An Equivalent Characterization of $C M O\left(\mathbb{R}^{n}\right)$ with A_{p} Weights

Minghui Zhong and Xianming Hou*
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China.
Received December 5, 2018; Accepted April 26, 2019;
Published online March 4, 2020

Abstract

Let $1<p<\infty$ and $\omega \in A_{p}$. The space $C M O\left(\mathbb{R}^{n}\right)$ is the closure in $B M O\left(\mathbb{R}^{n}\right)$ of the set of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. In this paper, an equivalent characterization of $C M O\left(\mathbb{R}^{n}\right)$ with A_{p} weights is established.

AMS subject classifications: 42B20, 42B25
Key words: $B M O O_{\omega}\left(\mathbb{R}^{n}\right), C M O\left(\mathbb{R}^{n}\right)$, A_{p}, John-Nirenberg inequality.

1 Introduction

The goal of this paper is to provide an equivalent characterization of $C M O\left(\mathbb{R}^{n}\right)$, which is useful in the study of compactness of commutators of singular integral operator and fractional integral operator.

The space $B M O\left(\mathbb{R}^{n}\right)$ is defined by the set of functions $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\|f\|_{B M O\left(\mathbb{R}^{n}\right)}:=\sup _{Q \subset \mathbb{R}^{n}} M(f, Q)<\infty,
$$

where

$$
M(f, Q):=\frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right| d x, \quad f_{Q}:=\frac{1}{|Q|} \int_{Q} f(x) d x .
$$

The space $C M O\left(\mathbb{R}^{n}\right)$ is the closure in $B M O\left(\mathbb{R}^{n}\right)$ of the set of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, which is a proper subspace of $B M O\left(\mathbb{R}^{n}\right)$.

In fact, it is known that $C M O\left(\mathbb{R}^{n}\right)=V M O_{0}\left(\mathbb{R}^{n}\right)$, where $V M O_{0}\left(\mathbb{R}^{n}\right)$ is the closure of $C_{0}\left(\mathbb{R}^{n}\right)$ in $B M O\left(\mathbb{R}^{n}\right)$, see $[2,3,9]$. Here $C_{0}\left(\mathbb{R}^{n}\right)$ is the set of continuous functions on \mathbb{R}^{n} which vanish at infinity. Neri [8] gave a characterization of $C M O\left(\mathbb{R}^{n}\right)$ by Riesz transforms. Meanwhile, Neri proposed the following characterization of $\operatorname{CMO}\left(\mathbb{R}^{n}\right)$ and its proof was established by Uchiyama in his remarkable work [11].

[^0]Theorem 1.1. Let $f \in B M O\left(\mathbb{R}^{n}\right)$. Then $f \in C M O\left(\mathbb{R}^{n}\right)$ if and only if f satisfies the following three conditions
(a) $\lim _{a \rightarrow 0} \sup _{|Q|=a} M(f, Q)=0$;
(b) $\lim _{a \rightarrow \infty} \sup _{|Q|=a} M(f, Q)=0$;
(c) $\lim _{|x| \rightarrow \infty} M(f, Q+x)=0$ for each cube $Q \subset \mathbb{R}^{n}$, where $Q+x:=\{y+x: y \in Q\}$.

Recently, Guo, Wu and Yang [6] established an equivalent characterization of space $C M O\left(\mathbb{R}^{n}\right)$ by local mean oscillations. Lots of works about space $C M O\left(\mathbb{R}^{n}\right)$ have been studied, see [4] for example. Muckenhoupt and Wheeden [7, Theorem 5] showed the norm of $B M O_{\omega}\left(\mathbb{R}^{n}\right)$ (see Definition 1.2) is equivalent to the norm of $B M O\left(\mathbb{R}^{n}\right)$, where the weight function ω is Muckenhoupt A_{p} weight. So it is natural to consider equivalent characterizations of $C M O\left(\mathbb{R}^{n}\right)$ associated to A_{p} weights.

To state our main results, we first recall some relevant notions and notations.
The following class of A_{p} was introduced in [1,5].
Definition 1.1. Let $\omega(x) \geq 0$ and $\omega(x) \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. For $1<p<\infty$, we say that $\omega(x) \in A_{p}$ if there exists a constant $C>0$ such that for any cube Q,

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} \omega(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-\frac{1}{p-1}} d x\right)^{p-1} \leq C . \tag{1.1}
\end{equation*}
$$

Also, for $p=1$, we say that $\omega(x) \in A_{1}$ if there is a constant $C>0$ such that

$$
\begin{equation*}
M \omega(x) \leq C \omega(x) \tag{1.2}
\end{equation*}
$$

where M is the Hardy-Littlewood maximal operator. For $p \geq 1$, the smallest constant appearing in (1.1) and (1.2) is called the A_{p} characteristic constant of ω and is denoted by $[\omega]_{A_{p}}$.

