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Abstract. In this paper we consider the Lamé system on a polygonal convex domain
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1 Introduction

Let Ω be a bounded open connected subset of R2. The static equilibrium of a deformable
structure occupying Ω is governed by the Lamé linear elasto-static system, see [1]. In
this paper, we restrict the study to a convex domain Ω whose boundary has a polygonal
shape that posses m+1 edges with m≥2. We denote Γ=∪m

i=0Γi its boundary and d(Ω) its
diameter. Moreover, we assume that all the edges Γi have strictly positive measure. The
system under consideration is given by

Lu= f a.e in Ω,
σ(u)·−→ni = gi on (Γ−Γ0)∩Γi, 1≤ i≤m,
u=0 on Γ0.

(1.1)
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We need to assume that the edges Γi which form the boundary Γ fulfill a condition
similar to assumption (H2) in ([2], Theorem 2.3). Actually, for our purpose, a stronger
condition is needed and it is formulated in (1.5) below. The vector function u=(u1,u2)
satisfying the system (1.8) describes a displacement in the plane. In this model we impose
a homogeneous Dirichlet condition on Γ0 and a Neumann condition on the remaining
part of the boundary. The equality on the boundary is understood in the sense of the
trace. We denote L the Lamé operator defined by

Lu :=−divσ(u)=−div[2µε(u)+λTrε(u)Id]. (1.2)

We assume the data functions f and g at the right hand sides to satisfy f ∈ [L2(Ω)]2 and
g∈ [H

1
2 (Γ−Γ0)]2. The vector −→ni represents the outside normal to Γi. We write µ and λ

the Lamé’s coefficients. We place ourselves in the isotropic framework, the deformation
tensor ε is defined by

ε(u)=
1
2
(∇u+∇tu). (1.3)

The weak form of problem (1.1) is (see [1,3]): Find u∈V such that ∀v∈V∫
Ω

2µε(u)ε(v)+λdivu divvdx=
∫

Ω
f vdx+

∫
Γ−Γ0

gvdσ(x), (1.4)

where
V=

{
v∈ [H1(Ω)]2; v=0 on Γ0

}
.

The existence and uniqueness issue of the solution of (1.4) in V is classic, (see [3]).
If we denote θ the interior angle between the edges Γj and Γk, 0≤ j, k≤m such that Γj∩

Γk ̸=∅ and if we denote γ the interior angle between the Neumann part of the boundary
ΓN :=Γ−Γ0 and the Dirichlet part of the boundary ΓD :=Γ0, then we impose

0< θ<π, 0<γ<π. (1.5)

The reason behind this assumption on the boundary is to get a better regularity of the
solution of the weak problem (1.4). Precisely in that case we have, following ([2], Theorem
2.3) stated at the bottom of page 330, u∈[H 3

2+ι(Ω)]2 for some positive ι>0, which implies
in particular, using the appropriate Sobolev embedding and since Ω is a locally Lipschitz
domain, see part II of ([4], Theorem 4.12, page 85), that u ∈ [C0, 1

2+ι(Ω)]2 i.e. u is ( 1
2 +

ι)−holder continuous. One should notice that condition (1.5) are met since the domain
considered in our case is convex. Let us denote

||ε(u)||0,Ω :=
(∫

Ω
ε(u)ε(u)dx

) 1
2

; ||∇u||0,Ω :=
(∫

Ω
|∇u1|2+|∇u2|2dx

) 1
2

.

By using the second Korn inequality, see [5], the trace and the Poincaré’s inequalities, one
easily gets from (1.4) the following estimate

||∇u||0,Ω ≤ 1
ck

1
2µ

(
cp|| f ||0,Ω+cp,t||g|| 1

2 ,Γ−Γ0

)
, (1.6)
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where cp,t is a constant that depends of Poincaré constant and the constant of trace in-
equality. ck is the constant of the Korn’s inequality. Note that the value of the constant
ck and cp,t appearing in (1.6) are unknown and can not be explicitly lower-bounded or
upper-bounded in the general case. We propose to determine explicitly these constants.
The main result of this work is stated in the following theorem:

Theorem 1.1. The unique weak solution u of (1.4) on the convex polygonal domain Ω admits the
explicit upper bound

||∇u||0,Ω ≤ 1
√

µ

(
1+d(Ω)|| f ||0,Ω+8(|Γ|+||g||20,Γ)

)
, (1.7)

where d(Ω) represent the diameter of Ω and |Γ| the measure of the boundary of Ω.

Estimate (1.7) is similar to estimate (1.6) in the sense that the constants appearing there
are the same. Before demonstrating this theorem, it is useful to go through some remarks
and results. These auxiliary results are needed in order to adequately get a decomposition
of the solution of the main problem, which belongs to H1(Ω), into functions that are still
in H

1
2 (Γ). Denote xi, for 1≤i≤m, the vertex of the polygon that connects Γi−1 with Γi and

x0 the one that connects Γm to Γ0. Define the auxiliary function uϵ ∈H1(Ω) as the unique
solution to the following Dirichlet problem{

Luϵ = f a.e in Ω,
uϵ =ud

ϵ on Γ,
(1.8)

where ud
ϵ is the trace on the boundary Γ of the function

ϕϵ(x)u(x). (1.9)

For ϵ≪ |Γi |
2 ∀i, 0≤ i≤m, the function ϕϵ is defined by

ϕϵ(x)=0, ||x−xi||≤ϵ2, 0≤ i≤m;

ϕϵ(x)=exp

[
−ϵ

1
2 (ϵ−||x−xi||)
||x−xi||−ϵ2

]
, ϵ2< ||x−xi||<ϵ, 0≤ i≤m;

ϕϵ(x)=1, ϵ≤||x−xi||, 0≤ i≤m.

(1.10)

Let us denote
Di,ϵ :=

{
x∈R2 such that ||x−xi||<ϵ2

}
,

where ||x−xi|| stands for the Euclidean norm of the vector x−xi. We easily see that ϕϵ ∈
C0(Ω), consequently, there will be no jump when passing to the distributional derivative
and thus ∇uϵ ∈ L2(Ω), and by using the poincaré inequality, we infer that uϵ ∈H1(Ω). It
is shown, using Lebesgue’s dominated convergence theorem for instance, that

||ϕϵ−1||0,Γi →0,
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i.e. we have convergence in L2 along the edge Γi. The functions ϕϵ are identically zero on
a small neighborhood of the respective vertices of the polygon.

In the sequel, we denote uϵ the vector-valued function uϵ =(u1
ϵ,u2

ϵ).

2 Weak problem for uϵ and approximation results

First of all, we construct the weak problem verified by the approximating function uϵ.
With the approximating displacement uϵ∈V is associated the approximating stress tensor

σϵ :=2µε(uϵ)+λTrε(uϵ)I, (2.1)

since Luϵ = divσϵ = f , then σϵ ∈ [H(div)(Ω)]2×2. For a fixed ϵ, by density of the regu-
lar functions in the space H(div)(Ω), there exists σn

ϵ ∈ [C∞(Ω)]2×2 such that σn
ϵ → σϵ in

[H(div)(Ω)]2×2. This means

||σn
ϵ −σϵ||div,Ω := ||divσn

ϵ −divσϵ||0,Ω+||σn
ϵ −σϵ||0,Ω →0 (2.2)

when n → ∞. We pose divσn
ϵ = f n, then integrating by part against a test function v ∈

[C∞(Ω)]2∩V yields the following∫
Ω

σn
ϵ ∇v=

∫
Ω

f nv+
∫

Γ
σn

ϵ ·
−→n vdσ(x).

