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Abstract. In this paper, we apply the collocation methods to a class of Volterra inte-
gral functional equations with multiple proportional delays (VIFEMPDs). We shall
present the existence, uniqueness and regularity properties of analytic solutions for
this type of equations, and then analyze the convergence orders of the collocation
solutions and give corresponding error estimates. The numerical results verify our
theoretical analysis.
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1 Introduction

The Volterra integral functional equations with proportional delays (VIFEPDs) pro-
vide a powerful model of phenomena when processes are modeled evolving in time,
where the rate of change of the process is not only determined by its present state but
also by a certain past state. VIFEPDs play an important role in explaining many dif-
ferent phenomena in biology, economy, control theory, electrodynamics, demography,
viscoelastic materials and insurance. Numerical methods based on finite difference
methods, discontinuous Galerkin methods and spectral methods etc., have also been
developed for various VIFEPDs and we refer to [2–5, 8, 9, 11–13, 17], and references
therein for details about the rich literature.

In this paper, we shall study the collocation method for Volterra integral functional
equations (VIFE) with multiple delay (or: lag) functions θk = θk(t), k = 1, 2, · · · , p of
the form

u(t) =
p

∑
k=1

ak(t)u(θk(t)) + f (t) + (Vu)(t) +
p

∑
k=1

(Vθk u)(t), t ∈ I := [0, T], (1.1)
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where p is some positive integer. The Volterra integral operators V and Vθk (k =
1, 2, · · · , p) are defined by

(Vu)(t) :=
∫ t

0
K0(t, s)u(s)ds, (Vθk u)(t) :=

∫ θk(t)

0
Kk(t, s)u(s)ds,

where ak, f , K0 and Kk are given smooth functions. The delay functions θk(t), k =
1, 2, · · · , p are assumed to have the following properties:

(P1) θk(0) = 0, and θk is strictly increasing on I;

(P2) θk(t) ≤ q̄kt on I for some q̄k ∈ (0, 1);

(P3) θk ∈ Cνk (I) for some integer νk ≥ 0.

An important special case is the linear vanishing delay or proportional delay, i.e.,

θk(t) = qkt = t − (1 − qk)t := t − τk(t) with 0 < qk < 1,

which are known as the pantograph delay functions (see [1, 7, 14, 16]). In rest of this
paper, we shall concern on the corresponding VIFEMPDs given by

u(t) =
p

∑
k=1

ak(t)u(qkt) + f (t) + (Vu)(t) +
p

∑
k=1

(Vqk u)(t), t ∈ I, (1.2)

where

(Vqk u)(t) :=
∫ qkt

0
Kk(t, s)u(s)ds, k = 1, 2, · · · , p,

as the multi-pantograph Volterra integral functional equations.
The collocation method for the Volterra integral equation with proportion delay

(VIEPD) of the form

u(t) = f (t) +
∫ t

0
K0(t, s)u(s)ds +

∫ qt

0
K1(t, s)u(s)ds, (1.3)

with t ∈ [0, T] is discussed in [6], and recently Hermann and his collaborators also
study the collocation method for functional equation

u(t) = b(t)u(qt) + f (t), (1.4)

where b and f are given functions (see [10]). To the best of our knowledge, there is
few work on collocation method for VIFEMPDs of form (1.2). In order to gain some
insight approaches for VIFE of first and second kinds, we present a study of piecewise
polynomial collocation solutions for (1.2).

There are two main challenges for these VIFEMPDs:

⋄ the situations for the multiple proportional delays (Vqk u)(t) in (1.2) are more complicated
than single proportional delay;
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⋄ the q-difference terms u(qkt) in the right hand side of (1.2) make the corresponding numerical
schemes more difficult to be solved than schemes for VIFE.

For the former one, we shall present an algorithm to enumerate all possible cases for
multiple proportional delays, and we give the numerical schemes for the particular
cases of p = 2 and 3; For the latter issue, we shall show the q-difference terms u(qkt)
always make the numerical schemes lose superconvergence properties both in theo-
retically and numerically.

The rest of this paper is organized as follows: in Section 2, the existence, unique-
ness and regularity of the analytic solution to (1.2) is proposed. Section 3 is devoted
to construct the collocation schemes. The conditions for the uniqueness and the at-
tainable global convergence order of collocation scheme are presented in Section 4,
and finally in Section 5, we give some numerical experiments to verify our theoretic
results.

2 Existence, uniqueness and regularity

For the simplification, we introduce the linear operator K : L∞(I) → L∞(I), I = [0, T],
by setting

(Kφ)(t) =
p

∑
k=1

ak(t)φ(qkt) + (Vφ)(t) +
p

∑
k=1

(Vqk φ)(t), t ∈ I. (2.1)

Then the Eq. (1.2) can be rewritten as

(I −K)u = f , (2.2)

where I denotes the identity operator.
We begin with a result on the existence and uniqueness of the analytic solution of

(1.2).

Theorem 2.1. Assume that the functions ak, f and Kk in (1.2) satisfy

(i) ak, f ∈ C(I), K0 ∈ C(D) and Kk ∈ C(Dqk), k = 1, · · · , p, where

D = {(t, s)|0 ≤ s ≤ t ≤ T}, Dqk = {(t, s)|0 ≤ s ≤ qkt};

(ii) ∑
p
k=1 ∥ak∥∞ < 1, where ∥v∥ := max

t∈I
v(t).

Then there exists a unique solution u ∈ C(I) of (1.2).

Proof. We shall prove this result by Banach fixed point theorem and mathematical
induction. Since the given kernels functions Kk (k = 0, 1, · · · , p) are continuous on
their closed domains respectively, there exist positive constants Mk (k = 0, 1, · · · , p)
such that |Kk(t, s)| ≤ Mk. From the condition (ii), we can choose δ such that

0 < δ <
1 − ∑

p
k=1 ∥ak∥∞

M0 + ∑
p
k=1 qk Mk

.
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Denote S = {u : u ∈ C[0, δ]}. Using the inequalities

∥Ku∥∞ =
∥∥∥ p

∑
k=1

ak(t)u(qkt) + (Vu)(t) +
p

∑
k=1

(Vqk u)(t)
∥∥∥

∞

≤
( p

∑
k=1

∥ak∥∞

)
∥u∥∞ + δ

(
M0 +

p

∑
k=1

qk Mk

)
∥u∥∞ < ∥u∥∞,

we know that K : S → S is a contraction map. Hence the operator I − K has a
bounded inverse, which implies (1.2) has a unique continuous solution on [0, δ].

Assume (1.2) has a unique continuous solution on [0, kδ] for some positive integer
k, we want to prove that it is also true on [kδ, (k + 1)δ], that is mathematical induction
with index k. For t ∈ [kδ, (k + 1)δ], we have

u(t) =
p

∑
k=1

ak(t)u(qkt) + f (t) +
∫ t

0
K0(t, s)u(s)ds +

p

∑
k=1

∫ qkt

0
Kk(t, s)u(s)ds

=
p

∑
k=1

ak(t)u(qkt) + f̃ (t) +
∫ t

kδ
K0(t, s)u(s)ds +

p

∑
k=1

∫ qkt

qkkδ
Kk(t, s)u(s)ds, (2.3)

with

f̃ (t) = f (t) +
∫ kδ

0
K0(t, s)u(s)ds +

p

∑
k=1

∫ qkkδ

0
Kk(t, s)u(s)ds.

Using the same argument on interval [0, δ], it follows that the Eq. (2.3) has a unique
continuous solution on [kδ, (k + 1)δ], therefore u ∈ [0, (k + 1)δ] is continuous. This
completes the proof. �

Before the discussion of the regularity for VIFEMPDs of form (1.2), we first give a
regularity result about the corresponding multiple delays functional equation.

Lemma 2.1. Consider the multiple delays functional equation

u(t) =
p

∑
k=1

ak(t)u(qkt) + f (t), t ∈ I, (2.4)

if ak, f ∈ Cν(I) for some integer ν ≥ 1 and ∑
p
k=1 ∥ak∥∞ < 1, then the solution satisfies

u ∈ Cν(I).