Definition 1.2. Let $\omega \in A_{p}$. For a cube Q in \mathbb{R}^{n}, we say a function $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ is in $B M O_{\omega}\left(\mathbb{R}^{n}\right)$ if f satisfies

$$
\|f\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)}:=\sup _{Q \subset \mathbb{R}^{n}} M(f, Q)_{\omega}<\infty,
$$

where

$$
\begin{aligned}
& m(f, Q)_{\omega}:=\frac{1}{\omega(Q)} \int_{Q} f(x) \omega(x) d x \\
& M(f, Q)_{\omega}:=\frac{1}{\omega(Q)} \int_{Q}\left|f(x)-m(f, Q)_{\omega}\right| \omega(x) d x
\end{aligned}
$$

Let $\omega \in A_{p}(p \geq 1), q>1, f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$. Then $B M O_{\omega, q}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\|f\|_{B M O_{\omega, q}\left(\mathbb{R}^{n}\right)}:=\sup _{Q \subset \mathbb{R}^{n}} M(f, Q)_{\omega, q}<\infty,
$$

where

$$
M(f, Q)_{\omega, q}:=\left(\frac{1}{\omega(Q)} \int_{Q}\left|f(x)-m(f, Q)_{\omega}\right|^{q} \omega(x) d x\right)^{1 / q}
$$

Now, we can formulate our main results as follows.
Theorem 1.2. Let $p \geq 1,1<q<\infty$. Suppose $f \in B M O\left(\mathbb{R}^{n}\right)$ and $\omega \in A_{p}$. Then the following conditions are equivalent:
(1) $f \in C M O\left(\mathbb{R}^{n}\right)$;
(2) f satisfies the following three conditions:
(i) $\lim _{a \rightarrow 0} \sup _{|Q|=a} M(f, Q) \omega, q=0$,
(ii) $\left.\lim _{a \rightarrow \infty} \sup _{|Q|=a} M(f, Q)\right)_{\omega, q}=0$,
(iii) $\lim _{|x| \rightarrow \infty} M(f, Q+x)_{\omega, q}=0$ for each $Q \subset \mathbb{R}^{n}$.
(3) f satisfies the following three conditions:
(i') $\lim _{a \rightarrow 0} \sup _{|Q|=a} M(f, Q)_{\omega}=0$,
(ii') $\lim _{a \rightarrow \infty} \sup _{|Q|=a} M(f, Q)_{\omega}=0$,
(iii') $\lim _{|x| \rightarrow \infty} M(f, Q+x)_{\omega}=0$ for each $Q \subset \mathbb{R}^{n}$.
Throughout this paper, the letter C, will stand for positive constants, not necessarily the same one at each occurrence, but independent of the essential variables. If $f \leq C g$, we write $f \lesssim g$ or $g \gtrsim f$; and if $f \lesssim g \lesssim f$, we write $f \sim g$. A dyadic cube Q on \mathbb{R}^{n} is a cube of the form

$$
\left\{x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: k_{i} 2^{j} \leq x_{i}<\left(k_{i}+1\right) 2^{j}, i=1, \cdots, n, k_{i} \in \mathbb{Z}, j \in \mathbb{Z}\right\}
$$

R_{j} means $\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right|<2^{j}, i=1,2, \cdots, n\right\}$. For $\lambda>0, \lambda Q$ denotes the cube with the same center as Q and side-length λ times the side-length of Q.

2 The proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. To do this, we firstly recall some auxiliary lemmas. Note that [7, Theorem 3] impiles the following weighted John-Nirenberg inequalities, also see [1,10].

Lemma 2.1. (John-Nirenberg) Let $p \in[1, \infty), \omega \in A_{p}$ and $f \in B M O_{\omega}\left(\mathbb{R}^{n}\right)$. For every $\alpha>0$ and cube Q, there exist constants c_{1} and c_{2} such that

$$
\omega\left(\left\{x \in Q:\left|f(x)-f_{Q}\right|>\alpha\right\}\right)<c_{1} e^{-\frac{\alpha}{c_{2}\|f\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)}}} \omega(Q) .
$$

Next, we recall some useful properties of A_{p} weights.
Lemma 2.2 ([5]). Let $\omega \in A_{p}$ and $1 \leq p<\infty$.

1. There exist $0<\delta<1$ and $C>0$ that depending only on the dimension n, p, and $[\omega]_{A_{p}}$ such that for any cube Q and any measurable subset S of Q we have

$$
\begin{equation*}
\frac{\omega(S)}{\omega(Q)} \leq C\left(\frac{|S|}{|Q|}\right)^{\delta} \tag{2.1}
\end{equation*}
$$

2. There exist constants C and $\gamma>0$ that depending only on the dimension n, p, and $[\omega]_{A_{p}}$ such that for every cube Q we have

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{1+\gamma} d x\right)^{\frac{1}{1+\gamma}} \leq \frac{C}{|Q|} \int_{Q} \omega(x) d x \tag{2.2}
\end{equation*}
$$

3. For all $\lambda>1$, and all cubes Q,

$$
\begin{equation*}
\omega(\lambda Q) \leq \lambda^{n p}[\omega]_{A_{p}} \omega(Q) \tag{2.3}
\end{equation*}
$$

Now, we are in position to prove the Theorem 1.2.
Proof. To prove (1) $\Rightarrow(2)$ in Theorem 1.2. Assume that $f \in C M O\left(\mathbb{R}^{n}\right)$. If $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, then (i) - (iii) hold. It is obvious that (i) holds for uniformly continuous functions f. Without loss of generality, we assume $\operatorname{supp}(f) \subset Q_{0}$. Then for each $Q \subset \mathbb{R}^{n}$, there exists $h \in \mathbb{R}^{n}$, for $|x|>|h|$, we have $Q_{0} \cap(Q+x)=\varnothing$, (iii) holds.