Passing to the limit in n using (2.2), we find ∀v∈ [C∞(Ω)]2∩V∫
Ω

σϵ∇v=
∫

Ω
f v + <σϵ ·−→n ,v>

[H
1
2 ]′(Γ−Γ0)×[H

1
2 ](Γ−Γ0)

,

where σϵ ·−→n =: gϵ ∈ [H
1
2 (Γ−Γ0)]′ is the image of the normal component σϵ by the trace

operator on Γ. Since, following theorem 1 established in [8], [C∞(Ω)]2∩V is a dense
subset of V ⊂ H1(Ω), then, according to the definition (1.3) and the expression (2.1), the
function uϵ satisfy ∫

Ω
2µε(uϵ)ε(v)+

∫
Ω

λdivuϵ divv

=
∫

Ω
f v + < gϵ,v>

[H
1
2 ]′(Γ−Γ0)×H

1
2 (Γ−Γ0)

, ∀v∈V, (2.3)

this is the weak problem satisfied by the approximating function uϵ.
Let us recall, (see [6]), that the H

1
2 −norm in one dimension on Γi is defined by

||u|| 1
2 ,Γi

:=
(
||u||20,Γi

+
∫

Γi

∫
Γi

|u(x)−u(y)|2
||x−y||2 dxdy

) 1
2

.
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Remark 2.1. For any sufficiently small ϵ>0, it is possible to cover Ω with a collection of
open sets (Wϵ

j )j such that for each j, Wϵ
j ∩Γ is either empty or equals one of the following

subsets: for some i, 0≤ i≤m−1

1) Γ1,ϵ
i :={x∈Γi; 0< ||x−xi||<2ϵ};

2) Γ2,ϵ
i :={x∈Γi; 0< ||x−xi+1||<2ϵ};

3) Γ3,ϵ
i :={x∈Γi; ||x−xi||> 3

2 ϵ and ||x−xi+1||> 3
2 ϵ};

4) Γ4,ϵ
i ={x∈Γi∪Γi+1; ||x−xi+1||<ϵ2};

and for i=m

1) Γ1,ϵ
m :={x∈Γm; 0< ||x−xm||<2ϵ};

2) Γ2,ϵ
m :={x∈Γm; 0< ||x−x0||<2ϵ};

3) Γ3,ϵ
m :={x∈Γm; ||x−xm||> 3

2 ϵ and ||x−x0||> 3
2 ϵ};

4) Γ4,ϵ
m ={x∈Γm∪Γ0; ||x−x0||<ϵ2}.

Let (ϑϵ
j )j, with supp ϑϵ

j ⊂Wϵ
j , a C1-partition of unity with respect to this cover. Since

ϑϵ
j ∈H

1
2 (Γ), then

||ϕϵ−1|| 1
2 ,Γ = ||(ϕϵ−1)∑

j
ϑϵ

j || 1
2 ,Γ ≤

m

∑
i=0

||(ϕϵ−1) ∑
j,suppϑϵ

j ⊂Γi

ϑϵ
j || 1

2 ,Γi
+

m

∑
i=0

||(ϕϵ−1)|| 1
2 ,Γ4,ϵ

i

≤
m

∑
i=0

||ϕϵ−1|| 1
2 ,Γi

+(m+1)||(ϕϵ−1)|| 1
2 ,Γ4,ϵ

0
=

m

∑
i=0

||ϕϵ−1|| 1
2 ,Γi

+(m+1)||(ϕϵ−1)||0,Γ4,ϵ
0

. (2.4)

One should well remark that, following its definition, the function ϕϵ−1 has null H
1
2 −

semi norm on Γ4,ϵ
0 ; this fact justify the writing of the last term in estimate (2.4). So, using

the definition and symmetry of ϕϵ, we get for all 0≤ i≤m

||ϕϵ−1|| 1
2 ,Γi

= ||(ϕϵ−1) ∑
j,suppϑϵ

j ⊂Γi

ϑϵ
j || 1

2 ,Γi

≤||(ϕϵ−1) ∑
j,suppϑϵ

j ⊂Γ1,ϵ
i

ϑϵ
j || 1

2 ,Γi
+||(ϕϵ−1) ∑

j,suppϑϵ
j ⊂Γ2,ϵ

i

ϑϵ
j || 1

2 ,Γi

+||(ϕϵ−1) ∑
j,suppϑϵ

j ⊂Γ3,ϵ
i

ϑϵ
j || 1

2 ,Γi
+2||(ϕϵ−1)|| 1

2 ,Γ4,ϵ
i

.
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Thus,

||ϕϵ−1|| 1
2 ,Γi

≤
3

∑
j=1

||ϕϵ−1|| 1
2 ,Γj,ϵ

i
+2||ϕϵ−1|| 1

2 ,Γ4,ϵ
i

=2||ϕϵ−1|| 1
2 ,Γ1,ϵ

i
+2||ϕϵ−1|| 1

2 ,Γ4,ϵ
i

.

Thus we have

||ϕϵ−1|| 1
2 ,Γi

(2.5)

≤2||ϕϵ−1||0,Γ1,ϵ
i
+2
(∫

Γ1,ϵ
i

∫
Γ1,ϵ

i

|ϕϵ(x)−ϕϵ(y)|2
||x−y||2 dxdy

) 1
2

+2||(ϕϵ−1)||0,Γ4,ϵ
i

.

Lemma 2.1. The functions ϕϵ admit the following limits

for all 0≤ i≤m ||ϕϵ−1|| 1
2 ,Γi

→0 as ϵ→0.

Proof. If we choose the vertex point xi as the origin of the R2-orthonormal coordinate
system such that Γi is supported by the positive half x−axis then the abscisses of x ∈
Γ1,ϵ

i ≡]0,2ϵ[ satisfy
||x−xi||= |x|= x.

The H
1
2 -semi-norm of ϕϵ on Γi writes

|ϕϵ−1|21
2 ,Γi

:=
∫

Γi

∫
Γi

|ϕϵ(x)−ϕϵ(y)|2
||x−y||2 dxdy. (2.6)

It yields by using the definition of ϕϵ

|ϕϵ−1|21
2 ,Γi

≤2
∫ ϵ

0

∫ ϵ

0

|ϕϵ(x)−ϕϵ(y)|2
|x−y|2 dxdy. (2.7)

Consider the decomposition of (2.7) into four partial double integrals

1) :
∫ ϵ2

0

∫ ϵ2

0

|ϕϵ(x)−ϕϵ(y)|2
|x−y|2 dxdy=0,

this is obvious.

2) :
∫ ϵ

ϵ2

∫ ϵ

ϵ2

|ϕϵ(x)−ϕϵ(y)|2
|x−y|2 dxdy

≤
∫ ϵ

ϵ2

∫ ϵ

ϵ2

|exp[ − ϵ
1
2 (ϵ−x)
(x−ϵ2)

]−exp[ − ϵ
1
2 (ϵ−y)
(y−ϵ2)

]|2

|x−y|2 dxdy.
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The function F(x) :=exp[ − ϵ
1
2 (ϵ−x)
(x−ϵ2)

] is C1(]ϵ2,ϵ[) and thus lipschitz. We have, using the

fact that x→F′(x) is increasing on [ϵ2, ϵ
2 ], that

|F′(x)|≤ ϵ
1
2 (1−ϵ)

ϵ( 1
2 −ϵ)2

exp

(
− ϵ

1
2

2
1
2 −ϵ

)
=: L1,

∀x∈ [ϵ2, ϵ
2 ]. On the other hand

|F′(x)|≤ ϵ
1
2

ϵ(1−ϵ)
exp(

2
1−ϵ

)=: L2, ∀x∈ [
ϵ

2
,ϵ].

Therefore we conclude that

|F′(x)|≤L :=max(L1,L2)≤L1+L2

for all x∈ [ϵ2,ϵ]. This yields(∫ ϵ

ϵ2

∫ ϵ

ϵ2

|ϕϵ(x)−ϕϵ(y)|2
|x−y|2 dxdy

) 1
2

≤
(∫ ϵ

ϵ2

∫ ϵ

ϵ2

| ϵ
1
2

ϵ(1−ϵ)
exp( 2

1−ϵ )+
ϵ

1
2 (1−ϵ)

ϵ( 1
2−ϵ)2 exp(−

ϵ
1
2
2

1
2−ϵ

)|2|x−y|2

|x−y|2 dxdy

) 1
2

≤
(∫ ϵ

ϵ2

∫ ϵ

ϵ2
| ϵ

1
2

ϵ(1−ϵ)
exp(

2
1−ϵ

)|2dxdy

) 1
2

+

∫ ϵ

ϵ2

∫ ϵ

ϵ2
|ϵ

1
2 (1−ϵ)

ϵ( 1
2 −ϵ)2

exp(
− ϵ

1
2

2
1
2 −ϵ

)|2dxdy


1
2

→0 as ϵ→0.