Proof. The proof is similar to the proof for the functional equation with propor-
tional delay in [10]. Here for the sake of reader’s convenience, we give a detail proof
for functional equation with multiple delays. By Theorem 2.1 with K0 = K1 = · · · =
Kp = 0, we know that u ∈ C(I). For ak, f ∈ C1(I), differentiate both sides of the
Eq. (2.4) formally leading to

u′(t) =
p

∑
k=1

qkak(t)u′(qkt) + f̃ (t),
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with

f̃ (t) =
p

∑
i=1

a′i(t)u(qkt) + f ′(t).

Since the existence of a differentiable solution of the Eq. (2.4) is still unknown, we
consider the equation

ũ(t) =
p

∑
k=1

qkak(t)ũ(qkt) + f̃ (t). (2.5)

Noting ak, f ∈ C1(I) and the fact that u ∈ C(I), we know qkak, f̃ ∈ C(I). It now
follows from Theorem 2.1 that there exists a unique solution ũ ∈ C(I) for Eq. (2.5).

Next, we will prove the unique solution ũ(t) equals to u′(t), that is to show

lim
h→0

∣∣∣ũ(t)− u(t + h)− u(t)
h

∣∣∣ = 0. (2.6)

For any t, t + h ∈ I with h ̸= 0, we have

ũ(t)− u(t + h)− u(t)
h

=
p

∑
k=1

qkak(t)
[
ũ(qkt)− u(qk(t + h))− u(qkt)

qkh

]
+

p

∑
k=1

[
a′k(t)u(qkt)− ak(t + h)− ak(t)

h
u(qk(t + h))

]
+ f ′(t)− f (t + h)− f (t)

h
.

Let

ω[ f , v, s] := sup
t∈I, 0<|s|<h

∣∣∣ f (t)− v(t + s)− v(t)
s

∣∣∣,
A1 :=

p

∑
k=1

qkak(t)
[
ũ(qkt)− u(qk(t + h))− u(qkt)

qkh

]
,

A2 :=
p

∑
k=1

[
a′k(t)u(qkt)− ak(t + h)− ak(t)

h
u(qk(t + h))

]
,

A3 := f ′(t)− f (t + h)− f (t)
h

.

Then we have ∣∣∣ũ(t)− u(t + h)− u(t)
h

∣∣∣ ≤ |A1|+ |A2|+ |A3|. (2.7)

Noting that

|A1| ≤
p

∑
k=1

|qkak(t)|
∣∣∣ũ(qkt)− u(qk(t + h))− u(qkt)

qkh

∣∣∣
≤

p

∑
k=1

|qkak(t)|ω[ũ, u, h] ≤
( p

∑
k=1

qk∥ak∥∞

)
ω[ũ, u, h],
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and taking sup-norm on both sides of (2.7), we obtain(
1 −

p

∑
k=1

qk∥ak∥∞

)
ω[ũ, u, h] ≤ |A2|+ |A3|.

From the assumptions ak, f ∈ C1(I) and u ∈ C(I), we know that

lim
h→0

|Ai| = 0, i = 2, 3.

Hence the relation (2.6) holds, which implies ũ(t) = u′(t) for any t ∈ I. Therefore, the
solution of (2.4) satisfies u ∈ C1(I).

Furthermore, assume that u ∈ Cµ(I) holds with

0 ≤ µ ≤ ν − 1,

since ak, f ∈ Cν(I) ⊂ Cµ+1(I), we can obtain that u ∈ Cµ+1(I). By the mathematical
induction, we reach the conclusion. �

Our regularity result about the solution of (1.2) is given by following theorem.

Theorem 2.2. Assume that the functions ak, f and Kk in (1.2) satisfy

(i) ak, f ∈ Cν(I), K0 ∈ Cν(D) and Kk ∈ Cν(Dqk), k = 1, · · · , p, for some integer v ≥ 1;

(ii)
p
∑

k=1
∥ak∥∞ < 1.

Then the solution of (1.2) satisfies u ∈ Cν(I).

Proof. By Theorem 2.1, the solution u is continuous. Since the given functions are
smooth, differentiating both sides of the Eq. (1.2) formally and replace u′(t) by ũ(t)
yields

ũ(t) =
p

∑
k=1

qkak(t)ũ(qkt) + f̃ (t), (2.8)

where

f̃ (t) =
p

∑
k=1

a′k(t)u(qkt) + f ′(t) + K0(t, t)u(t) +
∫ t

0

∂K0

∂t
(t, s)u(s)ds

+
p

∑
k=1

qkKk(t, qkt)u(qkt) +
p

∑
k=1

∫ qkt

0

∂Kk

∂t
(t, s)u(s)ds.

Since ak, f ∈ C1(I), K0 ∈ C1(D) and Kk ∈ C1(Dqk), k = 1, 2, · · · , p and u ∈ C(I),
it follows that qkak, f̃ ∈ C(I). Thus Lemma 2.1 implies that Eq. (2.8) has a unique
solution u ∈ C1(I).

Furthermore, assume that u ∈ Cµ(I) holds with 0 ≤ µ ≤ ν − 1, since ak, f ∈
Cµ+1(I), K0 ∈ Cµ+1(D) and Kk ∈ Cµ+1(Dqk), k = 1, 2, · · · , p, we can obtain that
u ∈ Cµ+1(I) by Lemma 2.1. By the mathematical induction, we reach the conclusion
of the theorem. �
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3 Collocation methods

In this section, it will propose an algorithm to enumerate the all possible cases for
multiple proportional delays in (1.2). In particularly for p = 2 and p = 3, we give the
numerical scheme for each case.

For the simplification, we first introduce some notations. Let

Ih = {tn = nh, n = 0, · · · , N} with tN = Nh = T,

be a given uniform mesh on I and set en := (tn, tn+1], n = 0, · · · , N − 1. We shall be
concerned with the collocation solution uh lying in the piecewise polynomial space

S(−1)
m−1(Ih) := {v : v|en ∈ πm−1, 0 ≤ n ≤ N − 1}, (3.1)

where πm−1 (m ≥ 1) denotes the set of polynomials of degree not exceeding m − 1.
The dimension of the space S(−1)

m−1(Ih) equals Nm. Hence, we are natural to choose the
set of collocation points to be

Xh := {tn,i = tn + cih : 0 < c1 < · · · < cm ≤ 1, n = 0, · · · , N − 1},

as its cardinality is Nm. Here, {ci}m
i=1 is a given set of collocation parameters in (0, 1].

Hence, We are looking for uh ∈ S(−1)
m−1(Ih) satisfying the collocation equation

uh(t) =
p

∑
k=1

ak(t)uh(qkt) + f (t) + (Vuh)(t) +
p

∑
k=1

(Vqk uh)(t), t ∈ Xh. (3.2)

Setting
Un,j = uh(tn + cjh), j = 1, · · · , m,

we can express un
h (the restriction of uh on interval en) by interpolation

uh|en = un
h(t) = uh(tn + sh) =

m

∑
j=1

Lj(s)Un,j, 0 < s ≤ 1, (3.3)

with Lagrange interpolation polynomials

Lj(s) =
m

∏
k=1,k ̸=j

s − ck

cj − ck
, 0 < s ≤ 1, j = 1, · · · , m. (3.4)

Therefore, the global collocation solution uh on I is given by

uh(t) =
N−1

∑
n=0

χn(t)un
h(t),

where χn(t) is the characteristic function on en.
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3.1 Properties of the images qkt in the vanishing delays

The main difficulty in the numerical analysis of VIFEMPDs on uniform meshes is the
overlap of the images qkt (k = 1, · · · , p) of the collocation points of the vanishing
delays.

To be more precise, for a uniform mesh Ih and tn,i := tn + cih ∈ Xh, we first discuss
some properties of {qtn,i}m

i=1 for each fixed n, that is the single proportional delay case
for (1.2). Note that

qtn,i = q(tn + cih) = q(nh + cih) = q(n + ci)h.

Let

qtn,i := (qn,i + γni)h = qn,ih + γnih = tqn,i + γnih ∈ (tqn,i , tqn,i+1],

with

qn,i = ⌊q(n + ci)⌋, γni = q(n + ci)− qn,i ∈ (0, 1), qn = min
1≤i≤m

{qn,i}.