Note that

$$
\begin{aligned}
& \left(\frac{1}{\omega(Q)} \int_{Q}\left|f(x)-m(f, Q)_{\omega}\right|^{q} \omega(x) d x\right)^{1 / q} \\
\leq & \left(\frac{1}{\omega(Q)} \int_{\mathbb{R}^{n}}\left|f(x)-m(f, Q)_{\omega}\right|^{q} \omega(x) d x\right)^{1 / q} .
\end{aligned}
$$

For $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\left(\int_{\mathbb{R}^{n}}\left|f(x)-m(f, Q)_{\omega}\right|^{q} \omega(x) d x\right)^{1 / q}<\infty .
$$

On the other hand, $Q(0, r)$ denotes the closed cube centered at 0 with side-length r. For any $x_{0} \in Q(0, r)$, there exists a cube Q centered at x_{0} such that $Q(0, r) \subset Q$, by (2.1), we get

$$
\frac{1}{\omega(Q)} \int_{Q}\left|f(x)-m(f, Q)_{\omega}\right|^{q} \omega(x) d x \lesssim \frac{1}{\omega(Q(0, r))}\left(\frac{|Q(0, r)|}{|Q|}\right)^{\delta},
$$

which tends to 0 as $|Q|$ tends to $+\infty$, (ii) holds.
If $f \in C M O\left(\mathbb{R}^{n}\right) \backslash C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, for any given $\varepsilon>0$, there exists $f_{\varepsilon} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying (i) - (iii) and $\left\|f-f_{\varepsilon}\right\|_{B M O\left(\mathbb{R}^{n}\right)}<\varepsilon$. Then by Lemma 2.1 and (2.2), for $\omega \in A_{p}, 1<p<\infty$, it is easy to see

$$
\begin{equation*}
\left\|f-f_{\varepsilon}\right\|_{B M O_{\omega, q}\left(\mathbb{R}^{n}\right)} \lesssim\left\|f-f_{\varepsilon}\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)} \lesssim\left\|f-f_{\varepsilon}\right\|_{B M O\left(\mathbb{R}^{n}\right)} \lesssim \varepsilon . \tag{2.4}
\end{equation*}
$$

The detailed proof of (2.4) also can be found in [1,7]. By (2.4) and the triangle inequality, we deduce that (i) - (iii) hold for f.

The proof of $(2) \Rightarrow(3)$. By the Hölder inequality, we get

$$
\begin{align*}
& \frac{1}{\omega(Q)} \int_{Q}\left|f(x)-m(f, Q)_{\omega}\right| \omega(x) d x \\
\lesssim & \frac{1}{\omega(Q)}\left(\int_{Q}\left|f(x)-m(f, Q)_{\omega}\right|^{q} \omega(x) d x\right)^{1 / q}\left(\int_{Q} \omega(x) d x\right)^{1 / q^{\prime}} \\
= & \left(\frac{1}{Q} \int_{Q}\left|f(x)-m(f, Q)_{\omega}\right|^{q} \omega(x)\right)^{1 / q}, \tag{2.5}
\end{align*}
$$

where $1 / q+1 / q^{\prime}=1$.
It follows from (2.5) that if f satisfies (i) - (iii) then f satisfies $\left(\mathrm{i}^{\prime}\right)-\left(\mathrm{iii} i^{\prime}\right)$.
The proof of $(3) \Rightarrow(1)$. Now we show that if f satisfies $\left(\mathrm{i}^{\prime}\right)-(\mathrm{iii})$ then for all $\varepsilon>0$, there exists $g_{\varepsilon} \in B M O\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{align*}
& \inf _{h \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}\left\|g_{\varepsilon}-h\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)}<C_{n} \varepsilon, \tag{2.6}\\
& \left\|g_{\varepsilon}-f\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)}<C_{n} \varepsilon . \tag{2.7}
\end{align*}
$$

We prove (2.6) and (2.7) by the following two steps.
Step I By (i^{\prime}) and (ii'), there exist i_{ε} and k_{ε} such that

$$
\begin{align*}
& \sup \left\{M(f, Q)_{\omega}:|Q| \leq 2^{n\left(i_{\varepsilon}+8\right)}\right\}<\varepsilon, \tag{2.8}\\
& \sup \left\{M(f, Q)_{\omega}:|Q| \geq 2^{n k_{\varepsilon}}\right\}<\varepsilon . \tag{2.9}
\end{align*}
$$

By (iii'), there exists $j_{\varepsilon}>k_{\varepsilon}$ such that

$$
\begin{equation*}
\sup \left\{M(f, Q)_{\omega}: Q \cap R_{j_{\varepsilon}}=\varnothing\right\}<\varepsilon \tag{2.10}
\end{equation*}
$$

