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1 Introduction

Let G be a finite group and Q the field of rational numbers. Then every element α in

the group algebra QG has a unique additive Jordan decomposition α = αs + αn with

αs, αn ∈ QG, αs is semisimple, αn is nilpotent and αsαn = αnαs. Recall that an element

α ∈ FG is said to be semisimple if the minimal polynomial m(X) of α over F does not have

repeated roots in the algebraic closure F of F with F a field of characteristic 0. Furthermore,

if α is a unit in QG, then so is αs, and α has a unique multiplicative Jordan decomposition

α = αsαu with αu = 1+α−1
s αn unipotent and αsαu = αuαs. But, when α ∈ ZG, the integral

group ring over G, the semisimple component αs does not always lie in ZG. The integral

group ring ZG is said to have the additive Jordan decomposition (or AJD for short) property

if αs ∈ ZG (and hence αn ∈ ZG) for every α ∈ ZG, and to have the multiplicative Jordan

decomposition (or MJD for short) property if αs and αu ∈ ZG for every unit α ∈ ZG. If

ZG has the AJD property, then in fact it also has the MJD property. Therefore, to consider
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the groups G such that ZG has the MJD property, we need to consider the case that if ZG

has the AJD property.

The finite groups G whose integral group ring ZG has the AJD property are completely

classified in [1] and [2]. If G is abelian or a Hamiltonian 2-group, then every element of QG

is semisimple and consequently ZG trivially has the MJD property. In [3], the necessary

conditions for a finite group G whose integral group ring ZG has the MJD property are

given as follows:

Theorem 1.1([3], Theorem 29) Let G be a finite group such that ZG has MJD. Then one

of the following holds:

(1) G is either abelian or of the form K8 × E ×H, where E is an elementary abelian

2-group and H is abelian of odd order so that 2 has odd multiplicative order mod |H|. (Such
G have AJD and hence MJD for trivial reasons, since QG contains no nilpotent.)

(2) G has order 2a3b for some nonnegative integers a, b.

(3) G = K8 × Cp for some prime p ≥ 5 so that 2 has even multiplicative order mod p.

(4) G is the split extension of Cp (p ≥ 5) by a cyclic group ⟨g⟩ of order 2k or 3k for

some k ≥ 1, and g2 or g3 acts trivially on Cp.

To completely classify the finite groups G such that ZG has the MJD property, we need

only to investigate the four cases listed in Theorem 1.1. It has been shown that the integral

group rings of abelian groups have the AJD property in [2], and so the MJD property. For

the finite non-abelian 2-groups whose integral group rings possess the MJD property, there

are two groups of order 8 (see [4]), five groups of order 16 (see [5]), four groups of order 32

and only the Hamiltonian groups of larger order (see [3] for details). Liu and Passman[6]

showed that for the finite non-abelian 3-groups whose integral group rings have the MJD

property, there are two groups of order 27 and at most three other groups (all of order 81)

for larger order. Liu and Passman[7] also proved that there are precisely three non-abelian

2,3-groups of order divisible by 6, with ZG satisfying MJD.

Since Q(K8 × Cp) has no nilpotent elements for p a prime such that 2 has odd multi-

plicative order mod p, the integral group ring Z(K8 × Cp) trivially has the MJD property.

When p is some odd prime such that 2 has even multiplicative order mod p, Hales et al.[3]

claimed that “We do not know if these groups ever have MJD for their integral group rings.

The first example to investigate would be Z(K8 × C5).”

In this article, we present the multiplicative Jordan decomposition in integral group ring

of group K8 × C5, where K8 is the quaternion group of order 8. Thus, we give a positive

answer to the question raised by Hales et al. in [3].

2 The AJD for the Units of Z(K8 × Cp) in Q(K8 × Cp)

Lemma 2.1 [1] If α in QG is central and β in QG is semisimple, then α+β is semisimple.

Let Cp = ⟨t⟩ be a cyclic group of order p and ζ a primitive pth root of unity. Let U1(ZCp)

and U1(Z[ζ]) denote the sets of 1-units for ZCp and Z[ζ], separately. We consider the map
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λ : ZCp → Z⊕ Z[ζ], u =
∑

cit
i 7→

(∑
ci,
∑

ciζ
i
)
.