Here for any x ∈ R, ⌊x⌋ is the greatest integer not exceeding x, and similarly, ⌈x⌉
denotes the smallest integer exceeding x.

Remark 3.1. Noting that qtn,m − qtn,1 = q(cm − c1) < h, then for each fixed n, {qtn,i}m
i=1

at most belongs to two subintervals of Ih.

Denoting

qI =
⌈ q

1 − q
c1

⌉
, qI I =

⌈ q
1 − q

cm

⌉
, (3.5)

the following lemma characterize the ”overlap” of the images qt of the collocation
points.

Lemma 3.1. (c f . [6]) Let q ∈ (0, 1) and 0 < c1 < · · · < cm ≤ 1 be given, and assume that
Ih is a uniform mesh with mesh diameter h = T/N. Then

(i) For 0 ≤ n < qI , we have {qtn,i}m
i=1 ⊂ (tn, tn+1);

(ii) For qI ≤ n < qI I , there exists νn ∈ {1, · · · , m − 1} so that

qtn,i ∈
{

(tn−1, tn], 1 ≤ i ≤ νn,
(tn, tn+1], νn < i ≤ m;

(iii) For qI I ≤ n ≤ N − 1, then qtn,i ≤ tn (i = 1, · · · , m), therefore we have two cases:

(iiia) {qtn,i}m
i=1 belong to one interval, which means qn,i = qn and {qtn,i}m

i=1 ⊂ (tqn , tqn+1].
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(iiib) {qtn,i}m
i=1 belong to two intervals, then there exists νn ∈ {1, · · · , m − 1}, such that

qtn,i ∈
{

(tqn , tqn+1], 1 ≤ i ≤ νn,
(tqn+1, tqn+2], νn < i ≤ m.

For qI I ≤ n ≤ N − 1, we can consider the case (iiia) as a special state of case (iiib) with
νn = m.

Next, we shall study the images qkt (k = 1, 2, · · · , p) of the collocation points of the
multiple proportional vanishing delays (i.e., {qktn,i}m

i=1). Without loss of generality, we
assume q1 ≥ q2 · · · ≥ qp, otherwise, one can rearrange {qk}

p
k=1 and rename them such

that the inequalities still hold. Similar to the single proportional vanishing delays, we
introduce following notations

qI
k =

⌈ qk

1 − qk
c1

⌉
, qI I

k =
⌈ qk

1 − qk
cm

⌉
, q(k)n,i = ⌊qk(n + ci)⌋, (3.6a)

q(k)n = min
1≤i≤m

{q(k)n,i }, γ
(k)
ni = qk(n + ci)− q(k)n,i , k = 1, 2, · · · , p. (3.6b)

From the definitions (3.6) and c1 ≤ cm, it is obvious that

qI I
k ≥ qI

k, k = 1, 2, · · · , p; qI I
1 ≥ qI I

2 · · · ≥ qI I
p , qI

1 ≥ qI
2 · · · ≥ qI

p. (3.7)

In order to give the numerical schemes, it is necessary to study the images qkt (k =
1, 2, · · · , p) of the collocation points, which is equivalent to enumerate all possible
arrangements of {qI

k, qI I
k }p

k=1 under constrains (3.7). Before solve this problem, we first
introduce some concepts and a lemma about Catalan number.

Definition 3.1. A Dyck word is a string consisting of p X’s and p Y’s such that no initial
segment of the string has more Y’s than X’s.

Definition 3.2. Given a p × p square cells, a monotonic path is one which starts in the lower-
left corner, finishes in the upper-right corner, and consists entirely of edges pointing rightwards
or upwards.

Lemma 3.2. (see [15]) The number of monotonic paths which do not pass above the diagonal
(as showed in Fig. 1) is Cp (Catalan number), which is give by

Cp = Cp
2p − Cp−1

2p =
1

p + 1
Cp

2p =
1
p

Cp−1
2p , p ≥ 1,

where Ck
n = n!/k!(n − k)! is the combination number.

The following theorem gives the number of rangements of {qI
k, qI I

k }p
k=1 with con-

strains (3.7).

Theorem 3.1. The following three problems are equivalent.



584 K. Zhang and J. Li / Adv. Appl. Math. Mech., 4 (2012), pp. 575-602

q q q q

q

q

q

q

I

II

2

3

1 2 3

p

p

I

I

I

I

II II II

Figure 1: Diagram of monotonic paths which do not pass above the diagonal.

(P1) The number of rangements of {qI
k, qI I

k }p
k=1 with constrains (3.7);

(P2) The number of Dyck words of length 2p;

(P3) Given a p × p square cells, the number of monotonic paths which do not pass above the
diagonal.

Furthermore, the number problem (P1) is

Cp = Cp
2p − Cp−1

2p ,

where Cp is the Catalan number.

Proof. For a given choose p from 2p position, it can denotes ordered series qI I
1 ≥

qI I
2 · · · ≥ qI I

p or p X’s without order; the rest p positions denote ordered series qI
1 ≥

qI
2 · · · ≥ qI

p or p Y’s without order. Setting p X’s represent qI I
k and p Y’s represent qI

k,
the constrains qI I

k ≥ qI
k, k = 1, 2, · · · , p equivalent to no initial segment of the string

has more Y’s than X’s. Hence, problem (P1) is equivalent to problem (P2).
Let X stand for ”move right” and Y stand for ”move up”, then no initial segment of

the string has more Y’s than X’s equivalent to paths which do not pass above the diag-
onal. Therefore, problem (P2) is equivalent to problem (P3). Using these equivalences
and Lemma 3.2, we have the conclusion. �

Theorem 3.1 tells us the number of rangements of {qI
k, qI I

k }p
k=1 with constrains (3.7)

is equal to the number of monotonic paths which do not pass above the diagonal, and
shows the number is Catalan number Cp. But we still need an algorithm to enumerate
all Cp cases, and following algorithm or the proof of Lemma 3.2 solve this problem.

Algorithm 3.1. For l = p, p − 1, · · · , 1, enumerate the cases that the number of elements of
{qI I

p ≥ qI
k, k = 1, 2 · · · , p} is l.

Using above algorithm and mathematical induction, we can get the formulation
for Catalan number in Lemma 3.2. It is easy to see that the number under unit squares
the monotonic paths which do not pass above the diagonal increasing as l decreasing.
Next, we use p = 2 and p = 3 as illustrations for this algorithm.
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Remark 3.2. When p = 2, C2 = C2
2×2 − C1

2×2 = 2, the two monotonic paths are shown
in Fig. 2.

Then corresponding rangements are

Case 2.1: qI I
1 ≥ qI I

2 ≥ qI
1 ≥ qI

2;

Case 2.2: qI I
1 ≥ qI

1 > qI I
2 ≥ qI

2.

When p = 3, C3 = C3
2×3 − C2

2×3 = 5, the five monotonic paths are shown in Fig. 3.
Then corresponding rangements are

Case 3.1: qI I
1 ≥ qI I

2 ≥ qI I
3 ≥ qI

1 ≥ qI
2 ≥ qI

3;

Case 3.2: qI I
1 ≥ qI I

2 ≥ qI
1 > qI I

3 ≥ qI
2 ≥ qI

3;

Case 3.3: qI I
1 ≥ qI

1 > qI I
2 ≥ qI I

3 ≥ qI
2 ≥ qI

3;

Case 3.4: qI I
1 ≥ qI I

2 ≥ qI
1 ≥ qI

2 > qI I
3 ≥ qI

3;

Case 3.5: qI I
1 ≥ qI

1 > qI I
2 ≥ qI

2 > qI I
3 ≥ qI

3.

