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Abstract. This paper investigates the laminar boundary layer flow of nanofluid in-
duced by a radially stretching sheet. Nanofluid model exhibiting Brownian motion
and thermophoresis is used. Series solutions for a reduced system of nonlinear ordi-
nary differential equations are obtained by homotopy analysis method (HAM). Com-
parative study between the HAM solutions and previously published numerical re-
sults shows an excellent agreement. Velocity, temperature and mass fraction are dis-
played for various values of parameters. The local skin friction coefficient, the local
Nusselt number and the local Sherwood number are computed. It is observed that the
presence of nanoparticles enhances the thermal conductivity of base fluid. It is found
that the convective heat transfer coefficient (Nusselt number) is decreased with an in-
crease in concentration of nanoparticles whereas Sherwood number increases when
concentration of nanoparticles in the base fluid is increased.

AMS subject classifications: 76D10, 80A20
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1 Introduction

There has been an increasing interest of the recent researchers in the flows induced by
a stretching surface. This is because of extensive applications of such flows in polymer
processing, metallurgy, drawing of plastic sheets, cable coating, continuous casting, glass
blowing, spinning synthetic fibers etc. Since the pioneering work of Crane [1] on the
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titled problem, the two-dimensional flows caused by a stretching sheet have been ex-
amined under various aspects (see [1–5]) and several References therein). However it is
noted that flows generated by radially stretching surface is scarce. For instance, Ariel [2]
analyzed slip effects on axisymmetric flow of viscous fluid induced by a stretching sur-
face. Hayat et al. [3] considered axisymmetric unsteady flow of micropolar fluid between
radially stretching surfaces. Hayat et al. [4] discussed thermal-diffusion and diffusion-
thermo effects on axisymmetric flow of second grade fluid between radially stretching
surfaces. Hayat and Nawaz [5] investigated axisymmetric flow between radially stretch-
ing surfaces. The studies [2–5] and several References therein are restricted to axisymmet-
ric flows of Newtonian and non-Newtonian fluids and no study regarding axisymmetric
flow of nanofluids over a radially surface is investigated so far. Therefore present in-
vestigation is an attempt in this direction. Literature survey also reveals that no study
regarding stagnation point flow of nanfluid over a radially stretching sheet is discussed
so far. However several studies on stagnation point flow of other than nanofluids are con-
ducted. For example, stagnation point flows towards a stretching sheet are also studied
by the researchers. The stagnation point flow of viscous fluid over a stretching surface
has been addressed by Chiam [6]. Mahapatra et al. [7] considered stagnation point flow
of power-law fluid towards a stretching surface. Labropulu and Li [8] studied slip effects
on stagnation point flow of second grade fluid. Numerical solution for stagnation point
flow of viscous fluid over a radially stretching surface has been computed by Attia [9].
Mixed convection in the stagnation point flow towards a stretching vertical permeable
sheet is considered by Ishak et al. [10]. The unsteady stagnation-point flow driven by
rotating disk has been examined by Hayat and Nawaz [11].

Recently, the flow analysis of nanofluids has been the topic of great interest due to
their occurrence in nuclear reactors, transportation, biomedicine etc. Actually many ordi-
nary fluids including water, toluene, ethylene glycol and mineral oils etc. are commonly
used in cooling processes in industry. These fluids have poor thermal characteristics.
Experimental and theoretical investigations show that the inclusion of micro-scaled par-
ticles in the base fluids enhances their thermal conductivity. Such mixture of the fluids
and nanoparticles are called nanofluids. Perhaps, Choi [12] was the first to use the word
nanofluid. It is known fact now that presence of nanoparticles in base fluid improves
its thermal conductivity. Furthermore, nanofluids show better stability and rheologi-
cal properties in comparison with base fluid. At present, the reasonable literature on
nanofluids is available. For example, Masuda et al. [13] studied the effects of ultra fine
particles on thermal conductivity of the base fluid. Das [14] concluded that thermal con-
ductivity of the base fluid can be enhanced by injecting nanoparticles into it. The trans-
fer of heat in fluid containing metallic oxide particles (nanoparticles) has been studied
by Pak and Cho [15]. Eastman et al. [16] noted an increase in thermal conductivity of
ethylene-glycol containing nanoparticles. Effects of nanoparticles on thermal conductiv-
ity of water have been investigated by Minsta [17]. Razi et al. [18] studied the pressure
drop and heat transfer of nanofluid flow inside horizontal flattened tubes. Mixed convec-
tion of a nanofluid in an inclined enclosure cavity is discussed by Alinia et al. [19]. Rana
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and Bhargava [20] examined heat transfer in two-dimensional flow of nanofluid over a
nonlinear stretching surface. Hamad and Ferdows [21] developed similarity solution for
flow of nanofluid induced by a porous stretching sheet.