One more integral is

3) :
∫ ϵ2

0

∫ ϵ

ϵ2

|ϕϵ(x)−ϕϵ(y)|2
|x−y|2 dxdy

≤
∫ ϵ2

0

∫ ϵ
2

ϵ2

1
|x−ϵ2|2 exp2[ − ϵ

1
2 (ϵ−x)
(x−ϵ2)

]dxdy+
∫ ϵ2

0

∫ ϵ2

ϵ
2

1
|x−ϵ2|2 exp2[ − ϵ

1
2 (ϵ−x)
(x−ϵ2)

]dxdy

≤ϵ2
∫ ϵ

2

ϵ2

1
|x−ϵ2|2 exp2[ − ϵ

1
2+1(1−ϵ)

2(x−ϵ2)
]dx+ϵ2

∫ ϵ

ϵ
2

1
| ϵ

2 −ϵ2|2 exp2[
ϵ

1
2 (2ϵ)

( ϵ
2 −ϵ2)

]dx

≤
ϵ

1
2 exp(− ϵ

3
2 (1−ϵ)

x )

1−ϵ
]x=ϵ
x=0+

1
( 1

2 −ϵ)2

ϵ

2
exp2

(
2ϵ

1
2

( 1
2 −ϵ)

)
→0 as ϵ→0.
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Here we used the properties of the exponential function and elementary majoriza-
tions. This final integral is

4) :
∫ ϵ

ϵ2

∫ ϵ2

0

|ϕϵ(x)−ϕϵ(y)|2
|x−y|2 dxdy=

∫ ϵ

ϵ2

∫ ϵ2

0

|exp[ − ϵ
1
2 (y−ϵ)
(y−ϵ2)

]|2

|x−y|2 dxdy→0,

proceed in the same way as for 3).
Combining these four integrals on one hand and using the facts:

||ϕϵ−1||0,Γ → and 2||(ϕϵ−1)||0,Γ4,ϵ
i
→0

for all 0≤i≤m on the other hand yield, using (2.5), the result of Lemma 2.1. Consequently,
using (2.4) yields also

||ϕϵ−1|| 1
2 ,Γ →0.

This completes the proof of the lemma.

Since u is ( 1
2 + ι)−Hölder continuous and thus uniformly continuous on Ω, the result

of Lemma 2.1 implies

||uϵ−u|| 1
2 ,Γ ≤||u(ϕϵ−1)|| 1

2 ,Γ ≤||u||∞,Γ||ϕϵ−1|| 1
2 ,Γ →0.

One can now prove the following approximation lemma:

Lemma 2.2. The function uϵ defined by (1.8) and the distribution gϵ appearing in problem (2.3)
satisfy respectively the following limits

a) ||∇uϵ−∇u||0,Ω →0, b) ||gϵ−g||
[H

1
2 ]′,Γ−Γ0

→0

as ϵ→0.

Proof. a) let us consider the following problem{
Lu=0 a.e in Ω,
u=ud on Γ.

(2.8)

Consider the linear operator G that associates to each ud ∈ H
1
2 (Γ) the corresponding u-

nique solution u of problem (2.8),

G : (H
1
2 (Γ),||·|| 1

2 ,Γ)→A⊂V, ud :=u|Γ→K(ud)=u,

where (A,||·||H1(Ω)) denote the range of H
1
2 (Γ) under G. The inverse operator G−1

identifies with the trace operator applied to u∈ A on Γ. This operator is obviously well
defined and bijective. Using the trace inequality on Γ, there exists c>0 such that ∀u∈A

||G−1u|| 1
2 ,Γ := ||u|| 1

2 ,Γ ≤ c−1||∇u||0,Ω,
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this implies the continuity of the linear bijective operator G−1. According to the Banach
isomorphism theorem, the operator G is continuous, this means that there exists c > 0
such that for all u∈A we have

||∇u||0,Ω ≤ c||u|| 1
2 ,Γ.

Thus, since L(u−uϵ)=0, using the limit established in Lemma 2.1

||∇u−∇uϵ||0,Ω ≤ c||u−uϵ|| 1
2 ,Γ →0, (2.9)

this proves a).
b) We make the same reasoning as for a). Given g ∈ [H

1
2 (Γ−Γ0)]′, let w ∈V be the

unique solution of∫
Ω

2µε(w)ε(v)+λdivw divvdx=< g,v>
[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

, (2.10)

for all v∈V. Choosing v=w, there exists c′>0 such that

||∇w||0,Ω ≤ c′||g||
[H

1
2 (Γ−Γ0)]′

. (2.11)

Let K be the operator that associates to each data g∈ [H
1
2 (Γ−Γ0)]′ the solution function

w of the corresponding problem (2.10):

K : [H
1
2 (Γ−Γ0)]

′→D⊂V
g→K(g)=w,

where (D,|| ||H1(Ω)) denote the range of [H
1
2 ]′(Γ−Γ0) under K. Following existence and

uniqueness result for problem (2.10), K is well defined, furthermore it is linear and in-
vertible. An equivalent formulation of (2.11) is: there exists a constant c′ > 0 such that
∀g∈ [H

1
2 (Γ−Γ0)]′, we have

||K(g)||H1 ≤ c′||g||
[H

1
2 ]′(Γ−Γ0)

i.e. K is continuous. Then, according to Banach’s isomorphism theorem, we deduce that
∃c′−1>0 such that

||g||
[H

1
2 (Γ−Γ0)]′

≤ c′−1||∇w||0,Ω. (2.12)

Rewriting (1.4) with g ∈ H
1
2 (Γ−Γ0)≡ D ⊂ [H

1
2 (Γ−Γ0)]′ then subtracting (1.4) and (2.3)

member-to-member, one find that u−uϵ satisfy: ∀v∈V,∫
Ω

2µ(ε(uϵ)−ε(u))ε(v)+λdiv(uϵ−u) divvdx
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=< gϵ−g,v>
[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

.

Applying (2.12) to w=uϵ−u we get:

||gϵ−g||
[H

1
2 (Γ−Γ0)]′

≤ c′−1||∇uϵ−∇u||0,Ω.

Considering (2.9), we infer b).

Remark 2.2. A consequence of the previous lemma: for arbitrary small β>0, there exists
ϵ1>0 such that ∀ϵ, 0<ϵ<ϵ1, we have

i) ||gϵ−g||
[H

1
2 (Γ−Γ0)]′

≤β ,

ii) ||∇uϵ−∇u||0,Ω ≤β.

iii) Since, by assumption, g∈ H
1
2 (Γ−Γ0) then, using the continuity of the canonical

embedding
I : H

1
2 (Γ−Γ0)→L2(Γ−Γ0),

we have ||g||0,Γ−Γ0 ≤||g|| 1
2 ,Γ−Γ0

.

3 Auxiliary lemmas

Let ϵ1 be such as defined in remark (2.2). For the rest of the paper, we fix ϵ, 0<ϵ<ϵ1.
Before presenting a proof of the main result, we intend to state two auxiliary lemmas.

These lemmas are established using, principally, ([7], Theorem 2.1). In order to apply this
later result, assumption 1.2 in that same paper need to be met. Our polygonal domain
satisfy very well that assumption.

These lemmas, Lemmas 3.1 and 3.2 below, convey the essential idea in the demonstra-
tion of the main theorem 1.1. We begin with approximating the solution uϵ of problem
(1.8) by a smooth function vanishing on an adequate part of the boundary Γ. Then the
idea is to carry out a particular decomposition, alluded to in the introduction, of this ap-
proximating function. This key idea is illustrated in the following example. Consider
v∈V to be the solution of a problem similar to (1.8), e.g.,{

Lv= f a.e in Ω,
v=vd on ∪j Γj.

(3.1)

We assume that the trace of v on the boundary vanish on an open neighborhood of the
vertices of Ω. Set

Ei ={v∈V; v=0 on Γi}. (3.2)
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Let us decompose this problem into two other problems

Si
1


Lvi

1= f1 a.e in Ω,
vi

1=vd on Γi,
vi

1=0 on ∪j Γj−Γi,

Si
2


Lvi

2= f2 a.e in Ω,
vi

2=0 on Γi,
vi

2=vd on ∪j Γj−Γi.