Although Theorem 3.1 shows that the number of all possible rangements of
{qI

k, qI I
k }p

k=1 under constrains (3.7) is the Catalan number Cn = Cn
2n − Cn−1

2n , the col-
location schemes for each rangement are totally different. Once the q′ks in (1.2) are
given, we should compute qI

k and qI I
k , and specify the corresponding case by using

Theorem 3.1 and Algorithm 3.1, and then adopt concrete collocation scheme for this
case finally.

q q
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q

I

II

2

1 2

I

I

II q q

q

q
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1 2

I

I

II

Figure 2: Diagram of monotonic paths which do not pass above the diagonal when p = 2.
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Figure 3: Diagram of monotonic paths which do not pass above the diagonal when p = 3.
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3.2 Collocation schemes for VIFEMPDs with Cases 2.1 and 3.1

In this subsection, we shall give the numerical schemes for VIFEMPDs with p = 2
(Case 2.1) and p = 3 (Case 3.1) corresponding to Remark 3.2 as illustrations.

Using notations (3.6), for each collocation point tn,i ∈ Xh, the collocation equation
(3.2) becomes

uh(tn,i) =
p

∑
k=1

[
ak(tn,i)

m

∑
j=1

Lj(γ
(k)
n,i )Uq(k)n ,j

]
+ f (tn,i) + (Vuh)(tn,i) +

p

∑
k=1

(Vqk uh)(tn,i), (3.8)

where

(Vuh)(tn,i) =h
n−1

∑
l=0

m

∑
j=1

( ∫ 1

0
K0(tn,i, tl + sh)Lj(s)ds

)
Ul,j

+ h
m

∑
j=1

( ∫ ci

0
K0(tn,i, tn + sh)Lj(s)ds

)
Un,j,

and for k = 1, · · · , p,

(Vqk uh)(tn,i) =h
q(k)n,i −1

∑
l=0

m

∑
j=1

( ∫ 1

0
Kk(tn,i, tl + sh)Lj(s)ds

)
Ul,j

+ h
m

∑
j=1

( ∫ γ
(k)
n,i

0
Kk(tn,i, t

q(k)n,i
+ sh)Lj(s)ds

)
U

q(k)n,i ,j
.

For simplification, we introduce some notations (k = 1, 2, 3; n, l = 0, 1, · · · , N − 1;
i, j = 1, · · · , m)

B(k)
n =

(
ak(tn,i)Lj(γ

(k)
n,i )

)
ij, Fn =

(
f (tn + c1h), · · · , f (tn + cmh)

)T ,

Mn =
( ∫ ci

0
K0(tn,i, tn + sh)Lj(s)ds

)
ij

, Mn,l =
( ∫ 1

0
K0(tn,i, tl + sh)Lj(s)ds

)
ij

,

N(k)
n,l =

( ∫ 1

0
Kk(tn,i, tl + sh)Lj(s)ds

)
ij

, R(k)
n,l =

( ∫ γ
(k)
n,i

0
Kk(tn,i, tl + sh)Lj(s)ds

)
ij

,

Un = (Un,1, · · · , Un,m)
T , T

ν
(k)
n

= diag(1, · · · , 1︸ ︷︷ ︸
ν
(k)
n

, 0, · · · , 0).

3.2.1 Collocation schemes for Case 2.1: qI I
1 ≥ qI I

2 ≥ qI
1 ≥ qI

2

We have fives phases with respective to interval (tn, tn+1] for this case.
Phase I (q1 and q2 complete overlap)

0 ≤ n < qI
2 =

⌈ q2

1 − q2
c1

⌉
.
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We know that {qktn,i}m
i=1 ⊂ (tn, tn+1), k = 1, 2 only belong to one interval with q(k)n,i = n.

Then the corresponding matrix form for Eq. (3.8) is given by[
Im −

2

∑
k=1

(B(k)
n + hR(k)

n,n)− hMn

]
Un = Fn + h

n−1

∑
l=0

(
Mn,l +

2

∑
k=1

N(k)
n,l

)
Ul . (3.9)

Phase II (q1 complete overlap and q2 partial overlap)

qI
2 ≤ n < qI

1 =
⌈ q1

1 − q1
c1

⌉
.

Here, q(1)n,i = n for all values of i = 1, · · · , m and for given integer n, let ν
(2)
n with

1 ≤ ν
(2)
n < m such that

tn−1 < q2tn,i ≤ tn, i = 1, · · · , ν
(2)
n ,

tn < q2tn,i < tn+1, i = ν
(2)
n + 1, · · · , m.

Then the collocation equation (3.8) can be led to the linear algebraic system[
Im − B(1)

n − hR(1)
n,n − (Im − T

ν
(2)
n
)(B(2)

n + hR(2)
n,n)− hMn

]
Un

=T
ν
(2)
n
(B(2)

n + hR(2)
n,n−1)Un−1 + h

n−1

∑
l=0

(Mn,l + N(1)
n,l )Ul + Fn

+ h
n−2

∑
l=0

N(2)
n,l Ul + (Im − T

ν
(2)
n
)hN(2)

n,n−1Un−1. (3.10)

Phase III (q1 and q2 partial overlap)

qI
1 ≤ n < qI I

2 =
⌈ q2

1 − q2
cm

⌉
.

For given n and k = 1, 2, we know that

{qktn,i}m
i=1 ⊂ (tn−1, tn+1),

and there exist ν
(k)
n ∈ {1, · · · , m − 1}, such that{

tn−1 < q1tn,i ≤ tn, i = 1, · · · , ν
(1)
n ,

tn < q1tn,i < tn+1, i = ν
(1)
n + 1, · · · , m,

{
tn−1 < q2tn,i ≤ tn, i = 1, · · · , ν

(2)
n ,

tn < q2tn,i < tn+1, i = ν
(2)
n + 1, · · · , m.

The corresponding linear algebraic system yields[
Im −

2

∑
k=1

(Im − T
ν
(k)
n
)(B(k)

n + hR(k)
n,n)− hMn

]
Un

=
2

∑
k=1

Tνk
n
(B(k)

n + hR(k)
n,n−1)Un−1 + Fn + h

n−1

∑
l=0

Mn,lUl

+ h
n−2

∑
l=0

( 2

∑
k=1

N(k)
n,l

)
Ul +

2

∑
k=1

(Im − T
ν
(k)
n
)hN(k)

n,n−1Un−1. (3.11)
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Phase IV (q1 partial overlap and q2 non-overlap)

qI I
2 ≤ n < qI I

1 =
⌈ q1

1 − q1
cm

⌉
.

According to Lemma 3.1, we know that {q1tn,i}m
i=1 ⊂ (tn−1, tn+1) and q2tn,i ≤ tn (i =

1, · · · , m), which means, for given n, there exist two integers ν
(1)
n ∈ {1, · · · , m − 1}

and ν
(2)
n ∈ {1, · · · , m} such that

q(1)n,i = n − 1(i = 1, · · · , ν
(1)
n ), q(1)n,i = n(i = ν

(1)
n + 1, · · · , m),

q(2)n,i = q(2)n (i = 1, · · · , ν
(2)
n ), q(2)n,i = q(2)n + 1(i = ν

(2)
n + 1, · · · , m).

The linear algebraic system for this phase satisfies[
Im − (Im − T

ν
(1)
n
)(B(1)

n + hR(1)
n,n)− hMn

]
Un

=T
ν
(1)
n
(B(1)

n + hR(1)
n,n−1)Un−1 + T

ν
(2)
n
(B(2)

n + hR(2)

n,q(2)n
)U

q(2)n
+ Fn

+ h
n−1

∑
l=0

Mn,lUl + h
n−2

∑
l=0

N(1)
n,l Ul + h

q(2)n −1

∑
l=0

N(2)
n,l Ul + (Im − T

ν
(1)
n
)hN(1)

n,n−1Un−1

+
(

Im − T
ν
(2)
n
)(B(2)

n U
q(2)n +1

+ hN(2)

n,q(2)n
U

q(2)n
+ hR(2)

n,q(2)n +1
U

q(2)n +1

)
. (3.12)

Phase V (q1 and q2 non-overlap)

qI I
1 ≤ n ≤ N − 1.

Given n, there exists integers ν
(k)
n (k = 1, 2) ∈ {1, · · · , m}, such that t

q(1)n
< q1tn,i ≤ t

q(1)n +1
, i = 1, · · · , ν

(1)
n ,

t
q(1)n +1

< q1tn,i < t
q(1)n +2

, i = ν
(1)
n + 1, · · · , m, t

q(2)n
< q2tn,i ≤ t

q(2)n +1
, i = 1, · · · , ν

(2)
n ,

t
q(2)n +1

< q2tn,i < t
q(2)n +2

, i = ν
(2)
n + 1, · · · , m.