If u =
∑

cit
i ∈ U1(ZCp), then u 7→

(
1,
∑

ciζ
i
)
with

∑
ci = 1 and

∑
ciζ

i ∈ U1(Z[ζ]).

Conversely, given any
∑

biζ
i ∈ U1(Z[ζ]) with

∑
bi = 1, it is easy to see that u =

∑
bit

i lies

in U1(ZCp) and u 7→
(
1,
∑

biζ
i
)
. Thus, U1(ZCp) ∼= U1(Z[ζ]).

Theorem 2.1 Every non-semisimple unit of Z(K8 × Cp) can be written as a sum of a

semisimple unit and a nilpotent element in Q(K8 × Cp), where

K8 × Cp = ⟨x, y | x4 = 1, y2 = x2, yxy−1 = x−1⟩ × ⟨t | tp = 1⟩,
and p is some prime such that 2 has even multiplicative order mod p.

Proof. It is well known that K8×Cp has 5p conjugacy classes, then there are 5p irreducible

complex representations, in which 4p have degree 1 and p have degree 2. The 5p irreducible

complex representations of K8 × Cp are given by

R4k+1 : x → 1, y → 1, t → ζk,

R4k+2 : x → 1, y → −1, t → ζk,

R4k+3 : x → −1, y → 1, t → ζk,

R4k+4 : x → −1, y → −1, t → ζk,

R4p+l : x →

(
0 1

−1 0

)
, y →

(
f(ζ) g(ζ)

g(ζ) −f(ζ)

)
, t →

(
ζl 0

0 ζl

)
,

R5p : x → i, y → j, t → 1,

where 0 ≤ k ≤ p− 1, 1 ≤ l ≤ p− 1, and the polynomials f and g satisfy

f(ζ)2 + g(ζ)2 + 1 = 0

since p is some prime such that 2 has even multiplicative order mod p.

We can see thatRi (1 ≤ i ≤ 8), R4p+1 andR5p are the irreducible rational representations

and the Wedderburn decomposition of the rational group algebra Q(K8 × Cp) is given as:

Q(K8 × Cp) ∼= Q4 ⊕Q(ζ)4 ⊕H⊕M2(Q(ζ)),

where H is the rational quaternion algebra and M2(Q(ζ)) is the set of 2 × 2 matrices with

entries in Q(ζ).

Suppose that

U =
p−1∑
n=0

[
3∑

s=0
(asnx

s + a′snx
sy)

]
tn ∈ U1(Z(K8 × Cp))

is not semisimple. Write

β =
p−1∑
n=0

[
a1n − a3n

2
(x− x3) +

a′0n − a′2n
2

(1− x2)y +
a′1n − a′3n

2
(x− x3)y

]
tn.

Then

α = U − β

=

p−1∑
n=0

[
a0n + a2nx

2 +
a1n + a3n

2
(x+ x3) +

a′0n + a′2n
2

(1 + x2)y +
a′1n + a′3n

2
(x+ x3)y

]
tn
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is central, and hence, is semisimple. In order to show that U = α+ β is the decomposition

with α semisimple and β nilpotent in Q(K8 ×Cp), it is sufficient to show that the image of

β in every Wedderburn component is nilpotent.

Write

h(t) =
p−1∑
n=0

[
3∑

s=0
(asn + a′sn)

]
tn.

Since

R1(U) =
p−1∑
n=0

[
3∑

s=0
(asn + a′sn)

]
= 1,

R5(U) =
p−1∑
n=0

[
3∑

s=0
(asn + a′sn)

]
ζn ∈ U(Z[ζ]),

it is easy to see that h(t) ∈ U1(ZCp), and hence

R1(Uh(t)−1) = 1, R5(Uh(t)−1) = 1.

Replacing U by Uh(t)−1, we can assume

R1(U) = 1, R5(U) = 1,

and then
(a00 + a10 + a20 + a30) + (a′00 + a′10 + a′20 + a′30) = 1,

(a01 + a11 + a21 + a31) + (a′01 + a′11 + a′21 + a′31) = 0,

...