Shortly, the purpose of present study is two fold. (i) to investigate the axisymmetric
flow of nanofluid over a stretching surface (ii) to take into account the radial type free
stream velocity Ue(r)= ar. The present communication is managed as follows. First the
relevant mathematical problem is formulated. Governing nonlinear problems are solved
for the series solutions by using recent developed technique namely homotopy analysis
method (HAM). This is a novel technique and has been already employed to solve many
nonlinear problems. Some of these studies can be mentioned through the References
(Liao [22], Rashidi et al. [23], Abbasbandy and Shirzadi [24], Hayat et al. [25], Hashim
et al. [26]). Convergence of series solutions is ensured. The mathematical solutions are
analyzed by plots and tables.

2 Mathematical formulation

We consider stagnation-point axisymmetric flow of nanofluid over a radially stretching
surface. Nanofluid occupies the half space z ≥ 0. The sheet is maintained at constant
temperature Tw and Cw (the nanoparticle mass fraction) at the surface of stretching sheet.
T∞ and C∞ denote the ambient temperature and nanoparticle mass fraction respectively.
The velocity components in the flow near the stagnation point are given by Ue(r) = ar,
We(z)=−2az and velocity of stretching sheet is Uw(r)= cr where a and c are the positive
constants. The relevant boundary layer flow equations are
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+
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with the following boundary conditions

u=Uw(r)= cr, w=0, T=Tw, C=Cw at z=0,
u→Ue(r)= ar, T→T∞, C→C∞ as z→∞,

}

(2.2)

where u and w are the velocity components along the radial (r) and axial (z) directions
respectively, T is the temperature of the fluid, C is the mass fraction field, ν (= µ/ρ f )
is the kinematic viscosity, ρ f is the density of the fluid, µ is the dynamic viscosity, α is
the thermal diffisivity, DB is the Brownian diffusion coefficient, DT is the thermophoretic
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coefficient, τ=(ρc)p/(ρc) f , (ρc)p and (ρc) f are the volumetric expansion coefficients and
ρp is the density of the nanoparticles.

Invoking the following relations

u= cr f ′(η), w=−2
√

cν f (η), θ(η)=
T−T∞

Tw−T∞

, φ(η)=
C−C∞

Cw−C∞

, η=

√

c

ν
z, (2.3)

Eqs. (2.1a)-(2.2) are reduced to

f ′′′+2 f f ′′− f
′2+A2=0,

f ′(η)=1, f (η)=0, f ′(∞)=A,

}

(2.4a)

θ′′+Pr(2 f θ′+Nbθ′φ′+Nt(θ′)2)=0,
θ(0)=1, θ(∞)=0,

}

(2.4b)

φ′′+2Le f φ′+
Nt

Nb
θ′′=0,

φ(0)=1, φ(∞)=0,







(2.4c)

where A= a/c is the ratio of free stream velocity to the velocity of stretching sheet, Le is
the Lewis number, Nb is the Brownian motion parameter, Pr is the Prandtl number and
Nt is the thermophoresis parameter. These are defined

Le=
ν

DB
, Nb =

(ρc)pDB(φw−φ∞)

ν(ρc) f
,

Pr=
ν

α
, Nt =

(ρc)pDT(Tw−T∞)

νT∞(ρc) f
.