Provided that the problems are well posed, the functions vi
1 and vi

2 are well defined.
On the other hand, it is easy to see that the fact vi

1 = v on Γi does not generally imply
that σ(vi

1)·
−→n =σ(v)·−→n on Γi. So the idea is to find a decomposition that makes such a

property to be fulfilled. i.e. such that vi
1 can be approximated by a function vi,n

1 and, at the
same time, such that σ(vi,n

1 )·−→n is an approximation of σ(vi
1)·

−→n on Γi in the sense of trace.
An adequate use of Theorem 2.1 proved in [7] can make this decomposition possible.

Using ([8], Theorem 1), we can find (up
ϵ )p ∈C∞(Ω) such that for each p, up

ϵ vanishes
on the same part of Γ where does uϵ and such that

||∇up
ϵ −∇uϵ||0,Ω →0 as p→∞. (3.3)

If we denote

f p :=L(up
ϵ ) gϵ

p :=σ(up
ϵ )·n⃗ (3.4)

then, a particular consequence of (3.3) is: we can fix p such that

||∇up
ϵ −∇uϵ||0,Ω ≤ 1

4C6
√

µ
, (3.5)

where C6 is the continuity constant of the operator G′−1 defined as follows. Let G′ be the
operator that associates to each data ( f ,g)∈L2(Ω)×[H

1
2 (Γ−Γ0)]′ the solution v of

Lv= f a.e in Ω,
σ(v)·−→n = g on Γ−Γ0,
v=0 on Γ0,

i.e.

G′ : L2(Ω)×[H
1
2 (Γ−Γ0)]

′→M⊂V
( f ,g)→G′( f ,g)=v,

where (M,|| ||H1(Ω)) denote the range of L2(Ω)×[H
1
2 (Γ−Γ0)]′ under G′. Since G′ is bijec-

tive and continuous then, applying the Banach theorem with G′, we infer that the inverse
operator G′−1 is continuous i.e. ∀v∈M

||G′−1v||
L2(Ω)×H

1
2 (Γ−Γ0)

≤C6||v||M.
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Thus by using (3.5) we obtain, with v=up
ϵ −uϵ, and given an arbitrary small β>0

(i) || f p− f ||0,Ω ≤C6||∇up
ϵ −∇uϵ||0,Ω ≤ 1

4
√

µ
, (3.6)

(ii) ||gϵ
p−gϵ||

[H
1
2 (Γ−Γ0)]′

≤β. (3.7)

We fix, for the rest of the paper, p for which (3.5)-(3.7) are fulfilled.

Lemma 3.1. Let δ0 be an arbitrary small number. There exists two functions u1 and u2 such that

i) up
ϵ =u1+u2.

ii)


L(u1)= f1 in Ω,
u1= 0 on Γ−Γ0,
u1= 0 on Γ0.


L(u2)= f2 in Ω,
u2= up

ϵ on Γ−Γ0,
u2= 0 on Γ0.

iii) σ(u1)·n⃗=0 on Γ and thus, σ(u2)·n⃗= gϵ
p on Γ.

iv) f2 := f p− f1 satisfy || f p− f1||0,Ω ≤ δ0
2m .

Proof. Let δ0>0 be an arbitrary small number. Consider the decomposition

up
ϵ :=w+z

where w and z are respectively the solutions of the following problems
L(w)= f p in Ω,
w=0 on Γ−Γ0,
w=0 on Γ0.


L(z)=0 in Ω,
z=up

ϵ on Γ−Γ0,
z=0 on Γ0.

Observe that σ(w)·⃗n does not necessary equal zero and thus σ(z)·⃗n does not necessary
equal g. Nevertheless, by density, there is functions wn ∈C∞

0 (Ω) such that

||∇wn−∇w||0,Ω →0 as n→∞.

One should note that, following the definition of compactly supported functions in
Ω, σ(wn)·n⃗=0 on ∂Ω for all n.

Using the same argument as in the proof of Lemma 2.2 (Banach theorem), and for the
fixed homogeneous Dirichlet boundary condition, there exists C0 > 0 depending merely
on the domain Ω such that

||L(wn)− f p||0,Ω ≤C0||∇wn−∇w||0,Ω →0 as n→∞. (3.8)
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Thus, there exists an element w∗ in {wn}n∈N that satisfy the estimate

||L(w∗)− f p||0,Ω ≤ δ0

m
. (3.9)

Decompose w :=w∗+w2 where w2 is a solutions of
L(w2)= f p−L(w∗) in Ω,
w2=0 on Γ−Γ0,
w2=0 on Γ.

One should remark that
σ(w2)·n⃗+σ(z1)·n⃗= gϵ

p.

Indeed, σ(w2)·n⃗+σ(z1)·n⃗=σ(u)·n⃗−σ(w∗)·n⃗= gϵ
p−0. Pose

u1 :=w∗, u2 :=w2+z1,

f1 :=L(w∗), f2 := f p−L(w∗),

this concludes the lemma.

It should be pointed out that we repeatedly apply the essential argument in Lemma
2.2, namely the Banach isomorphism theorem, in order to obtain estimates for the inverse
of some operators. On the other hand, although the functions u1 and u2 depends on ϵ we
have removed the index ϵ for clarity of presentation.

Lemma 3.2. Let Ei be the subspace of V defined by (3.2). Let u1, u2 be such as defined in Lemma
3.1. Given δ1, δ2 >0 arbitrary small numbers, there exists m functions u2,i ∈Ei, 1≤ i≤m, such
that

u2,i =0 on Γ−Γi,

and such that gi :=σ(u2,i)·n⃗ satisfy

||gi−gϵ
p||0,Γi ≤

δ1

m
. (3.10)

Moreover, u′
2 :=∑m

i=1 u2,i satisfy

||∇(u1+u′
2)−∇up

ϵ ||0,Ω ≤δ2. (3.11)

The construction of the function u2,i that is presented in the proof of Lemma 3.2 below
shows that for all i, the functions u2,i vanish not only on Γ but also on Ni∩∂Ω, where
Ni ⊂R2 is an open neighborhood of Γi. The proof is done in two main steps. In the first
one, we construct the functions u2,i and in the second step we prove that these functions
actually satisfy estimates (3.10)-(3.11).
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Proof. Let δ1, δ2 be arbitrary small numbers. The functions u2,i will be defined by intro-
ducing the intermediate functions Xi, Yi, Ỹn

i and Vi respectively in subsections a), b), c)
and d). As we define these functions, we demonstrate some estimates that will be used
to derive (3.10)-(3.11) in the second step.

Step 1: Fix i, 1≤ i≤m. Consider the decomposition

u2=Xi+∑
j ̸=i

Xj =Xi+Zi ,

where Xi ∈Ei and Zi are the solutions of

(P1)


L(Xi)=0 in Ω,
Xi =up

ϵ on Γi,
Xi =0 on Γ−Γi∪Γ0,
Xi =0 on Γ0.

(P′
1)


L(Zi)= f2 in Ω,
Zi =0 on Γi,
Zi =up

ϵ on Γ−Γi∪Γ0,
Zi =0 on Γ0.

One should notice that these two problems are well posed, this can be seen by con-
sidering the regularity of up

ϵ on the boundary and the fact that up
ϵ vanish identically on

a neighborhood of the the vertices. Since Ω is a Lipschitz domain, it posses the W1,2-
Sobolev extension property.

a) According to ([7, Theorem 2.1]) see Appendix A at the end, there exists Xn
i ∈

C∞
0 (R2) such that we have

(h1) ||∇Xn
i −∇Xi||0,Ω ≤ δ3

m
, (h2) supp(Xn

i )∩(Γ−Γi)=∅,

where δ3>0 is an adequately chosen real number. A consequence of (h2) is:

(h3) σ(Xn
i )·n⃗=0 on Γ−Γi , Xn

i =0 on Γ−Γi.

Furthermore, with the homogeneous Dirichlet condition on Γ−Γi being fixed in the
problem P1 and in the problem solved by Xn

i then, using the Banach theorem, there exists
C1>0 such that

||σ(Xn
i )·n⃗−σ(Xi)·n⃗||0,Γi +||L(Xn

i )−0||0,Ω

≤C1||∇Xn
i −∇Xi||0,Ω ≤ C1δ3

m
.