(a0p−1 + a1p−1 + a2p−1 + a3p−1) + (a′0p−1 + a′1p−1 + a′2p−1 + a′3p−1) = 0.

(2.1)

Furthermore,

R2(U) =
p−1∑
n=0

[
3∑

s=0
(asn − a′sn)

]
= ±1,

R6(U) =
p−1∑
n=0

[
3∑

s=0
(asn − a′sn)

]
ζn ∈ U(Z[ζ]),

R3(U) =
p−1∑
n=0

[(a0n − a1n + a2n − a3n) + (a′0n − a′1n + a′2n − a′3n)] = ±1,

R7(U) =
p−1∑
n=0

[(a0n − a1n + a2n − a3n) + (a′0n − a′1n + a′2n − a′3n)]ζ
n ∈ U(Z[ζ]),

R4(U) =
p−1∑
n=0

[(a0n − a1n + a2n − a3n)− (a′0n − a′1n + a′2n − a′3n)] = ±1,

R8(U) =
p−1∑
n=0

[(a0n − a1n + a2n − a3n)− (a′0n − a′1n + a′2n − a′3n)]ζ
n ∈ U(Z[ζ]).

By (2.1), all the coefficients of ζ, ζ2, · · · , ζp−1 in R6(U), R7(U) and R8(U) are even. Because

of U ∈ U1(Z(K8 × Cp)), we also have

R5p(U) =
p−1∑
n=0

(a0n − a2n) +
p−1∑
n=0

(a1n − a3n)i+
p−1∑
n=0

(a′0n − a′2n)j +
p−1∑
n=0

(a′1n − a′3n)ij

∈ {±1, ±i, ±j, ±ij}.
It follows that either
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(i)
p−1∑
n=0

(a0n − a2n) = 0; or

(ii)
p−1∑
n=0

(a0n − a2n) = ±1,
p−1∑
n=0

(a1n − a3n) = 0,
p−1∑
n=0

(a′0n − a′2n) = 0,
p−1∑
n=0

(a′1n − a′3n) = 0.

Then, by (i) and (ii),

R5p(β) =
p−1∑
n=0

(a1n − a3n)i+
p−1∑
n=0

(a′0n − a′2n)j +
p−1∑
n=0

(a′1n − a′3n)ij ∈ {0, ±i, ±j, ±ij}.

Moreover,

R4p+1(β) =

(
Y f(ζ) + Sg(ζ) X + Y g(ζ)− Sf(ζ)

−X + Y g(ζ)− Sf(ζ) −Y f(ζ)− Sg(ζ)

)
,

where

X =
p−1∑
n=0

(a1n − a3n)ζ
n, Y =

p−1∑
n=0

(a′0n − a′2n)ζ
n, S =

p−1∑
n=0

(a′1n − a′3n)ζ
n.

Note that

TrR4p+1(β) = 0, detR4p+1(β) = X2 + Y 2 + S2,

where “Tr” and “det” denote trace and determinant of the matrix R4p+1(β), separately.

Case 1. If detR4p+1(β) ̸= 0, associate with TrR4p+1(β) = 0, then R4p+1(β) is semisim-

ple. Moreover, Ri(β) = 0 (1 ≤ i ≤ 8) and R5p(β) ∈ {0, ±i, ±j, ±ij} are also semisimple.

It follows that β is a semisimple element, and then U = α+ β is also semisimple by Lemma

2.1, which is a contradiction to the assumption that U is not semisimple.

Case 2. If detR4p+1(β) = 0, associate with TrR4p+1(β) = 0, then R4p+1(β) is nilpotent.

Immediately, we have

detR4p+1(β) = X2 + Y 2 + S2 = T0 + T1ζ
2 + T2ζ

4 + · · ·+ Tp−1ζ
2(p−1) = 0.