It is important to note that problem in Eq. (2.1b) is the same as considered by Attia [13].
Furthermore setting Nb =0=Nt in Eq. (2.4b) provides the classical energy equation and
by putting Nb =0 in Eq. (2.4c) one obtains the classical Fick’s law.

The skin friction coefficient C f , the local Nusselt number Nu and the local Sherwood
number Sh are defined by

C f =µ
(∂u

∂z

)/

ρ f (Uw)
2|z=0, (2.5a)

Nu=
rqw

k(T−T∞)
, (2.5b)

Sh=
rjw

D(C−C∞)
, (2.5c)

where qw and jw are the heat and mass fluxes respectively, which have the following
values

qw =−k
(∂T
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)

z=0,
jw =−DB

(∂C

∂z

)

, (2.6)
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where k is the thermal conductivity of the fluid.

Together with Eqs. (2.5a)-(2.5c), Eqs. (2.6) become

=Re−1/2
r f ′′(0), Nu/Re1/2

r =−θ′(0), Sh/Re1/2
r =−φ′(0), (2.7)

where Rer(= cr2/ν) is the local Reynolds number.

3 Methodology

The nonlinear differential system given in Eqs. (2.4a)-(2.4c) is solved by homotopy analy-
sis method (HAM) which is a powerful tool to solve nonlinear boundary value problems
and has been used by many researchers [22–26]. The initial guesses f0, θ0 and φ0 are
selected in the following forms

f0(η)=Aη+(1−A)(1−exp(−η)), θ0(η)=exp(−η), φ0(η)=exp(−η), (3.1)

and linear operators are given by

£ f =
d3 f

dη3
− d f

dη
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dη2
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d2φ

dη2
−φ. (3.2)

Above linear operators satisfy the following properties

£ f [C1+C2η+C3exp(−η)]=0, (3.3a)

£θ [C4+C5exp(−η)]=0, (3.3b)

£φ[C6+C7exp(−η)]=0. (3.3c)
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(3.4a)

(1−q)£θ [θ̂(η;q)−θ0(η)]=qh̄θNθ[φ̂(η;q), θ̂(η;q), f̂ (η;q),],
θ̂(η;q)|η=0=1, θ̂(η;q)|η→∞ =0,

}

(3.4b)

(1−q)£φ [φ̂(η;q)−φ0(η)]=qh̄φNφ[θ̂(η;q),φ̂(η;q), f̂ (η;q),],
φ̂(η;q)|η=0=1, φ̂(η;q)|η→∞ =0,

}

(3.4c)
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in which q∈ [0,1] is the embedding parameter and h̄ f , h̄θ and h̄φ are non-zero auxiliary
parameters. Nonlinear operators N f , Nθ and Nφ are

N f [ f (η,p)]=
∂3 f (η,p)

∂η3
−
(∂ f (η,p)
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)2
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Nθ[ f̂ (η,p), θ̂(η,p),φ̂(η,p)]= θ̂′′(η,p)+2Pr f̂ (η,p)θ̂′(η,p)+Pr(Nb θ̂′(η,p)φ̂′(η,p)

+Nt(θ̂
′(η,p))2), (3.5b)

Nφ[ f̂ (η,p), θ̂(η,p),φ̂(η,p)]= φ̂′′(η,p)+2Le f̂ (η,p)φ̂′(η,p)+
Nb

Nt
θ̂′′(η,p). (3.5c)

3.2 Higher order deformation problems

The associated problems at this order are
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where

χm =

{

0, m≤1,
1, m>1.

The general solutions of problems consisting of Eqs. (2.4a)-(2.4c) are

f (η)= f ∗(η)+Cm
1 +Cm

2 η+Cm
3 exp(−η), (3.7a)

θ(η)= θ∗(η)+Cm
4 +Cm

5 exp(−η), (3.7b)

φ(η)=φ∗(η)+Cm
6 +Cm

7 exp(−η), (3.7c)
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Figure 1: h̄ f -curve for f ′′.