The system of linear equations describing the last phase is given by

(Im − hMn)Un =
2

∑
k=1

T
ν
(k)
n
(B(k)

n + hR(k)
n,qk

n
)U

q(k)n
+ Fn + h

n−1

∑
l=0

Mn,lUl +
2

∑
k=1

h
q(k)n −1

∑
l=0

N(k)
n,l Ul

+
2

∑
k=1

(Im − T
ν
(k)
n
)
(

B(k)
n U

q(k)n +1
+ hN(k)

n,q(k)n
U

q(k)n
+ hR(k)

n,q(k)n +1
U

q(k)n +1

)
. (3.13)
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3.2.2 Collocation schemes for Case 3.1: qI I
1 ≥ qI I

2 ≥ qI I
3 ≥ qI

1 ≥ qI
2 ≥ qI

3

We have seven phases with respective to interval (tn, tn+1] for this case.
Phase I (q1, q2 and q3 complete overlap)

0 ≤ n < qI
3 =

⌈ q3

1 − q3
c1

⌉
.

We know that {qktn,i}m
i=1 ⊂ (tn, tn+1), k = 1, 2, 3 only belong to one interval with q(k)n,i =

n. Then the corresponding matrix form for Eq. (3.8) is given by[
Im −

3

∑
k=1

(B(k)
n + hR(k)

n,n)− hMn

]
Un = Fn + h

n−1

∑
l=0

(
Mn,l +

3

∑
k=1

N(k)
n,l

)
Ul . (3.14)

Phase II (q1 and q2 complete overlap, q3 partial overlap)

qI
3 ≤ n < qI

2 =
⌈ q2

1 − q2
c1

⌉
.

Here, q(k)n,i = n, k = 1, 2 for all values of i = 1, · · · , m. For given integer n, let ν
(3)
n with

1 ≤ ν
(3)
n < m be such that

tn−1 < q3tn,i ≤ tn, i = 1, · · · , ν
(3)
n ,

tn < q3tn,i < tn+1, i = ν
(3)
n + 1, · · · , m.

Then the collocation equation (3.8) leads to[
Im −

2

∑
k=1

(B(k)
n + hR(k)

n,n)− (Im − T
ν
(3)
n
)(B(3)

n + hR(3)
n,n)− hMn

]
Un

=T
ν
(3)
n
(B(3)

n + hR(3)
n,n−1)Un−1 + h

n−1

∑
l=0

(
Mn,l +

2

∑
k=1

N(k)
n,l

)
Ul + Fn

+ h
n−2

∑
l=0

N(3)
n,l Ul + (Im − T

ν
(3)
n
)hN(3)

n,n−1Un−1. (3.15)

Phase III (q1 complete overlap, q2 and q3 partial overlap)

qI
2 ≤ n < qI

1 =
⌈ q1

1 − q1
c1

⌉
.

According to Lemma 3.1, we know that q(1)n,i = n for all values of i = 1, · · · , m and
{qktn,i}m

i=1 ⊂ (tn−1, tn+1), k = 2, 3, which means for given n, there exist two integers
ν
(2)
n ∈ {1, · · · , m − 1} and ν

(3)
n ∈ {1, · · · , m − 1} such that

q(2)n,i = n − 1(i = 1, · · · , ν
(2)
n ), q(2)n,i = n(i = ν

(2)
n + 1, · · · , m),

q(3)n,i = n − 1(i = 1, · · · , ν
(3)
n ), q(3)n,i = n(i = ν

(3)
n + 1, · · · , m).
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The linear algebraic system corresponding to this phase can be written as

[
Im − (B(1)

n + hR(1)
n,n)−

3

∑
k=2

(Im − T
ν
(k)
n
)(B(k)

n + hR(k)
n,n)− hMn

]
Un

=
3

∑
k=2

T
ν
(k)
n
(B(k)

n + hR(k)
n,n−1)Un−1 + h

n−1

∑
l=0

(Mn,l + N(1)
n,l )Ul

+ Fn + h
3

∑
k=2

[ n−2

∑
l=0

N(k)
n,l Ul + (Im − T

ν
(k)
n
)N(k)

n,n−1Un−1

]
. (3.16)

Phase IV (q1, q2 and q3 partial overlap)

qI
1 ≤ n < qI I

3 =
⌈ q3

1 − q3
cm

⌉
.

Using Lemma 3.1, we have {qktn,i}m
i=1 ⊂ (tn−1, tn+1), k = 1, 2, 3, which means for

given n, there exist three integers ν
(k)
n ∈ {1, · · · , m − 1}, k = 1, 2, 3 such that

q(k)n,i = n − 1(i = 1, · · · , ν
(k)
n ), q(k)n,i = n(i = ν

(k)
n + 1, · · · , m), k = 1, 2, 3.

The equation is given by

[
Im −

3

∑
k=1

(Im − T
ν
(k)
n
)(B(k)

n + hR(k)
n,n)− hMn

]
Un

=
3

∑
k=1

T
ν
(k)
n
(B(k)

n + hR(k)
n,n−1)Un−1 + Fn + h

n−1

∑
l=0

Mn,lUl

+ h
3

∑
k=1

[ n−2

∑
l=0

N(k)
n,l Ul + (Im − T

ν
(k)
n
)N(k)

n,n−1Un−1

]
. (3.17)

Phase V (q1 and q2 partial overlap, q3 non-overlap)

qI I
3 ≤ n < qI I

2 =
⌈ q2

1 − q2
cm

⌉
. (3.18)

By Lemma 3.1, we obtain {qktn,i}m
i=1 ⊂ (tn−1, tn+1), k = 1, 2 and q3tn,i ≤ tn for i =

1, · · · , m, which means for given n, there exist three integers ν
(k)
n ∈ {1, · · · , m − 1},

k = 1, 2 and ν
(3)
n ∈ {1, · · · , m} so that

q(k)n,i = n − 1(i = 1, · · · , ν
(k)
n ), q(k)n,i = n(i = ν

(k)
n + 1, · · · , m), k = 1, 2,

q(3)n,i = q(3)n (i = 1, · · · , ν
(3)
n ), q(3)n,i = q(3)n + 1(i = ν

(3)
n + 1, · · · , m).
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The collocation scheme for this phase can be written as

[
Im −

2

∑
k=1

(Im − T
ν
(k)
n
)(B(k)

n + hR(k)
n,n)− hMn

]
Un

=
2

∑
k=1

T
ν
(k)
n
(B(k)

n + hR(k)
n,n−1)Un−1 + h

2

∑
k=1

[ n−2

∑
l=0

N(k)
n,l Ul + (Im − T

ν
(k)
n
)N(k)

n,n−1Un−1

]

+ T
ν
(3)
n
(B(3)

n + hR(3)

n,q(3)n
)U

q(3)n
+ Fn + h

n−1

∑
l=0

Mn,lUl + h
q(3)n −1

∑
l=0

N(3)
n,l Ul

+ (Im − T
ν
(3)
n
)
(

B(3)
n U

q(3)n +1
+ hN(3)

n,q(3)n
U

q(3)n
+ hR(3)

n,q(3)n +1
U

q(3)n +1

)
. (3.19)

Phase VI (q1 partial overlap, q2 and q3 non-overlap)

qI I
2 ≤ n < qI I

1 =
⌈ q1

1 − q1
cm

⌉
.

From Lemma 3.1, we see {q1tn,i}m
i=1 ⊂ (tn−1, tn+1) and qktn,i ≤ tn, k = 2, 3 for i =

1, · · · , m, which means for given n, there exist three integers ν
(1)
n ∈ {1, · · · , m − 1}

and ν
(k)
n ∈ {1, · · · , m}, k = 2, 3 such that

q(1)n,i = n − 1(i = 1, · · · , ν
(1)
n ), q(1)n,i = n(i = ν

(1)
n + 1, · · · , m),

q(k)n,i = q(k)n (i = 1, · · · , ν
(k)
n ), q(k)n,i = q(k)n + 1(i = ν

(k)
n + 1, · · · , m), k = 2, 3.