If (i) holds, then

pT0 =
p−1∑
i=0

Ti =

[
p−1∑
n=0

(a1n − a3n)

]2
+

[
p−1∑
n=0

(a′0n − a′2n)

]2
+

[
p−1∑
n=0

(a′1n − a′3n)

]2
= 1,

which is impossible since T0 ∈ Z. Thus, (ii) holds and

Ti = [(a1i − a3i)
2 + (a′0i − a′2i)

2 + (a′1i − a′3i)
2] + 2

∑
k+m≡2i(mod p)

[(a1k − a3k)(a1m − a3m)

+ (a′0k − a′2k)(a
′
0m − a′2m) + (a′1k − a′3k)(a

′
1m − a′3m)]

= 0, 0 ≤ i ≤ p− 1.

This shows that R5p(β) = 0. Then we obtain that Ri(β) is nilpotent for 1 ≤ i ≤ 8, 4p+ 1,

5p, and hence β is nilpotent in Q(K8 × Cp). Thus, it is proved that the decomposition

U = α+ β in Q(K8 × Cp) is the desired.

Remark 2.1 Recall that Ti = 0 for 0 ≤ i ≤ p− 1. Then we have that

(a1i − a3i)
2 + (a′0i − a′2i)

2 + (a′1i − a′3i)
2 ≡ 0 (mod 2),

and (a1i − a3i), (a
′
0i − a′2i) and (a′1i − a′3i) either all are even, or two are odd and the other

one is even.
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Lemma 2.2([8], Lemma 8.3.5) Let A be a finite abelian group. Then

U1(ZA) = A× U2(ZA),

where U2(ZA) = {u ∈ U(ZA) : u ≡ 1 mod(∆A)2}. Moreover,

U2(ZA) ⊆ U∗(ZA) = {u ∈ U(ZA) : u∗ = u},
where u∗ =

∑
cig

−1
i if u =

∑
cigi.

Lemma 2.3([9], Lemma 8.1) Let p be prime and m ≥ 1, ζpm a primitive pmth root of

unity.

(a) The cyclotomic units of Q(ζpm)+ are generated by −1 and the units

ζa = ζ
1−a
2

pm

1− ζapm

1− ζpm

, 1 < a <
1

2
pm, (a, p) = 1.

(b) The cyclotomic units of Q(ζpm) are generated by ζpm and the cyclotomic units of

Q(ζpm)+.

Lemma 2.4 Let ζ be a primitive pth root of unity. Then U1(Z[ζ]) is generated by ζ,

(1 + ζ), · · · , (1 + ζ + · · ·+ ζ
p−3
2 ).

Proof. Let Cp = ⟨t⟩. Then U1(ZCp) = ⟨t⟩ × F , where F is free and ranF =
p− 3

2
(see

[8], 8.3, Exercise 1). By Lemma 2.3 and U1(Z[ζ]) ∼= U1(ZCp), U1(Z[ζ]) is generated by ζ,

(1 + ζ), · · · , (1 + ζ + · · ·+ ζ
p−3
2 ).

Let U = {u | u = u0 + u1ζ + u2ζ
2 + · · · + up−1ζ

p−1 ∈ U(Z[ζ]), u0 ≡ 1(mod 2),

ui ≡ 0(mod 2) (1 ≤ i ≤ p− 1)} and U1 =
{
u | u ∈ U ,

∑
ui = 1

}
.

Proposition 2.1 Let u = a0 + a1ζ + a2ζ
2 + · · · + ap−1ζ

p−1 ∈ U1 and u2 = b0 + b1ζ +

b2ζ
2 + · · · + bp−1ζ

p−1. Then b0 ≡ 1(mod 4), b0 ≡ 1(mod 8), bi ≡ 0(mod 4) and bi ≡
a2i

2

+ 2a0ai(mod 8) if i is even or bi ≡ a2p+i
2

+ 2a0ai(mod 8) if i is odd for 1 ≤ i ≤ p − 1.

Moreover, if bi ≡ 0(mod 8) for all 1 ≤ i ≤ p − 1, then u2 ≡ 1(mod 8) and if there is a

bi ≡ 4(mod 8) for some i, then u4 ≡ 1(mod 8).

Proof. Since Lemma 2.2 and u ∈ U1, ai = ap−i ≡ 0(mod 2) for 1 ≤ i ≤ p− 1. Then

1 =
p−1∑
i=0

ai = a0 + 2

p−1
2∑

i=1

ai, a0 ≡ 1(mod 4).