We choose δ3 in assumption (h1) such that

(c1) :
C1δ3

m
<

δ0

4m
where δ0 is a positive real number whose choice will be precised later (see condition (c4)
below). Fix n1 such that Fn1

i :=L(Xn1
i ) satisfy

||Fn1
i −0||0,Ω ≤ δ0

4m
. (3.12)
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Denote X̃n1
i :=Xi−Xn1

i ∈Ei, it does satisfy

Xn1
i +X̃n1

i +Zi =up
ϵ , (3.13)

or equivalently,

(P2)


L(Xn1

i )=Fn
i in Ω,

Xn1
i = xn1

i on Γi,
Xn1

i =0 on Γ−Γi.

(P′
2)


L(X̃n1

i )=−Fn
i in Ω,

X̃n1
i =up

ϵ −xn1
i on Γi,

X̃n1
i =0 on Γ−Γi,

for the same reasons as for (P1) and (P′
1), problems (P2) and (P′

2) are well posed. Consid-
ering (h3) and (3.13), the function X̃n1

i +Zi satisfy

(P3)


L(X̃n1

i +Zi)=−Fn1
i + f2 in Ω,

X̃n1
i +Zi =up

ϵ −xn1
i on Γi,

σ(X̃n1
i +Zi)·n⃗= gϵ

p on Γ−Γi∪Γ0,
X̃n1

i +Zi =0 on Γ0.

b) Let Yi be the function defined by

(P4)


L(Yi)=−Fn1

i + f2 in Ω,
Yi =0 on Γi,
σ(Yi)·n⃗= gϵ

p on Γ−Γi∪Γ0,
Yi =0 on Γ0,

thanks to assumption (1.5), this problem is well posed. There exists a trace constant ct
such that, using (h1), we have

||(up
ϵ −xn1

i )||0,Γi ≤ ct×||∇Xi−∇Xn1
i ||0,Ω ≤ ct×δ3

m
. (3.14)

For the fixed −Fn1
i + f2 ∈ L2(Ω), gϵ

p ∈ L2(Γ−Γi∪Γ0) and the homogeneous Dirichlet con-
dition on Γ0 in problems (P3) and (P4), and by using an argument similar to that in part
(a) of the proof of lemma (2.2) (Banach theorem), there exists a constant C3>0 such that

||∇Yi−∇(X̃n1
i +Zi)||0,Ω

≤C3||Yi−(up
ϵ −xn1

i )||0,Γi =C3||0−(up
ϵ −xn1

i )||0,Γi ≤
ct×C3δ3

m
, (3.15)

and by using the trace inequality again we have

||Yi−(X̃n1
i +Zi)||0,Γ−Γi ≤ct||∇Yi−∇(X̃n1

i +Zi)||0,Ω ≤ c2
t ×C3

δ3

m
. (3.16)
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Considering (3.13) and (h3), we easily see that X̃n1
i +Zi=up

ϵ on Γ−Γi; and thus, estimates
(3.15) and (3.16) become respectively

||∇(Xn1
i +Yi)−∇up

ϵ ||0,Ω ≤ ct×C3δ3

m
, (3.17)

||Yi−up
ϵ ||0,Γ−Γi ≤

c2
t ×C3δ3

m
. (3.18)

On the other hand, since Yi=0 on Γi then, using the result (Theorem 2.1, [7] see Appendix
A at the end), there exists Yn

i ∈C∞
0 (R2) such that

(h4) ||∇Yn
i −∇Yi||0,Ω ≤ δ′1

m
and supp(Yn

i )∩Γi =∅ ,

where δ′1>0 is an adequately chosen real number, thus

σ(Yn
i )·n⃗=0 on Γi and Yn

i =0 on Γi (3.19)

for the homogeneous Dirichlet condition on Γi∪Γ0 for problem (P4) and the problem
solved by Yn

i , and using Banach theorem, there exists C′
1>0 such that

||L(Yn
i )−(−Fn1

i + f2)||0,Ω ≤C′
1||∇Yn

i −∇Yi||0,Ω.

We choose δ′1>0 in assumption (h4) such that

(c2) :
C′

1δ′1
m

<
δ0

4m
,

where δ0 is as defined in Lemma 3.1 i.e. need to satisfy condition (c4) below. Fix n2 >n1
such that

hn2
i :=L(Yn2

i ) (3.20)

satisfy

||hn2
i −(−Fn1

i + f2)||0,Ω ≤ δ0

4m
.

Consequently, considering (iv) of Lemmas 3.1 and 3.2 and (3.12), we have

||hn2
i −0||≤ δ0

m
. (3.21)

c) Denote Ỹn2
i :=Yi−Yn2

i , we have

(P5)


L(Yn2

i )=hn2
i in Ω,

Yn2
i =0 on Γi,

Yn2
i =yn2

i on Γ−Γi∪Γ0,
Yn2

i =0 on Γ0,
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(P6)


L(Ỹn2

i )=−hn2
i −Fn1

i + f2 in Ω,
Ỹn2

i =0 on Γi,
Ỹn2

i =Yi−yn2
i on Γ−Γi∪Γ0,

Ỹn2
i =0 on Γ0.

Rewriting estimate (3.17) gives

||∇(Ỹn2
i +Yn2

i +Xn1
i )−∇up

ϵ ||0,Ω ≤ ct×C3δ3

m
, (3.22)

and denote g′ :=σ(Ỹn2
i )·n⃗∈L2(Γ−Γ0).

d) Let Vi ∈Ei be the function defined by

(P7)


L(Vi)=−hn2

i −Fn1
i + f2 in Ω,

σ(Vi)·n⃗= g′ on Γi,
Vi =0 on Γ−Γi∪Γ0,
Vi =0 on Γ0.

Set u2,i :=Xn1
i +Vi ∈Ei,

Step 2: The functions u2,i are the unique solutions of
L(u2,i)=−hn2

i + f2 in Ω,
u2,i =Xn1

i +Vi on Γi,
u2,i =0 on Γ−Γi∪Γ0,
u2,i =0 on Γ0.

Using the estimates established in step 1, we are ready to prove (3.10)-(3.11).
Proof of estimate (3.10): Since σ(Vi)·n⃗=σ(Ỹn2

i )·n⃗ on Γi, then we have for
gi :=σ(Vi+Xn1

i )·n⃗

||gi−gϵ
p||0,Γi = ||σ(Vi+Xn1

i )·n⃗−gϵ
p||0,Γi = ||σ(Ỹn2

i +Xn1
i )·n⃗−σ(up

ϵ )·n⃗||0,Γi .

Using (3.19) givesc

||gi−gϵ
p||0,Γi =||σ(Ỹn2

i +Yn2
i +Xn1

i )·n⃗−σ(up
ϵ )·n⃗||0,Γi

≤||σ(Ỹn2
i +Yn2

i +Xn1
i )·n⃗−σ(up

ϵ )·n⃗||0,Γ−Γ0 .

For the fixed homogeneous Dirichlet condition on Γ0, and according to the Banach
isomorphism theorem, there exists a constant C2 > 0 depending merely on Ω such that,
using (3.22) and since we have Yi =Yn2

i +Ỹn2
i

||gi−gϵ
p||0,Γi ≤||σ(Yi+Xn1

i )·n⃗−σ(up
ϵ )·n⃗||0,Γ−Γ0
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≤C2||∇(Yi+Xn1
i )−∇up

ϵ ||0,Ω ≤ ct×C3C2δ3

m
.

If δ3 also fulfill condition

(c3) :
ct×C3C2δ3

m
<

δ1

m
,

where δ1 is the arbitrary small number assumed at the beginning of the proof then, esti-
mate (3.10) is proved.

In order to prove estimate (3.11), we need to estimate the trace of Xn1
i +Vi on Γi.

1) Firstly remark, by using (h3), that

Vi+Xn1
i =0 on Γ−Γi.

