker function.
Then, a set of basis functions of SL as follows:

SL = span
{

hi(x)hj(t); i=1,2,··· ,N−1; j=1,2,··· ,M
}

. (5.3)

Therefore, uL can be expressed as follows

uL(x,t)=
N−1

∑
i=1

M

∑
j=1

uijhi(x)hj(t). (5.4)

By taking (5.4) and letting vL go through all basis functions hn(x)hm(t), n=1,2,··· ,N−1,
m=1,2,··· ,M into (5.1), we can obtain the following matrix form:

Au= f, (5.5)
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where u=(uij)(N−1)×M is the unknown coefficient matrix, A=(anm,ij)((N−1)M)2 with

anm,ij =
(

hi(x)0∂
α
2
t hj(t),hn(x)t∂

α
2
1 hm(t)

)
N
−λ

(
hj(t)0∂

β
2
x hi(x),hm(t)x∂

β
2
1 hn(x)

)
M

=
N

∑
k=0

hi(xk)hn(xk)ω̂
N
k

∫
I

0∂
α
2
t hj(t)t∂

α
2
1 hm(t)dt

−λ
M

∑
k=0

hj(tk)hm(tk)ω̂
M
k

∫
Λ

0∂
β
2
x hi(x)x∂

β
2
1 hn(x))dx

=δinω̂N
n

∫
I

0∂
α
2
t hj(t)t∂

α
2
1 hm(t)dt−λδjmω̂M

m

∫
Λ

0∂
β
2
x hi(x)x∂

β
2
1 hn(x))dx, (5.6)

and f=( fnm)(N−1)×M with

fnm =( f ,hn(x)hm(t))L =
N

∑
i=0

M

∑
j=0

hn(xi)hm(tj)ω̂
N
i ω̂M

j . (5.7)

In the following, some numerical examples are given to show the a posteriori error esti-
mates for the spectral approximation. Let λ=1 throughout the examples and the L2-norm
error e and B

α
2 , β

2 -norm error E are defined as follows respectively,

e=‖u−uL‖0,Ω, E=‖u−uL‖
B

α
2 , β

2 (Ω)
, (5.8)

and a posteriori error indicator η is defined by

η=
(

M−
α
2 +N−

β
2

)
·
∥∥∥0∂α

t uL−λ0∂
β
xuL− f

∥∥∥
0,Ω

. (5.9)

Example 5.1. Consider the problem (1.1) with the exact solution

u(x,t)=(x4−x3)tsinπt. (5.10)

In what follows, the errors e,E and error indicator η in log10 scale for varying poly-
nomial degree N(M = N) are calculated in Fig. 1. One can observe that the errors e, E
is exponential decay and the indicator η has almost the same rate of convergence as the
error E. Then the theoretical results are verified. In Fig. 2, the errors e, E and a posteriori
error indicator η are showed that the numerical result still holds as α→ 1, β→ 2 in this
example.

Example 5.2. Consider the problem (1.1) with the exact solution

u(x,t)= xsin(πx)sin2(πt). (5.11)
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Figure 1: Error e, E and error indicator η for varying polynomial degree N(M=N) with α=0.2, β=1.1.
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Figure 2: Error e, E and error indicator η for varying polynomial degree N(M=N) with α=0.99, β=1.99.

In this example, the errors e, E and a posteriori error indicator η in log10 scale for
varying polynomial degree N(M= N) with α= 0.1, β= 1.1 are calculated in Fig. 3. We
can observe that the error e and E are exponential decay. Meanwhile, the curve of the
indicator η has almost coincides with the error E. In Fig. 4, the errors e,E and a posteriori
error indicator η in log10scale for varying polynomial degree N(M = N) with α = 0.3,
β= 1.1 are also calculated, which illustrate that the obtained a posteriori error indicator
is effective.

6 Conclusions

The Galerkin spectral methods are proposed to study the initial boundary value problem
of the space-time fractional diffusion equation involving the Riemann-Liouvile fractional
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Figure 3: Error e, E and error indicator η for varying polynomial degree N(M=N) with α=0.1, β=1.1.
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Figure 4: Error e, E and error indicator η for varying polynomial degree N(M=N) with α=0.3, β=1.1.

derivatives. And a posteriori error estimates for the spectral approximation are obtained.
Some numerical examples are given to show the availability of the derived error indica-
tor. In the future, an error estimator with upper and lower bounds will be considered.

Acknowledgements

This work are supported by the State Key Program of National Natural Science Foun-
dation of China (No. 11931003) and National Natural Science Foundation of China
(Nos. 41974133, 11671157 and 11971410) and supported by the Innovation Project of
Graduate School of South China Normal University (No. 2018LKXM008).



H. Wang, Y. Chen, Y. Huang and W. Mao / Adv. Appl. Math. Mech., 12 (2020), pp. 87-100 99

References

[1] W. BU, Y. TANG, Y. WU AND J. YANG, Finite difference/finite element method for two-dimensional
space and time fractional Bloch–Torrey equations, J. Comput. Phys., 293 (2015), pp. 264–279.

[2] Z. CEN, A. LE AND A. XU, A posteriori error analysis for a fractional differential equation, Int. J.
Comput. Math., 94(6) (2017), pp. 1185–1195.
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