It is easy to calculate that

b0 = a20 + 2a1ap−1 + · · ·+ 2aiap−i + · · ·+ 2a p−1
2
a p+1

2
≡ a20 ≡ 1(mod 8),

and for 1 ≤ i ≤ p− 1,

bi =


a2i

2

+ 2

i
2−1∑
l=0

alai−l + 2

p+i−1
2∑

l=i+1

alap+i−l ≡ a2i
2

+ 2a0ai(mod 8) if i is even;

a2p+i
2

+ 2

i
2−1∑
l=0

alai−l + 2

p+i
2 −1∑

l=i+1

alap+i−l ≡ a2p+i
2

+ 2a0ai(mod 8) if i is odd.

Similarly, the rest of the assertions is obvious.
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Let (a, b, c, d) be an array, α =
a+ b+ c+ d

4
, β =

a+ b− c− d

4
, γ =

a− b+ c− d

4

and δ =
a− b− c+ d

4
.

Lemma 2.5 Let b, c, d be even and a = 0. If α, β, γ, δ are all in Z, then (a, b, c, d)(mod 8)

just be (0, 0, 0, 0), (0, 0, 4, 4), (0, 4, 0, 4), (0, 4, 4, 0), (0, 0, 2, 6), (0, 2, 0, 6),

(0, 2, 6, 0), (0, 0, 6, 2), (0, 6, 0, 2), (0, 6, 2, 0), (0, 2, 2, 4), (0, 2, 4, 2), (0, 4, 2, 2),

(0, 6, 6, 4), (0, 6, 4, 6) or (0, 4, 6, 6) such that β, γ, δ either all are even, or one is even

and the other two are odd.

Lemma 2.6 Let b, c, d be odd and a = 1. If α, β, γ, δ are all in Z, then (a, b, c, d)(mod 8)

just be (1, 1, 1, 1), (1, 1, 5, 5), (1, 5, 1, 5), (1, 5, 5, 1), (1, 1, 3, 7), (1, 3, 1, 7),

(1, 3, 7, 1), (1, 1, 7, 3), (1, 7, 1, 3), (1, 7, 3, 1), (1, 3, 3, 5), (1, 3, 5, 3), (1, 5, 3, 3),

(1, 7, 7, 5), (1, 7, 5, 7) or (1, 5, 7, 7) such that β, γ, δ either all are even, or one is even

and the other two are odd.

Remark 2.2 Let ζ̂ = 1 + ζ + · · ·+ ζp−1. Then

u = ±ζi0(1 + ζ)i1(1 + ζ + ζ2)i2 · · · (1 + ζ + · · ·+ ζ
p−3
2 )

i p−3
2 + λζ̂ ∈ U1.

If there is no the item like (1 + ζ + · · ·+ ζl)il (l is odd), then the sum of the coefficients of

u− λζ̂ is odd, thus λ is even, and there exists an integer j such that

ζj(u− λζ̂) ≡ 1 + 0ζ + 0ζ2 + · · ·+ 0ζp−1(mod 2).

If there is the item like (1 + ζ + · · · + ζl)il (l is odd), then the sum of the coefficients of

u− λζ̂ is even, thus λ is odd, and there exists an integer k such that

ζk(u− λζ̂) ≡ 0 + 1ζ + 1ζ2 + · · ·+ 1ζp−1(mod 2).

Let p = 5. We obtain the main results of the article in Section 3.

3 Z(K8 × C5) Has the MJD Property

Proposition 3.1 The 1-units of Z[ζ] are generated by [−(1 + ζ)2 + ζ̂] and ζ.

Proof. By Lemma 2.4, U1(Z[ζ]) is generated by 1 + ζ and ζ, then the 1-units of Z[ζ] have

the form ±ζk(1 + ζ)n + λζ̂ for some integer k, n and λ. Obviously, u = −(1 + ζ)2 + ζ̂ is a

1-unit of Z[ζ], and n = 2, λ = 1 are the smallest positive integers such that

±ζk(1 + ζ)n + λζ̂ ∈ U1(Z[ζ]).