Now for each $x \in R_{j_{\varepsilon}}$, we take dyadic cube Q_{x} with side-length $2^{i_{\varepsilon}}$ containing x; if $x \in$ $R_{m} \backslash R_{m-1}\left(j_{\varepsilon}<m\right), Q_{x}$ means a dyadic cube of side-length $2^{i_{\varepsilon}+m-j_{\varepsilon}}$. Set $g_{\varepsilon}^{\prime}(x)=m\left(f, Q_{x}\right)_{\omega}$, by (ii'), there exists $m_{\varepsilon}>j_{\varepsilon}$ such that

$$
\begin{equation*}
\sup \left\{\left|g_{\varepsilon}^{\prime}(x)-g_{\varepsilon}^{\prime}(y)\right|: x, y \in R_{m_{\varepsilon}} \backslash R_{m_{e}-1}\right\}<\varepsilon \tag{2.11}
\end{equation*}
$$

To see this, by (ii'), let $m_{\varepsilon}>j_{\varepsilon}+k_{\varepsilon}-i_{\varepsilon}$ be large enough such that when $\omega\left(R_{m_{\varepsilon}}\right) \geq 2^{n\left(m_{\varepsilon}+i_{\varepsilon}-j_{\varepsilon}\right)}$,

$$
\begin{equation*}
M\left(f, R_{m_{\varepsilon}+1}\right)_{\omega}<\frac{\varepsilon}{C_{1}\left(j_{\varepsilon}-i_{\varepsilon}+1\right)} \tag{2.12}
\end{equation*}
$$

for some positive constant C_{1}.
For $x \in R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}$, it is obvious that

$$
2^{j_{\varepsilon}-i_{\varepsilon}} Q_{x} \subset R_{m_{\varepsilon}+1} \subset 8 \cdot 2^{j_{\varepsilon}-i_{\varepsilon}} Q_{x} .
$$

This together with (2.12) and (2.3) imply that

$$
\begin{align*}
& \left|m\left(f, 2^{j_{\varepsilon}-i_{\varepsilon}} Q_{x}\right)_{\omega}-m\left(f, R_{m_{e}+1}\right)_{\omega}\right| \\
\lesssim & \left.\frac{\omega\left(R_{m_{\varepsilon}+1}\right)}{\omega\left(2^{j_{\varepsilon}}-i_{\varepsilon}\right.} Q_{x}\right) \tag{2.13}
\end{align*}\left(f, R_{m_{\varepsilon}+1}\right)_{\omega} \lesssim \frac{\varepsilon}{C_{1}\left(j_{\varepsilon}-i_{\varepsilon}+1\right)} \lesssim \frac{\varepsilon}{8} .
$$

Since $Q_{x} \subset R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}$, by (2.3) and (2.12), we have

$$
\begin{align*}
&\left|m\left(f, R_{m_{\varepsilon}+1}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}\right| \\
& \lesssim \frac{\omega\left(R_{m_{\varepsilon}+1}\right)}{\omega\left(R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)} M\left(f, R_{m_{\varepsilon}+1}\right)_{\omega} \\
& \lesssim\left.\frac{\omega\left(8 \cdot 2^{j_{\varepsilon}-i_{\varepsilon}}\right.}{} Q_{x}\right) \tag{2.14}\\
& \omega\left(Q_{x}\right)
\end{align*}\left(f, R_{m_{\varepsilon}+1}\right)_{\omega} \lesssim \frac{\varepsilon}{8} . \quad .
$$

By (2.13), (2.14) and (2.12), we conclude that for any Q_{x} with $x \in R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}$,

$$
\begin{align*}
& \quad\left|m\left(f, Q_{x}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}\right| \\
& \lesssim \\
& \lesssim m\left(f, 2^{j_{\varepsilon}-i_{\varepsilon}} Q_{x}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}\left|+\sum_{k=1}^{j_{\varepsilon}-i_{\varepsilon}}\right| m\left(f, 2^{k} Q_{x}\right)_{\omega}-m\left(f, 2^{k-1} Q_{x}\right)_{\omega} \mid \\
& \lesssim \\
& \quad\left|m\left(f, 2^{j_{\varepsilon}-i_{\varepsilon}} Q_{x}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}+1}\right)_{\omega}\right| \tag{2.15}\\
& \quad+\left|m\left(f, R_{m_{\varepsilon}+1}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}\right|+\sum_{k=1}^{j_{\varepsilon}-i_{\varepsilon}} 2^{n p} \frac{\varepsilon}{C_{1}\left(j_{\varepsilon}-i_{\varepsilon}+1\right)} \\
& \lesssim \frac{\varepsilon}{8}+\frac{\varepsilon}{8}+\frac{2^{n p}}{C_{1}} \varepsilon \lesssim \frac{\varepsilon}{2} .
\end{align*}
$$