Figure 2: h̄θ,φ-curves for θ and φ.

where f ∗(η), θ∗(η) and φ∗(η) are the particular solutions of the problems given in the
Eqs. (2.4a)-(2.4c).

The series solutions (3.7a)-(3.7c) contain auxiliary parameters h̄ f , h̄θ and h̄φ. The con-
vergence of functions f , θ and φ strongly depend upon the auxiliary parameters h̄ f , h̄θ

and h̄φ. In order to adjust and control the convergence of the developed solutions, we
have plotted the h̄ f ,θ,φ-curves in Figs. 1 and 2. We note that range for admissible values
of h̄ f and h̄θ,φ are −0.7≤ h̄ f ≤−0.4 and −1.2≤ h̄θ,φ ≤−0.6 respectively. Furthermore the
series solutions converge up to 25th order of approximations (see Table 1).

4 Results and discussion

Nonlinear problems given in Eqs. (2.4a)-(2.4c) are solved by using homotopy analysis
method (HAM). Velocity, temperature and mass fraction profiles against various values
of dimensionless parameters are displayed (Figs. 3-9). Numerical values of the local skin
friction coefficient, local Nusselt and Sherwood numbers are tabulated and analyzed for
the effects of pertinent parameters (see Table 3). In order to validate the accuracy of our
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Table 1: Convergence of the homotopy solutions for different order of approximation when A=0.1, Le=Pr=0.5,
Nb =Nt=2, h̄ f =−0.6 and h̄θ = h̄φ =−1.

Order of approximation − f ′′(0) −θ′(0) −φ′(0)
1 1.03500 0.008333 0.175000

5 1.12356 0.219163 0.401731

10 1.12463 0.241936 0.455136

15 1.12462 0.239161 0.454117

20 1.12461 0.238552 0.454419

25 1.12461 0.238407 0.454529

30 1.12461 0.238373 0.454561

results, we have given a comparative study between the present HAM solutions and
existing numerical results [9]. An excellent agreement has been observed (see Table 2).
Fig. 3 is plotted to examine the influence of stretching parameter A on radial velocity
f ′. A> 1 corresponds to the case when free stream velocity is dominant whereas A< 1
holds when stretching velocity is dominant. Interestingly an increase in A (0≤ A< 1)
decreases velocity f ′ and the boundary layer thickness. However when the free stream

Figure 3: Influence of A on f ′.

Figure 4: Influence of Pr on θ.
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Figure 5: Influence of Nb on θ.

Figure 6: Influence of Nt on θ.

Figure 7: Influence of Le on φ.

velocity is greater than the stretching velocity, i.e., for A > 1, the velocity f ′ increases
and the boundary layer thickness decreases. It means that the large values of A accom-
pany with the higher free stream velocity giving rise to the velocity f ′. Results of an
increase in Pr on the temperature are observed in Fig. 4. In view of definition of Prandtl
number (Pr = υ/α, the ratio of momentum diffusivity to thermal diffusivity), it con-
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Figure 8: Influence of Nb on φ.

Figure 9: Influence of Nt on φ.