The linear algebraic system corresponding to this phase given by[
Im − (Im − T

ν
(1)
n
)(B(1)

n + hR(1)
n,n)− hMn

]
Un

=T
ν
(1)
n
(B(1)

n + hR(1)
n,n−1)Un−1 + h

n−2

∑
l=0

N(1)
n,l Ul + (Im − T

ν
(1)
n
)hN(1)

n,n−1Un−1

+
3

∑
k=2

T
ν
(k)
n
(B(k)

n + hR(k)

n,q(k)n
)U

q(k)n
+ Fn + h

n−1

∑
l=0

Mn,lUl +
3

∑
k=2

h
q(k)n −1

∑
l=0

N(k)
n,l Ul

+
3

∑
k=2

(Im − T
ν
(k)
n
)
(

B(k)
n U

q(k)n +1
+ hN(k)

n,q(k)n
U

q(k)n
+ hR(k)

n,q(k)n +1
U

q(k)n +1

)
. (3.20)

Phase VII (q1, q2 and q3 non-overlap)

qI I
1 ≤ n ≤ N − 1.

Here, there is no longer any overlap of the images qktn,i, k = 1, 2, 3 with interval
(tn, tn+1]. For each value of n, there exist integers ν

(k)
n ∈ {1, · · · , m}, k = 1, 2, 3, such

that

q(k)n,i = q(k)n (i = 1, · · · , ν
(k)
n ), q(k)n,i = q(k)n + 1(i = ν

(k)
n + 1, · · · , m), k = 1, 2, 3.
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The collocation scheme for the last phase is given by:

(Im − hMn)Un

=
3

∑
k=1

T
ν
(k)
n
(B(k)

n + hR(k)

n,q(k)n
)U

q(k)n
+ Fn + h

n−1

∑
l=0

Mn,lUl + h
3

∑
k=1

q(k)n −1

∑
l=0

N(k)
n,l Ul

+
3

∑
k=1

(Im − T
ν
(k)
n
)
(

B(k)
n U

q(k)n +1
+ hN(k)

n,q(k)n
U

q(k)n
+ hR(k)

n,q(k)n +1
U

q(k)n +1

)
. (3.21)

4 Theoretic results for the collocation solution on
uniform mesh Ih

In this section, we shall present the existence and uniqueness of the collocation solu-
tion. Using traditional technique (see [6]), we give a convergence result about collo-
cation method for VIFEMPDs (1.2) with p = 2, and then using projection operators,
we propose a theorem about convergence of VIFEMPDs for general p. The last part of
this section is devoted to some comments on superconvergence of collocation method
for VIFEMPDs.

4.1 The existence and uniqueness of the collocation solution

In order to study existence and uniqueness, we firstly introduce a lemma as follows

Lemma 4.1. (see [10]) Consider multiple delays functional equation (2.4), if ak, f ∈ Cν(I)
for some integer v ≥ 1 and

p

∑
k=1

∥ak∥∞ < 1,

then there exists an h̄ > 0 (depend only on qk), for any uniform mesh Ih with h < h̄, the
Eq. (3.8) with V = Vqk = 0 defines a unique collocation solution uh ∈ S(−1)

m−1 for all qk ∈ (0, 1).

Using above lemma, the existence of a unique solution for (3.8) is given by follow-
ing theorem.

Theorem 4.1. Assume that the functions ak, f and Kk in (1.2) satisfy

(i) ak, f ∈ C(I), K0 ∈ C(D) and Kk ∈ C(Dqk), k = 1, 2, · · · , p;

(ii)
p
∑

k=1
∥ak∥∞ < 1.

Then there exists a constant h̄ > 0 (depend only on qk), for any uniform mesh Ih with h < h̄,
the Eq. (3.8) defines a unique collocation solution uh ∈ S(−1)

m−1 for all qk ∈ (0, 1).
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Proof. We only discuss when p = 2 with Case 2.1 here, the proof for the other case
is similar. For the Phase I, the collocation solution of (3.8) can be rewritten as (3.9), and
according to Lemma 4.1, we know that there exists a constant h̄1 > 0, such that for any
h < h̄1, the matrix Im − ∑

p
k=1 B(k)

n is nonsingular. Then we obtain∥∥∥[Im −
p

∑
k=1

B(k)
n − h

(
Mn +

p

∑
k=1

R(k)
n,n

)]
−

(
Im −

p

∑
k=1

B(k)
n

)∥∥∥ ≤ h
∥∥∥Mn +

p

∑
k=1

R(k)
n,n

∥∥∥,

which means Im − ∑
p
k=1 B(k)

n − h(Mn + ∑
p
k=1 R(k)

n,n) is nonsingular for h small enough.
Therefore the linear algebraic systems (3.9) has a unique solution. The statement that
the linear algebraic system (3.10) in Phase II, (3.11) in Phase III, (3.12) in Phase IV and
(3.13) in Phase V has a unique solution, can be carried out in a similar way. �

4.2 The convergence results for collocation solution

We now analyze the attainable global convergence order of the collocation solution
uh ∈ S(−1)

m−1(Ih) for the VIFEMPDs (1.2). First, we give the analysis of convergence by
the traditional method for (1.2) with p = 2.

Theorem 4.2. Let uh ∈ S(−1)
m−1(Ih) be the collocation solution with p = 2 defined in Sec-

tion 3.2. Assume that the functions ak, f and Kk in (1.2) satisfy

(i) ak, f ∈ Cm(I), K0 ∈ Cm(D) and Kk ∈ Cm(Dqk), k = 1, 2;

(ii)
2
∑

k=1
∥ak∥∞ < 1.

Then there exists a constant h̄ > 0, for any uniform mesh Ih with h < h̄, the following estimate
holds

∥u − uh∥∞ ≤ Chm.

Here, the constant C is independent on h.

Proof. By Theorem 2.2, we have u ∈ Cm(I). Using Peano’s Theorem for interpola-
tion to y on en, we obtain

u(tn + sh) =
m

∑
j=1

Lj(s)Yn,j + hmRm,n(s), s ∈ (0, 1], (4.1)

where Lj (j = 1, 2, · · · , m) are the Lagrange interpolation basis defined in (3.4) and
Yn,j = u(tn,j). Here, the Peano remainder term and Peano kernel are given by

Rm,n(s) =
∫ 1

0
K̃m(s, z)u(m)(tn + zh)dz,

K̃m(s, z) =
1

(m − 1)!

{
(s − z)m−1

+ −
m

∑
k=1

Lk(s)(ck − z)m−1
+

}
.
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Let En,j = Yn,j − Un,j, using formulations (3.3) and (4.1), the collocation error eh =
y − uh can be written as

eh(tn + sh) =
m

∑
j=1

Lj(s)En,j + hmRm,n(s), s ∈ (0, 1]. (4.2)

Subtracting (3.8) from (1.2) with p = 2, we obtain the error at collocation points satisfy
following equation

eh(tn,i) =
2

∑
k=1

ak(tn,i)eh(qktn,i) +
∫ t

0
K0(t, s)eh(s)ds +

2

∑
k=1

∫ qkt

0
Kk(t, s)eh(s)ds, (4.3)

with eh(tn,i) = En,i. Using (4.2) and (4.3), we get

En,i =
2

∑
k=1

r(k)1 + r2 +
2

∑
k=1

r(k)3 , (4.4)

where

r(k)1 = ak(tn,i)
[ m

∑
j=1

Lj(γ
(k)
n,i )Eq(k)n,i ,j

+ hmR
m,q(k)n,i

(γ
(k)
n,i )

]
, k = 1, 2,

r2 = h
n−1

∑
l=0

∫ 1

0
K0(tn,i, tl + sh)

[ m

∑
j=1

Lj(s)El,j + hmRm,l(s)
]
ds

+ h
∫ ci

0
K0(tn,i, tn + sh)

[ m

∑
j=1

Lj(s)En,j + hmRm,n(s)
]
ds,

r(k)3 = h
q(k)n,i −1

∑
l=0

∫ 1

0
Kk(tn,i, tl + sh)

[ m

∑
j=1

Lj(s)El,j + hmRm,l(s)
]
ds

+ h
∫ γ

(k)
n,i

0
Kk

(
tn,i, t

q(k)n,i
+ sh

)[ m

∑
j=1

Lj(s)Eq(k)n,i ,j
+ hmR

m,q(k)n,i
(s)

]
ds, k = 1, 2.