For any $Q_{x}, Q_{y} \subset R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}$, by (2.15), we get

$$
\begin{aligned}
&\left|m\left(f, Q_{x}\right)_{\omega}-m\left(f, Q_{y}\right)_{\omega}\right| \\
& \lesssim\left|m\left(f, Q_{x}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}\right|+\left|m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}-m\left(f, Q_{y}\right)_{\omega}\right| \\
& \lesssim \varepsilon .
\end{aligned}
$$

Step II Define $g_{\varepsilon}(x)=g_{\varepsilon}^{\prime}(x)$ when $x \in R_{m_{\varepsilon}}$ and $g_{\varepsilon}(x)=m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}$ when $x \in R_{m_{\varepsilon}}^{c}$. Notice that

$$
\begin{equation*}
\text { if } \bar{Q}_{x} \cap \bar{Q}_{y} \neq \varnothing, \quad \operatorname{diam} Q_{x} \leq 2 \operatorname{diam} Q_{y} . \tag{2.16}
\end{equation*}
$$

By the definition of $i_{\varepsilon}, j_{\varepsilon}$ and m_{ε}, if $\bar{Q}_{x} \cap \bar{Q}_{y} \neq \varnothing$ or $x, y \in R_{m_{\varepsilon}-1}^{c}$, there exists $C_{2}>0$ such that

$$
\begin{equation*}
\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right|<C_{2} \varepsilon \tag{2.17}
\end{equation*}
$$

In fact, assume that $|x|<|y|$. Firstly, we show that if $x, y \in R_{m_{\varepsilon}-1}^{c}$, then (2.17) holds. By noting that $x, y \in R_{m_{\varepsilon^{\prime}}}^{c}$, we get

$$
g_{\varepsilon}(x)=g_{\varepsilon}(y)=m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}
$$

and (2.17) holds. Next, if $x, y \in R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}$, we deduce from (2.11) that

$$
\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right|=\left|g_{\varepsilon}^{\prime}(x)-g_{\varepsilon}^{\prime}(y)\right|<\varepsilon
$$

Thirdly, if $x \in R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}$ and $y \in R_{m_{\varepsilon}^{\prime}}^{c}$ (2.15) indicates that

$$
\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right|=\left|m\left(f, Q_{x}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}\right|<\varepsilon
$$

Now we show if $\bar{Q}_{x} \cap \bar{Q}_{y} \neq \varnothing$, then (2.17) holds. We assume that $Q_{x} \neq Q_{y}$ and let Q be the smallest cube containing Q_{x} and Q_{y}, then $Q \subset 4 Q_{x}$. If $x, y \in R_{j_{\varepsilon}}$, then

$$
Q_{x}, Q_{y} \subset R_{j_{\varepsilon}} \quad \text { and } \quad|Q|<2^{n\left(i_{\varepsilon}+4\right)}
$$

by (2.8), (2.17) holds. Similarly, if $Q_{x} \subset R_{j_{\varepsilon}}, Q_{y} \subset R_{m_{\varepsilon}-1}$ and $\bar{Q}_{x} \cap \bar{Q}_{y} \neq \varnothing$, by (2.8), (2.17) also holds. If $x, y \in R_{m_{\varepsilon}-1}^{c}$, notice that $Q \cap R_{j_{\varepsilon}}=\varnothing$ and by (2.10),

$$
\left|g_{\varepsilon}^{\prime}(x)-m(f, Q)_{\omega}\right| \lesssim \frac{\omega(Q)}{\omega\left(Q_{x}\right)} M(f, Q)_{\omega} \lesssim \varepsilon
$$

Similarly, we have

$$
\left|g_{\varepsilon}^{\prime}(y)-m(f, Q)_{\omega}\right| \lesssim \varepsilon
$$

Hence

$$
\left|g_{\varepsilon}^{\prime}(x)-g_{\varepsilon}^{\prime}(y)\right| \lesssim\left|g_{\varepsilon}^{\prime}(x)-m(f, Q)_{\omega}\right|+\left|m(f, Q)_{\omega}-g_{\varepsilon}^{\prime}(y)\right| \lesssim \varepsilon
$$

Combining these cases, (2.17) holds.
We turn to prove that g_{ε} satisfies (2.6). Set

$$
\widetilde{h_{\varepsilon}}(x):=g_{\varepsilon}(x)-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}
$$

By the definition of g_{ε}, we get

$$
\tilde{h_{\varepsilon}}(x)=0 \text { for any } x \in R_{m_{\varepsilon}}, \quad\left\|\tilde{h_{\varepsilon}}-g_{\varepsilon}\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)}=0
$$

Moreover, if $\bar{Q}_{x} \cap \bar{Q}_{y} \neq \varnothing$ or $x, y \in R_{m_{e}-1}^{c}$, by (2.17), we have

$$
\left|\tilde{h_{\varepsilon}}(x)-\tilde{h_{\varepsilon}}(y)\right|=\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right|<C_{2} \varepsilon .
$$