Therefore, the 1-units are generated by [−(1 + ζ)2 + ζ̂] and ζ.

Proposition 3.2 Let u be the generator of U1. Then u ≡ 1+6ζ+6ζ2+6ζ3+6ζ4(mod 8).

Proof. We observe that

(1 + ζ)3 = 1 + 3ζ + 3ζ2 + ζ3 + 0ζ4 ≡ 1 + ζ + ζ2 + ζ3 + 0ζ4(mod 2),

and n = 3 is the smallest positive integer such that

±ζk(1 + ζ)n ≡ 0 + ζ + ζ2 + ζ3 + ζ4(mod 2)
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for some positive integer k. By Proposition 3.1 and the definition of U1, n = 6 is the smallest

positive integer such that ±ζk(1+ ζ)n+λζ̂ ∈ U1 for some integer k and λ. Then the unique

generator of U1 should be

u = ±ζk(1 + ζ)6 + λζ̂

for k = 2 and λ = 5, i.e.,

u = − ζ2(1 + ζ)6 + 5ζ̂

= − (20 + 15ζ + 7ζ2 + 7ζ3 + 15ζ4) + 5ζ̂

≡ 1 + 6ζ + 6ζ2 + 6ζ3 + 6ζ4(mod 8).

Theorem 3.1 Integral group ring Z(K8 × C5) has the MJD property.

Proof. For any U ∈ U1(Z(K8 ×C5)), by Theorem 2.1, U = α+β with α semisimple and β

nilpotent in Q(K8×C5). Then it remains to show that β ∈ Z(K8×C5). Following Theorem

2.1, we have that

R5(U) =
p−1∑
n=0

Anζ
n = 1

with A0 = 1 and An = 0 for 1 ≤ n ≤ p− 1,

R6(U) ≡
p−1∑
n=0

Bnζ
n(mod 8),

R7(U) ≡
p−1∑
n=0

Cnζ
n(mod 8),

R8(U) ≡
p−1∑
n=0

Dnζ
n(mod 8),

where 0 ≤ Bn, Cn, Dn ≤ 7.

Let

αn =
An +Bn + Cn +Dn

4
,

βn =
An +Bn − Cn −Dn

4
,

γn =
An −Bn + Cn −Dn

4
,

δn =
An −Bn − Cn +Dn

4
for 0 ≤ n ≤ p− 1. It is not difficult to see that

βn ≡ a1n + a3n ≡ a1n − a3n(mod 2),

γn ≡ a′0n + a′2n ≡ a′0n − a′2n(mod 2),

δn ≡ a′1n + a′3n ≡ a′1n − a′3n(mod 2).

Recall Theorem 2.1 again,

Tn = β2
n + γ2

n + δ2n + 2
∑

k+m≡2n(mod p)

(βkβm + γkγm + δkδm) = 0,

and hence,

0 = Tn ≡ β2
n + γ2

n + δ2n(mod 2).
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Thus, βn, γn, δn either all are even or one is even and the other two are odd.

Theorem 2.1 provides that all the coefficients of ζ, ζ2, · · · , ζp−1 in R6(U), R7(U) and

R8(U) are even, thus, R6(U), R7(U) and R8(U) are all in ±U1. By Propositions 2.1 and

3.2, the generator u ≡ 1+6ζ +6ζ2+6ζ3+6ζ4(mod 8) of U1 is an element of order 2. Thus,

R6(U)(mod 8), R7(U)(mod 8), R8(U)(mod 8) ∈ {u, −u, 1, −1}(mod 8).

By using Lemma 2.6, B0, C0, D0 must all be 1(mod 8) since A0 = 1. Then

R6(U)(mod 8), R7(U)(mod 8), R8(U)(mod 8) ∈ {u, 1}(mod 8),

and β0, γ0 and δ0 are all even. Since An = 0, by Lemma 2.5, we obtain that

R6(U) ≡ 1(mod 8), R7(U) ≡ 1(mod 8), R8(U) ≡ 1(mod 8),

and βn, γn and δn all are even for all 1 ≤ n ≤ p− 1, which deduces that β ∈ Z(K8 × C5).
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