Next, without loss of generality, we shall discuss the convergence of the Case 2.1. For
the simplifications, we introduce following notations

āk = ∥ak∥∞, Mm = ∥u(m)∥∞, Φ(k)
n,l =

(
ak(tn,i)Rm,l(γ

(k)
n,i )

)
i,

ρn =
( ∫ ci

0
K0(tn,i, tn + sh)Rm,n(s)ds

)
i
, ρn,l =

( ∫ 1

0
K0(tn,i, tl + sh)Rm,l(s)ds

)
i
,

ρ
(k)
n,l =

( ∫ 1

0
Kk(tn,i, tl + sh)Rm,l(s)ds

)
i
, ρ̂

(k)
n,l =

( ∫ γ
(k)
n,i

0
Kk(tn,i, tl + sh)Rm,l(s)ds

)
i
,

L̄ = max
j

∥Lj∥∞, km = max
s∈[0,1]

∫ 1

0
|K̃m(s, z)|dz, K̄ = max

k=0,1,2

{
max
t∈[0,1]

∫ t

0
|Kk(t, s)|ds

}
.
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For Phase I, we know q(k)n,i = n (k = 1, 2) for i = 1, · · · , m, using above notations, the
corresponding matrix form for Eq. (4.4) is given by

(Im −B I
n)En =hm

2

∑
k=1

Φ(k)
n,n + h

n−1

∑
l=0

(
Mn,l +

2

∑
k=1

N(k)
n,l

)
El

+ hm+1
[ n−1

∑
l=0

(
ρn,l +

2

∑
k=1

ρ
(k)
n,l

)
+ ρn +

2

∑
k=1

ρ̂
(k)
n,n

]
, (4.5)

with

B I
n = B(1)

n + B(2)
n + h(Mn + R(1)

n,n + R(2)
n,n) and En = (En,1, · · · , En,m)

T.

According to Theorem 4.1, the above linear algebraic systems possesses a unique so-
lution for uniform meshes Ih with h ∈ (0, h̄). Thus, there exists a constant D0 such
that

∥(Im −B I
n)

−1∥1 ≤ D0, n = 0, · · · , qI
1 − 1.

Using (4.5), we have

∥En∥1 ≤D0

[
mhm(ā1 + ā2)km Mm + 3mhK̄L̄

n−1

∑
l=0

∥El∥1

+ 3mkm MmK̄hm
n−1

∑
l=0

h + 3mkm MmK̄hm+1
]
,

which leads to,

∥En∥1 ≤ γ0,1

n−1

∑
l=0

h∥El∥1 + γ1,1Mmhm, 0 ≤ n < qI
2, (4.6)

where

γ0,1 = 3mK̄L̄D0, γ1,1 =
(
m(ā1 + ā2)km + 3mkmK̄T + 3mkmK̄h

)
D0.

Applying discrete Gronwall inequality to (4.6) yields

∥En∥1 ≤ γ1,1Mmhm exp(γ0,1T) := C1Mmhm, 0 ≤ n < qI
1.

Similar arguments can be done for Phase II to Phase V. Combining these five phases,
we know there exists a constant C < ∞ such that

∥En∥1 ≤ CMmhm, for all 0 ≤ n ≤ N − 1. (4.7)

Substituting the above estimate (4.7) into (4.2) leads to

|eh(tn + sh)| ≤ (CL̄ + km)Mmhm, 0 ≤ n ≤ N − 1.
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This completes the proof. �
From the proof presented above on two proportional delays, it seems that the tra-

ditional technique is not suitable for analysis about multiple proportional delays, since
the situations for multiple proportional delays are too complicated. By using projec-
tion operators, we can present another proof of the convergence results on multiple
proportional delays which is also hold for proportional delays (see [10]).

Theorem 4.3. Let uh ∈ S(−1)
m−1(Ih) is the collocation solution defined in (3.8). Assume that the

functions ak, f and Kk in (1.2) satisfy

(i) ak, f ∈ Cm(I), K0 ∈ Cm(D) and Kk ∈ Cm(Dqk), k = 1, 2, · · · , p;

(ii)
p
∑

k=1
∥ak∥∞ < 1.

Then for all sufficiently small h > 0, we have

∥u − uh∥∞ ≤ C
(
∥(I − Ph) f ∥∞ + ∥(I − Ph)Ku∥∞

)
, (4.8)

where the operator K is given by (2.1), Ph is the Lagrange interpolate projection operator
corresponding to the collocation parameters {ci}, and the constant C is independent on h.

Furthermore, if the exact solution u ∈ Wm,∞(I), we obtain

∥u − uh∥∞ ≤ Chm∥u∥m,∞, (4.9)

where

∥v∥m,∞ := max
0≤j≤m

(
sup
t∈I

∣∣∣djv(t)
dtj

∣∣∣).

Proof. The operator formulations for VIFEMPDs (1.2) and its collocation equation
(3.8) are given by {

u = f +Ku,
uh = Ph f + PhKuh.

(4.10)

Based on the solvability of the VIFEMPDs and its collocation equation, we obtain{
u = (I −K)−1 f ,
uh = (I − PhK)−1Ph f .

(4.11)

The error between u and uh can be expressed in the form

u − uh =(I −K)−1 f − (I − PhK)−1Ph f

=(I −K)−1( f −Ph f ) + (I −K)−1Ph f − (I − PhK)−1Ph f

=(I −K)−1( f −Ph f ) + (I − PhK)−1(K−PhK)(I −K)−1Ph f

=(I −K)−1(I − Ph) f + (I − PhK)−1(K−PhK)(I −K)−1(Ph f − f )

+ (I − PhK)−1(K−PhK)(I −K)−1 f

=(I −K)−1(I − Ph) f + (I − PhK)−1(K−PhK)(I −K)−1(Ph − I) f

+ (I − PhK)−1(I − Ph)Ku, (4.12)
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which implies

∥u − uh∥∞ ≤ C
(
∥(I − Ph) f ∥∞ + ∥(I − Ph)Ku∥∞

)
. (4.13)

If u ∈ Wm,∞, from the error estimates of the interpolation operator Ph, we know that

∥(I − Ph) f ∥∞ ≤ Chm∥ f ∥m,∞ ≤ Chm∥u∥m,∞, (4.14a)
∥(I − Ph)Ku∥∞ ≤ Chm∥Ku∥m,∞ ≤ Chm∥u∥m,∞, (4.14b)

which leads to (4.9) Thus, the proof is complete. �

4.3 Comments on superconvergence

In the rest of this section, we discuss the superconvergence of collocation method for
VIFEMPDs. Define the iterated collocation solution uit

h associated with uh by

uit
h (t) =

p

∑
k=1

ak(t)uh(qkt) + f (t) + (Vuh)(t) +
p

∑
k=1

(Vqk uh)(t)ds. (4.15)

Then the iterated error eit
h = u − uit

h is given by

eit
h (t) = eh(t)− δh(t) =

p

∑
k=1

ak(t)eh(qkt) + (Veh)(t) +
p

∑
k=1

(Vqk eh)(t),

where

δh(t) := −uh(t) +
p

∑
k=1

ak(t)uh(qkt) + f (t) + (Vuh)(t) +
p

∑
k=1

(Vqk uh)(t).

We present a superconvergence result for a special case of (4.15) with ak = 0 (k =
1, · · · , p).

Theorem 4.4. Assume that the functions ak, f and Kk in (1.2) satisfy

(i) ak = 0, f ∈ Cm+1(I), K0 ∈ Cm+1(D) and Kk ∈ Cm+1(Dqk), k = 1, . . . , p.

Let uh ∈ S(−1)
m−1(Ih) is the collocation solution defined in (3.8) with collocation parameters {ci}

satisfying the orthogonality condition

J0 :=
∫ 1

0

m

∏
i=1

(s − ci)ds = 0.