trols the relative thickness of the momentum and thermal boundary layers. Hence large
Prandtl number means that velocity (momentum) diffuses quickly in comparison with
heat and vice versa for small Pr. This shows that for liquid metals the thickness of the
thermal boundary layer is much larger than the velocity boundary layer. It is note that
for Nb =Nt =0, Eq. (2.4b) reduces to energy equation for conventional fluid (base fluid).
Fig. 5 elucidates that the effect of Brownian motion of nanoparticles on thermal conduc-
tion. This figure also indicates that Brownian motion of nanoparticles contributes to the
thermal conduction enhancement and consequently temperature increases. It means that
more heat conducts through nanofluids as compare to the conventional fluid. Thus use
of nanoparticles in base fluid makes it possible to design coolants with industrial and
biomedical applications in high-heat-flux cooling system. It is obvious from Fig. 5 that
thermal boundary layer in nanofluid is higher than that of base fluid. It is observed
form Fig. 6 that θ is an increasing function of Nt and so is the thermal boundary layer.
The effect of Lewis number Le on mass fraction field φ is presented in Fig. 7. As Lewis
number is defined as the ratio of thermal diffusivity to mass diffusivity and characterizes
fluid flows where there is simultaneous transfer of heat and mass by convection. It is
found from Fig. 7 that mass fraction field φ is a decreasing function of Le. It is noted from
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Table 2: Comparison of the wall shear stress f ′′(0) for different values of stretching parameter A.

Ref [9] Present case

A f ′′(0)
0.1 -1.1246 -1.12460

0.2 -1.0556 -1.05561

0.5 -0.7534 -0.75310

1.0 0.0000 0.00000

1.1 0.1821 0.18231

1.2 0.3735 0.36736

1.5 1.0009 1.02410

Table 3: Numerical values of the local skin friction coefficient Re1/2
r C f , the local Nusselt number Re−1/2

r Nu

and the Sherwood number Re−1/2
r Sh for various values of physical parameters.

A Nb Nt Pr Le Re1/2
r C f −Re−1/2

r Nu −Re−1/2
r Sh

0.0 2.0 2.0 0.5 0.5 1.17372 0.229072 0.374090

0.1 2.0 2.0 0.5 0.5 1.12460 0.238442 0.454496

0.2 2.0 2.0 0.5 0.5 1.05502 0.249055 0.509668

0.1 1 2.0 0.5 0.5 1.12460 0.318667 0.215940

0.1 2 2.0 0.5 0.5 1.12460 0.238442 0.454513

0.1 3 2.0 0.5 0.5 1.12460 0.175175 0.523783

0.1 2 0 0.5 0.5 1.12460 0.326795 0.561515

0.1 2 1 0.5 0.5 1.12460 0.278421 0.493110

0.1 2 2 0.5 0.5 1.12460 0.238442 0.454496

0.1 2 3 0.5 0.5 1.12460 0.205261 0.437014

Fig. 8 that an increase in Nt causes decrease in mass fraction field φ and the associated
boundary layer whereas an increase Nb increases the mass fraction field φ (see Fig. 9).
Table 3 is prepared to analyze the effects of some dimensionless parameters on the local
skin friction coefficient, the local Nusselt number (Rer)−1/2Nur and the local Sherwood
number (Rer)−1/2Shr. This table depicts that local skin friction coefficient (Rer)1/2C f de-

creases when A is increased. The local Nusselt number (Rer)−1/2Sh decreases whereas
local Sherwood number (Rer)−1/2Sh increases when Nb is increased. However Nt has
similar effects on (Rer)−1/2Nu and (Rer)−1/2Sh.

5 Final remarks

This research article discusses the axisymmetric stagnation-point flow of nanofluid over
a stretching surface. Analytic solution of cuopled nonlinear boundary value problems
is computed by homotopy analysis method (HAM). Derived solution in limiting case is
compared with already exiting numerical solution. An excellent agreement between the
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present and already existing numerical results has been found. The whole analysis is
summarized as:

1. Dimensionless velocity f ′(η) decreases when A increases through (0,1). However
opposite trend is noted for A>1.

2. Inclusion of nanoparticles in base fluid enhances its thermal conductivity. Therefore
such fluids are used as coolants in industry and biomedical devices for high-heat-
flux.

3. Dimensionless temperature θ is an increasing function of Nt and so is the thermal
boundary layer.

4. An increase in Nt causes a decrease in mass fraction field φ and the associated
boundary layer whereas an increase Nb increases the mass fraction field φ.

5. Dimensionless temperature θ is a decreasing function Prandtl number Pr and so is
the thermal boundary layer thickness.
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