2) For the fixed −(hn2
i +Fn1

i − f2)∈L2(Ω), g′∈L2(Γi) and the homogeneous Dirichlet
condition on Γ0 in problems (P6) and (P7), the Banach isomorphism theorem ensures the
existence of a constant C4>0 depending merely on Ω such that

||∇Vi−∇Ỹn2
i ||0,Ω ≤C4||Vi−Ỹn2

i ||0,Γ−Γi =C4||0−(Yi−yn2
i )||0,Γ−Γi ,

hence, considering (h4) and using trace inequality, we have

C4||0−(Yi−yn2
i )||0,Γ−Γi ≤ ctC4||∇Yi−∇Yn2

i ||0,Ω ≤ ctC4
δ′1
m

,

thus,

||∇Vi−∇Ỹn2
i ||0,Ω ≤ ctC4

δ′1
m

. (3.23)

Using trace inequality and (3.23) we obtain

||Vi−0||0,Γi ≤||Vi−Ỹn2
i ||0,Γ ≤ ct||∇Vi−∇Ỹn2

i ||0,Ω ≤ c2
t ×C4

δ′1
m

. (3.24)

Estimates (3.14) and (3.24) imply

||Vi+Xn1
i −up

ϵ ||0,Γi ≤||Vi−0||0,Γi +||Xn1
i −up

ϵ ||0,Γi

=||Vi−0||0,Γi +||xn1
i −up

ϵ ||0,Γi ≤ c2
t ×C4

δ′1
m
+

ctδ3

m
. (3.25)

Proof of estimate (3.11): Write u′
2 :=∑i u2,i = ζ ′+η′ where ζ ′ and η′ are respectively

the solutions of
L(ζ ′)=−∑m

i=1(h
n2
i − f2) in Ω,

ζ ′=0 on Γi,
ζ ′=0 on Γ−Γi.

(P8)


L(η′)=0 in Ω,
η′=∑m

i=1 u2,i on Γ−Γ0,
η′=0 on Γ0,

and write u2= ζ+η where ζ and η are the solutions of
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
L(ζ)= f2 in Ω,
ζ=0 on Γi,
ζ=0 on Γ−Γi,

(P9)


L(η)=0 in Ω,
η=up

ϵ on Γ−Γ0,
η=0 on Γ0.

If we denote ck the constant in the Korn inequality then the weak form of the problem
solved by ζ−ζ ′ yields

||∇ζ−∇ζ ′||0,Ω ≤ckd(Ω)|| f2+∑
i
(hn2

i − f2)||0,Ω

≤2d(Ω)
(
|| f2||0,Ω+∑

i
||hn2

i ||0,Ω+∑
i
|| f2||0,Ω

)
.

Using (iv) of Lemmas 3.1 and (3.21), we have

||∇ζ−∇ζ ′||0,Ω ≤d(Ω)

(
δ0

2m
+δ0+

δ0

2

)
. (3.26)

On the other hand, the Banach isomorphism theorem ensures, for the null source
term and the Dirichlet homogeneous condition on Γ0 in problems (P8) and (P9), that
there exists a constant C5>0 such that

||∇η−∇η′||0,Ω ≤C5||η−η′||0,Γ−Γ0 =C5||up
ϵ −

m

∑
i=1

u2,i||0,Γ−Γ0

≤C5

m

∑
i=1

||up
ϵ −

m

∑
i=1

u2,i||0,Γi =C5

m

∑
i=1

||up
ϵ −u2,i||0,Γi .

Applying estimate (3.25) with u2,i =Vi+Xn1
i

||∇η−∇η′||0,Ω ≤C5(c2
t ×C4δ′1+ctδ3). (3.27)

Combining (3.26) and (3.27), we obtain using triangular inequality

||∇u2−∇u′
2||0,Ω ≤||∇ζ−∇ζ ′||+||∇η−∇η′||0,Ω

≤d(Ω)

(
δ0

2m
+δ0+

δ0

2

)
+C5(c2

t ×C4δ′1+ctδ3).

Finally, if δ0, δ3 and δ′1 are subject to fulfill the condition

(c4) : d(Ω)

(
δ0

2m
+δ0+

δ0

2

)
+C5(c2

t ×C4δ′1+ctδ3)<δ2,

where δ2 is the arbitrary small number assumed at the beginning of the proof then,

||∇up
ϵ −∇(u1+u′

2)||0,Ω ≤δ2.

This proves (3.28).
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Remark 3.1. 1) Let gϵ
p such as defined in (3.4), we can easily show that

||gϵ
p||20,Γ−Γ0

≤||g||20,Γ−Γ0
+δ2

6 , (3.28)

where δ6 is an arbitrary small positive real number. Indeed, write using triangular in-
equality ∣∣∣ ||gϵ

p||20,Γ−Γ0
−
∫

Γ−Γ0

ggϵ
p dσ

∣∣∣
=
∣∣∣ < gϵ

p,gϵ
p >[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

−< g,gϵ
p >[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

∣∣∣
≤
∣∣∣< gϵ

p−g,gϵ
p >[H

1
2 (Γ−Γ0)]′,H

1
2 (Γ−Γ0)

∣∣∣
≤||gϵ

p−g||
[H

1
2 (Γ−Γ0)]′

||gϵ
p|| 1

2 ,Γ−Γ0

≤(||gϵ
p−gϵ||

[H
1
2 ]′
+||gϵ−g||

[H
1
2 ]′
)||gϵ

p|| 1
2 ,Γ−Γ0

.

Since, following estimate (ii) of (3.7), gϵ
p converges in [H

1
2 (Γ−Γ0)]′ to gϵ i.e. weakly in

H
1
2 (Γ−Γ0) hence, there exists C′>0 such that ||gϵ

p|| 1
2 ,Γ−Γ0

≤C′ for all p∈N. Thus,

||gϵ
p||20,Γ−Γ0

−
∫

Γ−Γ0

ggϵ
p dσ≤C′

(
||gϵ

p−gϵ||
[H

1
2 (Γ−Γ0)]′

+||gϵ−g||
[H

1
2 (Γ−Γ0)]′

)
.

Using (i) of Remark 2.2 and estimates (ii) of (3.7) and for an adequate choice of β, the
parameters p and ϵ can be chosen such that

||gϵ
p||20,Γ−Γ0

−
∫

Γ−Γ0

ggϵ
p dσ≤2βC′

and thus, Cauchy-Schwarz yields

||gϵ
p||20,Γ−Γ0

≤
∫

Γ−Γ0

ggϵ
p dσ+2βC′≤||g||0,Γ−Γ0 ||gϵ

p||0,Γ−Γ0+2βC′ .

Young inequality on the other hand gives us

||gϵ
p||20,Γ−Γ0

≤ 1
2
||g||20,Γ−Γ0

+
1
2
||gϵ

p||20,Γ−Γ0
+2βC′

and hence, there exists p such that gϵ
p satisfy

||gϵ
p||20,Γ−Γ0

≤||g||20,Γ−Γ0
+4βC′.

Pose δ2
6 :=4βC′. Since, following (i) of Remark 2.2 and (3.7), β is arbitrary small, then the

same holds with δ6.
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2) On the other hand, if u2,i and hn2
i are respectively such as defined in Lemma 3.2

and (3.20) then

||L(u2,i)||0,Ω = ||hn2
i + f2||0,Ω ≤||hn2

i ||0,Ω+|| f2||0,Ω ≤ δ0

m
+

δ0

2m
=: τ, (3.29)

where δ0 is arbitrary small and satisfy (c4) and thus, τ is also arbitrary small.

We introduce some useful lemmas, which will play important roles in the proof of
Theorem 1.1.

3.1 Extension of the functions u2,i

Since we are looking for explicit estimates, we should use Poincaré, trace and Korn’s
inequalities relatively to suitable geometric configurations i.e. for which they are explic-
itly formulated. The configuration that best fits our polygonal convex domain Ω is the
half-plane R2+ containing the domain Ω for Korn’s inequality, the square Sd with edge’s
length equal to d(Ω) for the Poincaré inequality and with edge Γi for the trace inequality.
These squares are taken to be subsets of the half-plane containing Ω. Thus we determine
these constants thanks to results available for this type of domains. The need to consider
the functions in and outside the domain Ω suggests to extend by zero the functions u2,i
outside the convex domain Ω. The definition of the functions u2,i is adapted to make
such an extension.

Let u2,i be such as defined in Lemma 3.2. We consider for i, 1≤ i≤m, the extension
by zero of u2,i from the convex domain Ω to the half-plane R2+ containing Ω such that
Γi ⊂∂R2+.

ũ2,i =

{
u2,i, a.e. x∈Ω,
0, x∈R2+−Ω.