Then the iterated collocation solution defined by (4.15) is globally superconvergent on I with

∥u − uit
h ∥∞ ≤ Chm+1,

where the constant C is independent on h.
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The proof is similar to collocation method for VIFEPDs (see [6]).
Using Theorem 4.2, it is easy to see that δh(t) = O(hm), and at collocation points,

δh(t) = 0. Hence, we obtain eit
h (t) = eh(t), t ∈ Xh. As for classical VIES, eit

h can
exhibit a higher order of convergence for properly chosen collocation points {ci} like
Theorem 4.4. But for VIFEMPDs of form (1.2), we point out that eit

h can not achieve a
higher convergence order since the existence of the q-difference term {u(qkt)}p

k=1, and
we shall show this numerically in next section.

5 Numerical examples

In this section, we apply the collocation methods described in Section 3 to several
VIFEMPDs examples. The first three examples are about the Eq. (1.2) with p = 2, and
the last example is concerned with p = 3. Results of the numerical simulations verify
our convergence analysis in Section 4. Simultaneously, we also address, by means of
numerical tests in Example 5.2, the iterative collocation method eit

h can not achieve a
higher convergence order.

Example 5.1. Consider the VIFEMPDs (1.2) with p = 2 and

a1(t) =
1
4

sin t, a2(t) =
1
2

te−t,

K0(t, s) = e−(t+s), K1(t, s) = e−(t−s), K2(t, s) = et−s,

f (t) = te−t − 1
4

q1t sin te−q1t − 1
2

q2t2e−q2t−t − 1
2

q2
1t2e−t − 1

4
e−t

+
1
2

te−3t +
1
4

e−3t − 1
4

et +
1
4

e(t−2q2t) +
1
2

q2te(t−2q2t).

Then the exact solution is u(t) = te−t, for t ∈ [0, 1].
Firstly, for a special case with q1 = q2, we use the piecewise quadratic space

S(−1)
2 (Ih) with the collocation parameters

C1 =
(5 −

√
15

10
,

1
2

,
5 +

√
15

10

)
, q = 0.1 and C2 =

(1
4

,
1
2

,
3
4

)
, q = 0.9,

respectively. The results are presented in Fig. 4. It is easy to see that the method is
order of three. The result of this experiment, obtained by collocation schemes with
p = 2, is consistent with the result of single proportional delay (see [6]).

Next, we consider the VIFEMPDs (1.2) with q1 ̸=q2. In our numerical implementa-
tion, we use the space S(−1)

2 (Ih) with the collocation points

C = ((5 −
√

15)/10, 1/2, (5 +
√

15)/10),

and parameters (q1, q2) = (0.5, 0.1), (q1, q2) = (0.99, 0.8) respectively. The results are
shown in Fig. 5. It is easy to see that the convergence order is three. At the collocation
points where

eit
h (t) = eh(t),
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Figure 4: Example 5.1(a): the errors for S(−1)
2 (Ih), left is by choice q = 0.1 and right is by q = 0.9.
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Figure 5: Example 5.1(b): the errors for S(−1)
2 (Ih), left is by choice (q1, q2) = (0.5, 0.1) and right is by

(q1, q2) = (0.99, 0.8).

the convergence order can only reach three.

Example 5.2. We consider Example 5.1 again, but with a1(t) = a2(t) = 0, and

f (t) = te−t − 1
2

q2
1t2e−t − 1

4
e−t +

1
2

te−3t +
1
4

e−3t − 1
4

et +
1
4

e(t−2q2t) +
1
2

q2te(t−2q2t).

Then the exact solution is still u(t) = te−t.
In our simulations, we use the piecewise quadratic space S(−1)

2 (Ih) with the collo-
cation parameters

C1 =
(1

4
,

1
2

,
3
4

)
, (q1, q2) = (0.5, 0.1) and C2 =

(1
3

,
1
2

,
2
3

)
, (q1, q2) = (0.99, 0.8),

respectively. Here, the collocation parameters C1 and C2 both satisfy the orthogonality
condition in Theorem 4.4. The results presented in Fig. 6 clearly exhibit the theoretical
superconvergence, order of four. Comparing the results for Example 5.1 and Exam-
ple 5.2, we can see that eit

h can not achieve a higher order convergence due to the
existence of the q-difference term {u(qkt)}p

k=1.

Example 5.3. Consider the first kind Volterra integral functional equation∫ t

q1t
K̃1(t, s)u(s)ds +

∫ t

q2t
K̃2(t, s)u(s)ds = g(t), t ∈ [0, 1], g(0) = 0, (5.1)
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Figure 6: Example 5.2: the errors for S(−1)
2 (Ih), left is by choice C1 = (1/4, 1/2, 3/4) and right is by

C2 = (1/3, 1/2, 2/3).

where

K̃1(t, s) = e−10(t−s), K̃2(t, s) = e−(t−s),

g(t) =
et − e(11q1−10)t

11
+

et − e(2q2−1)t

2
.

Then the exact solution is u(t) = et. Eq. (5.1) can be rewritten in the form of (1.2) by(
K̃1(t, t) + K̃2(t, t)

)
u(t)

=q1K̃1(t, q1t)u(q1t) + q2K̃2(t, q2t)u(q2t) + g′(t)

−
∫ t

q1t

∂K̃1

∂t
(t, s)u(s)ds −

∫ t

q2t

∂K̃2

∂t
(t, s)u(s)ds. (5.2)

Note that K̃1(t, t) = K̃2(t, t) = 1. Then we have

a1(t) =
1
2

q1K̃1(t, q1t) =
1
2

q1e−10(1−q1)t, a2(t) =
1
2

q2K̃2(t, q2t) =
1
2

q2e−(1−q2)t,

f (t) =
1
2

g′(t) =
1
22

[et − (11q1 − 10)e(11q1−10)t] +
1
4
[et − (2q2 − 1)e(2q2−1)t],

K0(t, s) = −1
2

(∂K̃1

∂t
(t, s) +

∂K̃2

∂t
(t, s)

)
= 5e−10(t−s) +

1
2

e−(t−s),

K1(t, s) =
1
2

∂K̃1

∂t
(t, s) = −5e−10(t−s), K2(t, s) =

1
2

∂K̃2

∂t
(t, s) = −1

2
e−(t−s).

We will use the piecewise quadratic space with the collocation points

C = ((5 −
√

15)/10, 1/2, (5 +
√

15)/10),

and the choices of the delay parameters (q1, q2) = (0.9, 0.2) and (q1, q2) = (0.75, 0.5).
The result is shown in Fig. 7, and the numerical result is consistent with theoretical
order, i.e., order of m = 3.
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Figure 7: Example 5.3: the errors for S(−1)
2 (Ih), left is by choice (q1, q2) = (0.9, 0.2) and right is by

(q1, q2) = (0.75, 0.5).

Example 5.4. Consider the VIFEMPDs (1.2) with p = 3, i.e., with three proportional
delays. Let

a1(t) =
1
8

sin t, a2(t) =
1
4

te−t, a3(t) =
1
2

e−t,

f (t) = et − 1
8

sin teq1t − 1
4

teq2t−t − 1
2

eq3t−t − te−t − 1
2

e2q1t−t

+
1
2

e−t − q2tet − 1
11

e11q3t−10t +
1
11

e−10t,

K0(t, s) = e−(t+s), K1(t, s) = e−(t−s), K2(t, s) = et−s, K3(t, s) = e−10(t−s),

then the exact solution is u(t) = et(t ∈ [0, 1]). In this experiment, we use space
S(−1)

2 (Ih) with the collocation parameters C=((5 −
√

15)/10, 1/2, (5 +
√

15)/10), de-
lay parameters (q1, q2, q3) = (0.99, 0.9, 0.5) and (q1, q2, q3) = (0.9, 0.75, 0.5) . The result
presented in Fig. 8 implies an order of three.
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Figure 8: Example 5.4: the errors for S(−1)
2 (Ih), left is by choice (q1, q2, q3) = (0.99, 0.9, 0.5) and right is

by (q1, q2, q3) = (0.9, 0.75, 0.5).
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