Observe that $\operatorname{supp}\left(\tilde{h}_{\varepsilon}\right) \subset R_{m_{\varepsilon}}$. Take a positive valued function $\varphi(x) \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ supported in $B(0,1)$ and $\int_{\mathbb{R}^{n}} \varphi(x) d x=1$. For $t>0$, set

$$
\varphi_{t}(x)=\frac{1}{t^{n}} \varphi\left(\frac{x}{t}\right) .
$$

Select $t<2^{i_{\varepsilon}}$, then

$$
\begin{aligned}
& \left|\varphi_{t} * \tilde{h_{\varepsilon}}(x)-\tilde{h}_{\varepsilon}(x)\right| \lesssim \int_{\mathbb{R}^{n}} \varphi_{t}(y)\left|\tilde{h}_{\varepsilon}(x-y)-\tilde{h}_{\varepsilon}(x)\right| d y \\
= & \int_{\mathbb{R}^{n}} \varphi(u)\left|\tilde{h_{\varepsilon}}(x-t u)-\tilde{h}_{\varepsilon}(x)\right| d u \lesssim \sup _{u \in \mathbb{R}^{n}}\left|\tilde{h}_{\varepsilon}(x-t u)-\tilde{h}_{\varepsilon}(x)\right|,
\end{aligned}
$$

where in the second inequality we make the change of variable $y=u t$.
Since $u \in B(0,1)$ and $t<2^{i_{\varepsilon}}, \forall x \in \mathbb{R}^{n}$,

$$
|(x-t u)-x|=|t u|<2^{i_{\varepsilon}} .
$$

By (2.17), if $x, x-t u \in R_{m_{\varepsilon}}, \bar{Q}_{x} \cap \bar{Q}_{x-t u} \neq \varnothing$, hence

$$
\left|\tilde{h_{\varepsilon}}(x-t u)-\tilde{h_{\varepsilon}}(x)\right|<C_{2} \varepsilon .
$$

If one of x and $x-t u$ in $R_{m_{\varepsilon}}^{c}$, the other must be in $R_{m_{\varepsilon}-1}^{c}$, we also have

$$
\left|\tilde{h_{\varepsilon}}(x-t u)-\tilde{h_{\varepsilon}}(x)\right|<C_{2} \varepsilon .
$$

Moreover, $\varphi_{t} * \widetilde{h_{\varepsilon}}(x) \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|\varphi_{t} * \tilde{h_{\varepsilon}}-\tilde{h_{\varepsilon}}\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)} \lesssim\left\|\varphi_{t} * \tilde{h_{\varepsilon}}-\tilde{h_{\varepsilon}}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}+\varepsilon .
$$

Therefore

$$
\begin{aligned}
& \left\|\varphi_{t} * \tilde{h}_{\varepsilon}-g_{\varepsilon}\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)} \\
\lesssim & \left\|\varphi_{t} * \tilde{h}_{\varepsilon}-\tilde{h_{\varepsilon}}\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)}+\left\|\tilde{h}_{\varepsilon}-g_{\varepsilon}\right\|_{B M O_{\omega}\left(\mathbb{R}^{n}\right)} \\
\lesssim & \left\|\varphi_{t} * \tilde{h}_{\varepsilon}-\tilde{h_{\varepsilon}}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}+\varepsilon .
\end{aligned}
$$

We obtain that (2.6) holds.

Now we prove (2.7). By the definition i_{ε} and j_{ε} again, we obtain that for any $x \in R_{m_{\varepsilon}}$,

$$
\begin{equation*}
\int_{Q_{x}}\left|f(y)-g_{\varepsilon}(y)\right| \omega(y) d y \lesssim \omega\left(Q_{x}\right) \varepsilon . \tag{2.18}
\end{equation*}
$$

Indeed,

$$
\int_{Q_{x}}\left|f(y)-g_{\varepsilon}(y)\right| \omega(y) d y=\int_{Q_{x}}\left|f(y)-m\left(f, Q_{x}\right)_{\omega}\right| \omega(y) d y .
$$

If $Q_{x} \cap R_{j_{\varepsilon}}=\varnothing$, by (2.10), (2.18) holds. If $Q_{x} \cap R_{j_{\varepsilon}} \neq \varnothing$, using (2.8), (2.18) holds.
Let Q be a arbitrary cube in \mathbb{R}^{n}. In order to prove (2.7) holds, it suffices to show

$$
\begin{equation*}
M\left(f-g_{\varepsilon}, Q\right)_{\omega}<\varepsilon . \tag{2.19}
\end{equation*}
$$

We consider the following four cases:
Case(i): $Q \subset R_{m_{\varepsilon}}$ and $\max \left\{\operatorname{diam} Q_{x}: Q_{x} \cap Q \neq \varnothing\right\}>4 \operatorname{diam} Q$, by (2.16), the number of $Q_{x} \cap Q \neq \varnothing$ is finite. If $Q_{x_{i}} \cap Q \neq \varnothing$ and $Q_{x_{j}} \cap Q \neq \varnothing, \bar{Q}_{x_{i}} \cap \bar{Q}_{y_{j}} \neq \varnothing$, by (2.17),

$$
\begin{aligned}
M\left(g_{\varepsilon}, Q\right)_{\omega} & \lesssim \frac{1}{\omega(Q)} \sum_{i: Q_{x_{i}} \cap Q \neq \varnothing} \int_{Q_{x_{i}} \cap Q}\left|g_{\varepsilon}(x)-m\left(g_{\varepsilon}, Q\right)_{\omega}\right| \omega(x) d x \\
& \lesssim \frac{1}{\omega(Q)} \sum_{i: Q_{x_{i}} \cap Q \neq \varnothing} \int_{Q_{x_{i} \cap Q}} \frac{1}{\omega(Q)} \sum_{j: Q_{x_{j}} \cap Q \neq \varnothing} \int_{Q_{x_{j} \cap Q} \cap}\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right| \omega(y) d y \omega(x) d x \\
& \lesssim \varepsilon .
\end{aligned}
$$