(3.30)

We assert that ũ2,i ∈H1(R2+), this is due essentially to definition (1.9), this definition
implies the existence of an open neighborhood Vi of the vertex i such that u2,i vanish on
Vi∩Γ. Thus, we have, obviously, the following

||∂xi ũ2,i||0,R2+ = ||∂xi ũ2,i||0,Ω = ||∂xi u2,i||0,Ω. (3.31)

One can easily see that the resulting extend functions ũ2,i are still in the Sobolev space
H1(R2+). Indeed, thanks the definition of these function, there will be no jump when
passing to the distributional derivative.

The following inequalities are established for the extended H1 regular functions de-
fined on a square containing the convex polygonal domain Ω.
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3.2 Explicit constant in the Poincaré inequality

We show in the following lemma that the function u2,i∈Ei satisfy the Poincaré inequality
for which we determine explicitly the constant.

Lemma 3.3. For all i, 0≤ i≤m, the function u2,i satisfy:

||u2,i||0,Ω ≤d(Ω)||∇u2,i||0,Ω, (3.32)

the constant d(Ω) means the diameter of Ω.

Proof. We establish Poincaré inequality for one of the two components ul
2,i, l = 1,2, the

same estimate hold with the other. Note abcd the square Sd, with edge’s length equal to
d(Ω) and subset of the half-plane containing Ω, such that a=(a1,a2), b=(b1,b2), c=(c1,c2)
and d=(d1,d2) and such that Γi ⊂Si :=[c,d]; so ũl

2,i =0 on ∂Sd−Γi.
Since ũl

2,i is absolutely continuous on the lines parallel to the coordinate axis, then
applying the fundamental theorem of calculus to ũn,l

1,i on Sd for l = 1,2 , we have for all
(x1,x2)∈ [a1,d1]×[a2,b2]

ũl
2,i(x1,x2)=

∫ x1

a1

∂x1 ũl
2,i(s,x2)ds+ũl

2,i(a1,x2).

Since (a1,x2)∈∂Sd−Γi, then ∀(x1,x2)∈ [a1,d1]×[a2,b2]

ũl
2,i(x1,x2)=

∫ x1

a1

∂x1 ũl
2,i(s,x2)ds.

Using Cauchy-Schwarz inequality ∀(x1,x2)∈ [a1,d1]×[a2,b2]

|ũl
2,i(x1,x2)|≤ |x1−a| 1

2

(∫ x1

a1

|∂x1 ũl
2,i(s,x2)|2ds

) 1
2

.

Taking the square of the two hand sides of this inequality and using the fact |x1−a| ≤
d(Ω): ∀(x1,x2)∈ [a1,d1]×[a2,b2] yields

|ũl
2,i(x1,x2)|2≤|x1−a|

∫ x1

a1

|∂x1 ũl
2,i(s,x2)|2ds≤d(Ω)

∫ d1

a1

|∂x1 ũl
2,i(s,x2)|2ds.

Integrating on Sd with respect to the variables x1 and x2:

||ũl
2,i||20,Sd

=
∫ b2

a2

∫ d1

a1

|ũl
2,i(x1,x2)|2dx1dx2

≤d(Ω)
∫ b2

a2

∫ d1

a1

∫ d1

a1

|∂xũl
2,i(s,x2)|2dsdx1dx2

≤d2(Ω)
∫ ∫

Sd

|∂xũl
2,i(s,x2)|2dsdx2.



86 D. Ait-akli and A. Merakeb / J. Partial Diff. Eq., 33 (2020), pp. 64-92

According to definition (3.30) and by considering (3.31) we get

||ul
2,i||20,Ω ≤d2(Ω)||∇ul

2,i||20,Ω.

We infer that

||u2,i||20,Ω = ||u1
2,i||20,Ω+||u2

2,i||20,Ω

≤d2(Ω)
(
||∇u1

2,i||20,Ω+||∇u2
2,i||20,Ω

)
=d2(Ω)||∇u2,i||20,Ω.

This completes the proof of the lemma.

3.3 Explicit bound for the trace of u2,i on Γi

Using mainly the inequality of Poincaré stated in Lemma 3.3 and the trace inequality for
u2,i on the edge Γi of a the parallelogram SΓi , see ([9, Lemma 4.2]) as well as ([10, Remark
3.3],) and the reference therein, one establishes an explicit bound for the trace of the
function u2,i on Γi.

Lemma 3.4. For all i, the function u2,i defined in Lemma 3.2 satisfy:

||u2,i||0,Γi ≤16|Γi| ||gi||0,Γi +δ9, (3.33)

where δ9 is an arbitrary small real positive number.

Proof. Let ũ2,i be defined on the square SΓi with edge Γi such that SΓi is a subset of the half-
plane R2+ containing Ω. One should notice that ũ2,i is not necessarily zero on ∂SΓi −Γi.
Let us write

ũ2,i =α+ϱ ,

this decomposition is made similarly to that presented in Lemma 3.2, i.e., such that on
one hand

||L(α)||0,SΓi
and ||σ(α)·n⃗−gi||0,Γi are small enough (3.34)

and on the other hand, α, ϱ vanish respectively on ∂SΓi −Γi, Γi. We prove (3.33) for the
trace of the function α, the same estimate holds for the trace of u2,i since α and u2,i coincide
on Γi. Decompose α :=α1+α2 in the following way

L(α1)=L(α) in SΓi ,
σ(α1)·n⃗=0 on Γi,
α1=0 on ∂SΓi −Γi.


L(α2)=0 in SΓi ,
σ(α2)·n⃗=σ(α)·n⃗ on Γi,
α2=0 on ∂SΓi −Γi.
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Applying the inequality of trace on the boundary Γi of the the square SΓi , which is a
parallelogram, see ([9], Lemma 4.2), it yields for both k=1,2

||αk||20,Γi
≤2

|Γi|
|Γi|2

||αk||20,SΓi
+2

|Γi|2
|Γi|

||∇αk||20,SΓi
,

simplifying,

||αk||20,Γi
≤2

1
|Γi|

||αk||20,SΓi
+2|Γi||∇αk||20,SΓi

,

using estimate (3.32) for the case where Ω is the square SΓi , with d(SΓi)=
√

2|Γi| , yileds

||αk||20,Γi
≤2

2|Γi|2
4|Γi|

||∇αk||20,SΓi
+2|Γi||∇αk||20,SΓi

≤3|Γi|||∇αk||20,SΓi
. (3.35)

Applying Korn’s inequality for the extended function α̃ defined on the half-plane R2+

containing SΓi , for which case Korn constant equals 1
2 , estimate (3.35) becomes

||αk||20,Γi
≤12|Γi| ||ε(αk)||20,SΓi

. (3.36)

Since α1 and α2 satisfy respectively

||ε(α1)||20,SΓi
=
∫

SΓi

L(α)α1dx and ||ε(α2)||20,SΓi
=
∫

Γi

σ(α)·n⃗ α2 dσ,

then, using Cauchy-Schwarz, this leads to estimates

||ε(α1)||0,SΓi
≤2

√
2|Γi| ||L(α)||0,SΓi

and ||ε(α2)||20,SΓi
≤||σ(α)·n⃗||0,Γi ||α2||0,Γi .

Using these last estimates, (3.36) becomes

||α1||20,Γi
≤12×8|Γi|2 ||L(α)||20,SΓi

, ||α2||20,Γi
≤12|Γi| ||σ(α)·n⃗||0,Γi ||α2||0,Γi .

Using (3.29) and assumption (3.34), we can find δ5 and δ6 small enough such that

||α1||0,Γi ≤δ5, ||α2||0,Γi ≤12|Γi| ||gi||0,Γi +δ6,

for all i. Hence, combining these two estimates, we obtain

||u2,i||0,Γi ≤||α1||0,Γi +||α2||0,Γi ≤δ9+16|Γi| ||gi||0,Γi

with δ9=δ5+δ6 arbitrary small.
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4 Proof of Theorem 1.1

We are ready now to present a proof of the main theorem. It uses, principally, Lemmas
3.1 and 3.2.

Proof. Step 1: Let u1 be as defined in Lemma 3.1, it is easy to check that it satisfies

2µ
∫

Ω
ε(u1)ε(v)dx+λ

∫
Ω

divu1divvdx=
∫

Ω
f1vdx

for all v∈H1
0(Ω). Choose v=u1 and use Cauchy-Schwarz inequality

2µ||ε(u1)||20,Ω+λ||divu1||20,Ω ≤|| f1||0,Ω||u1||0,Ω.