Moreover, if $Q \cap R_{j_{\varepsilon}} \neq \varnothing$, then $|Q| \leq 2^{n\left(i_{\varepsilon}+1\right)}$, by (2.8), we have $M(f, Q)_{\omega}<\varepsilon$; if $Q \cap R_{j_{\varepsilon}}=\varnothing$, by (2.10), we also obtain $M(f, Q)_{\omega}<\varepsilon$. Hence

$$
M\left(f-g_{\varepsilon}, Q\right)_{\omega} \lesssim M(f, Q)_{\omega}+M\left(g_{\varepsilon}, Q\right)_{\omega} \lesssim \varepsilon
$$

Case(ii): $Q \subset R_{m_{\varepsilon}}$ and $\max \left\{\operatorname{diam} Q_{x}: Q_{x} \cap Q \neq \varnothing\right\} \leq 4$ diam Q, we have

$$
\bigcup_{Q_{x_{i}} \cap \neq \varnothing \varnothing}^{\cup} \supset Q, \quad \sum_{Q_{x_{i}} \cap Q \neq \varnothing} \omega\left(Q_{x_{i}}\right) \sim \omega(Q) .
$$

Invoking (2.18), we get

$$
\begin{aligned}
\left.M\left(f-g_{\varepsilon}, Q\right)\right)_{\omega} & \lesssim \frac{2}{\omega(Q)} \sum_{Q_{x_{i}} \cap Q \neq \varnothing} \int_{Q_{x_{i}}}\left|f(y)-g_{\varepsilon}(y)\right| \omega(y) d y \\
& \lesssim \frac{2}{\omega(Q)} \sum_{Q_{x_{i}} \cap Q \neq \varnothing} \omega\left(Q_{x_{i}}\right) \varepsilon \lesssim \varepsilon .
\end{aligned}
$$

Case(iii): $Q \subset R_{m_{\varepsilon}-1}^{c}$, then $Q \cap R_{j_{\varepsilon}}=\varnothing$ and $M(f, Q)_{\omega}<\varepsilon$. Using (2.17),

$$
M\left(g_{\varepsilon}, Q\right)_{\omega} \lesssim \frac{1}{\omega(Q)} \int_{Q} \frac{1}{\omega(Q)} \int_{Q}\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right| \omega(y) d y \omega(x) d x<\varepsilon
$$

Hence

$$
M\left(f-g_{\varepsilon}, Q\right)_{\omega} \lesssim M(f, Q)_{\omega}+M\left(g_{\varepsilon}, Q\right)_{\omega}<\varepsilon
$$

Case(iv): $Q \cap R_{m_{e}}^{c} \neq \varnothing$ and $Q \cap R_{m_{e}-1} \neq \varnothing$. Let P_{Q} be a smallest positive number such that $Q \subset R_{P_{Q}}$. Then

$$
M(f, Q)_{\omega} \lesssim M\left(f, R_{P_{Q}}\right)_{\omega}
$$

Moreover,

$$
\begin{aligned}
& M\left(f-g_{\varepsilon}, R_{P_{Q}}\right)_{\omega} \omega\left(R_{P_{Q}}\right) \lesssim \int_{R_{P_{Q}}}\left|\left(f-g_{\varepsilon}\right)(x)-m\left(f-g_{\varepsilon}, R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)_{\omega}\right| \omega(x) d x \\
\lesssim & \int_{R_{P_{Q}}}\left|f(x)-m\left(f, R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)_{\omega}\right| \omega(x) d x+\int_{R_{P_{Q}}}\left|g_{\varepsilon}(x)-m\left(g_{\varepsilon}, R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right) \omega\right| \omega(x) d x .
\end{aligned}
$$

On the one hand, by (2.18), we have

$$
\begin{aligned}
& \int_{R_{P_{Q}}}\left|f(x)-m\left(f, R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)_{\omega}\right| \omega(x) d x \\
\lesssim & \int_{R_{P_{Q}}}\left|f(x)-m\left(f, R_{P_{Q}}\right)_{\omega}\right| \omega(x) d x+\left|m\left(f, R_{P_{Q}}\right)_{\omega}-m\left(f, R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)_{\omega}\right| \omega\left(R_{P_{Q}}\right) \\
\lesssim & \int_{R_{P_{Q}}}\left|f(x)-m\left(f, R_{P_{Q}}\right)_{\omega}\right| \omega(x) d x \\
\lesssim & \omega\left(R_{P_{Q}}\right) \varepsilon .
\end{aligned}
$$

On the other hand, it is easy to prove that

$$
\sum_{i: Q_{x_{i}} \in R_{m_{\varepsilon}}} \omega\left(Q_{x_{i}}\right) \sim \omega\left(R_{m_{\varepsilon}}\right) .
$$

Combining with (2.9) and (2.18) and the fact that $g_{\varepsilon}(x)=g_{\varepsilon}(y)$ for any $x, y \in R_{m_{\varepsilon}}^{c}$, we obtain

$$
\begin{aligned}
& \int_{R_{P_{Q}}}\left|g_{\varepsilon}(x)-m\left(g_{\varepsilon}, R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right) \omega\right| \omega(x) d x \\
\lesssim & \frac{1}{\omega\left(R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)} \int_{R_{P_{Q}}} \int_{R_{P_{Q}} \backslash R_{m_{\varepsilon}}}\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right| \omega(y) d y \omega(x) d x \\
= & \frac{1}{\omega\left(R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)} \int_{R_{m_{\varepsilon}}} \int_{R_{P_{Q}} \backslash R_{m_{\varepsilon}}}\left|g_{\varepsilon}(x)-g_{\varepsilon}(y)\right| \omega(y) d y \omega(x) d x \\
\lesssim & \frac{1}{\omega\left(R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)} \int_{R_{m_{\varepsilon}}} \int_{R_{P_{Q}} \backslash R_{m_{\varepsilon}}}\left[\left|g_{\varepsilon}(x)-f(x)\right|\right. \\
& \left.+\left|f(x)-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)\right|\right] \omega(y) d y \omega(x) d x \\
\lesssim & \frac{1}{\omega\left(R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)} \int_{R_{P_{Q}} \backslash R_{m_{\varepsilon}}} \sum_{i: Q_{x_{i}}<R_{m_{\varepsilon}}} \int_{Q_{x_{i}}}\left|g_{\varepsilon}(x)-f(x)\right| \omega(x) d x \omega(y)
\end{aligned}
$$

$$
\begin{aligned}
&+\int_{R_{m_{\varepsilon}}}\left[\left|f(x)-m\left(f, R_{m_{\varepsilon}}\right)_{\omega}\right|+\left|m\left(f, R_{m_{\varepsilon}}\right)_{\omega}-m\left(f, R_{m_{\varepsilon}} \backslash R_{m_{\varepsilon}-1}\right)_{\omega}\right|\right] \omega(x) d x \\
& \lesssim \frac{1}{\omega\left(R_{P_{Q}} \backslash R_{m_{\varepsilon}}\right)} \int_{R_{P_{Q}} \backslash R_{m_{\varepsilon}}} \varepsilon \sum_{i: Q_{x_{i}} \in R_{m_{\varepsilon}}} \omega\left(Q_{x_{i}}\right) \omega(y) d y \\
& \quad+\int_{R_{m_{\varepsilon}}}\left|f(x)-m\left(f, R_{m_{\varepsilon}}\right)_{\omega}\right| \omega(x) d x \\
& \lesssim \omega\left(R_{m_{\varepsilon}}\right) \varepsilon \omega\left(R_{P_{Q}}\right) \varepsilon .
\end{aligned}
$$

This implies (2.7) and completes the proof of Theorem 1.2.

References

[1] Coifman R, Weiss G. Extension of Hardy space and their use in analysis. Bull Amer Math Soc, 1977, 83(4): 569-645.
[2] Dafni G. Local VMO and weak convergence in h^{1}. Canad Math Bull, 2002, 45(1): 46-59.
[3] Ding Y, Mei T. Some characterization of $\operatorname{VMO}\left(\mathbb{R}^{n}\right)$. Anal Theory Appl, 2014, 30(4): 387-398.
[4] Duong X, Li J, Mao S, Wu H, Yang D. Compactness of Riesz transform commutator associated with Bessel operators. J Anal Math, 2018, 135(2): 639-673.
[5] Grafakos L. Classical Fourier Analysis, third edition. Graduate Texts in Mathematics, 249, Springer, New York, 2014.
[6] Guo W, Wu H, Yang D. A revisit on the compactness of commutators. ArXiv:1712.08692, 2017.
[7] Muckenhoupt C, Wheeden R. Weighted bounded mean oscillation and the Hilbert transform. Studia Math, 1976, 54(3): 221-237.
[8] Neri U. Fractional intergration on the space H^{1} and its dual. Studia Math, 1975, 53: 175-189.
[9] Sarason D. Function of vanishing mean oscillation. Tran. Amer. Math. Soc., 1975, 207: 391405.
[10] Stein E. Harmonic Analysis: Real-Variable Methods,Othogonality and Oscillatory Interals. Princeton, New Jersey: Princeton University Press, 1993.
[11] Uchiyama A. On the compactness of operators of Hankel tytpe. Tôkoku Math J, 1978, 30(1): 163-171.

[^0]: *Corresponding author. Email addresses: mhzhong95@163.com (M. Zhong), houxianming37@163.com (X. Hou)