Using Korn’s inequality relatively to the case of homogeneous Dirichlet condition on one
hand, and Poincaré inequality on the other hand, yield

µ

2
||∇u1||20,Ω ≤|| f1||0,Ω

d(Ω)

2
||∇u1||0,Ω,

using (iv) of Lemma 3.1, we obtain

µ||∇u1||0,Ω ≤d(Ω)|| f p||0,Ω+d(Ω)
δ0

m
. (4.1)

Fix i, 1≤i≤m. Let u2,i be such as defined in Lemma 3.2, it is easy to check that u2,i satisfies

2µ
∫

Ω
ε(u2,i)ε(v)dx+λ

∫
Ω

divu2,i divvdx=
∫

Ω
L(u2,i)vdx+

∫
Γ−Γ0

giv dσ

for all v∈V. Choose v=u2,i and use Cauchy-Schwarz to obtain

2µ||ε(u2,i)||20,Ω+λ||divu2,i||20,Ω ≤||L(u2,i)||0,Ω||u2,i||0,Ω+||gi||0,Γi ||u2,i||0,Γi ,

using estimate (3.32)

2µ||ε(u2,i)||20,Ω ≤||L(u2,i)||0,Ωd(Ω)||∇u2,i||0,Ω+||gi||0,Γi ||u2,i||0,Γi .

On the other hand, there exists constants ck, cp and ct such that

2µck||∇u2,i||0,Ω ≤ cp||L(u2,i)||0,Ω+ct||gi||0,Γi .

Consequently,

2µ||ε(u2,i)||20,Ω (4.2)

≤d(Ω)||L(u2,i)||0,Ω
1

2µck

(
cp||L(u2,i)||0,Ω+ct||gi||0,Γi

)
+||gi||0,Γi ||u2,i||0,Γi ;
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since, following (3.10) and (3.28), ||gi||0,Ω are uniformly bounded with respect to ϵ then,
using (3.29)

2µ||ε(u2,i)||20,Ω ≤d(Ω)τ
1

2µck
(cpτ+ct||gi||0,Γi)+||gi||0,Γi ||u2,i||0,Γi

≤d(Ω)
τ

2µck

(
cpτ+ct(||g||0,Γ−Γ0+δ6+

δ1

m
)
)
+||gi||0,Γi ||u2,i||0,Γi ; (4.3)

pose

δ2
7 :=d(Ω)

τ

2µck

(
cpτ+ct(||g||0,Γ−Γ0+δ6+

δ1

m
)
)

,

it can be made, thanks to estimate (3.29), as small as desired. Applying (3.33), (3.10) and
(3.28), estimate (4.3) becomes

2µ||ε(u2,i)||20,Ω ≤δ2
7+16|Γi| ||gi||20,Γi

+δ9||gi||0,Γi

≤δ2
7+16|Γi| ||gi||20,Γi

+δ9

(
δ1

m
+δ6+||g||0,Γi

)
≤

δ2
10

m2 +16|Γi| ||gi||20,Γi
,

where δ2
10

m2 :=δ2
7+δ9(

δ1
m +δ6+||g||0,Γi). Then by simplifying,√

2µ||ε(u2,i)||0,Ω ≤ δ10

m
+4|Γi|

1
2 ||gi||0,Γi . (4.4)

One should notice that, from the definition of the constants δ6, δ7 and δ9, the constant δ10
can be made as small as desired.

Step 2: Since the deformation ε(u2,i) is a linear application with respect to the first
derivatives of u2,i then, with the same notations as in (3.30) and by using (3.31), we have

||ε(ũ2,i)||0,R2+ = ||ε(ũ2,i)||0,Ω = ||ε(u2,i)||0,Ωi .

Applying the estimate stated in ([11], Corollary 1.2.2) to ũ2,i gives

1
2
×||∇u2,i||0,Ω =

1
2
×||∇ũ2,i||0,R2+ ≤||ε(ũ2,i)||0,R2+ .

Thus, (4.4) becomes √
µ

√
2
||∇u2,i||0,Ω ≤ δ10

m
+4|Γi|

1
2 ||gi||0,Γi .

Using young inequality yields
√

µ
√

2
||∇u2,i||0,Ω ≤ δ10

m
+2
(
|Γi|+||gi||20,Γi

)
.

Using approximation result (3.10), we have
√

µ
√

2
||∇u2,i||0,Ω ≤ δ10

m
+4
(
|Γi|+||gϵ

p||20,Γi
+

δ2
1

m2

)
.
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Summing over i=1,m we obtain using triangular inequality
√

µ
√

2
||∇u′

2||0,Ω ≤
√

µ
√

2
∑

i
||∇u2,i||0,Ω ≤δ10+4|Γ|+4||gϵ

p||20,Γ+4δ2
1 . (4.5)

Finally, combining (4.1) and (4.5), we get

√
µ||∇(u1+u′

2)||0,Ω ≤δ0

m
d(Ω)+

√
2δ10+4δ2

1+d(Ω)|| f p||0,Ω+8
(
|Γ|+||gϵ

p||20,Γ

)
.

Considering (3.11) and posing δ11 := δ0
m d(Ω)+

√
2δ10+4δ2

1 , we have

√
µ||∇up

ϵ ||0,Ω ≤δ11+
√

µδ2+d(Ω)|| f p||0,Ω+8
(
|Γ|+||gϵ

p||20,Γ

)
. (4.6)

Using (3.28), estimate (4.6) becomes

||∇up
ϵ ||0,Ω ≤ 1

√
µ

(
8δ2

6+δ11+
√

µδ2+d(Ω)|| f p||0,Ω+8
(
|Γ|+||g||20,Γ

))
, (4.7)

and using (3.5) and (i) of (3.7), estimate (4.7) becomes

||∇uϵ||0,Ω ≤ 1
√

µ

(
1
2
+8δ2

6+
√

µδ2+δ11+d(Ω)|| f ||0,Ω+8(|Γ|+||g||20,Γ)

)
.

By adequately choosing the positive numbers δ′js, we immediately get

||∇uϵ||0,Ω ≤ 1
√

µ

[
1+d(Ω)|| f ||0,Ω+8(|Γ|+||g||20,Γ)

]
. (4.8)

We conclude the theorem for u by applying (a) of Lemma 2.2 on one hand, and (iii) of
Remark 2.2 on the other hand.

Finally; in order to get the explicit H1 estimate of uϵ, and so that of u, we use the
Poincaré inequality (3.32) to bound ||u||0,Ω at one hand and the estimate (1.7) at the other
hand.

5 Conclusion

In the point of view of numerical analysis, estimate of Theorem 1.1 is interesting. Indeed,
error estimates in finite element method of the type

||u−uh||0,Ω ≤Ch||∇u||0,Ω

involve the quantity ||∇u||0,Ω. Assuming that the constant C can be explicitly computed,
then it is possible to explicitly bound ||∇u||0,Ω which implies a better estimate of ||u||0,Ω.
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Another interesting feature of the estimate (1.7) that makes it effective is that it does
not depend on the characteristic parameters of the polygonal domain Ω, namely, the
edges’s length, their number as well as the measures of the angles. The estimate is there-
fore indifferently applicable to all polygons. All this allows the possibility to generalize
this result, by substantial approximation, to a C1 class domain.
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Appendix A. Some clarifications

Regarding the application of the main result established in [7], we note the following
facts. The part of Theorem 2.1 in [7] used in the proof of Lemma 3.2 is the equivalence
between the following two assertions:

1) Xi is approximated by smooth functions with support away from Γ−Γi;

2) limr→0
1

|B(x,r)|

∫
B(x,r)∩Ω

|Xi(y)|dy=0.

To effectively apply this result, we need to show that the fact Xi =0 on Γ−Γi implies 2).
Indeed, let x∈Γ−Γi. We assume for convenience, that x coincide with the origin (0,0) of
R2. Since ∂Ω is a polygon then, there exists c>0 independent of r such that

|B(0,r)∩Ω|= c|B(0,r)|.

On the other hand, the function Xi solution of problem (P1) is continuous on Ω. One can
see this using the following argument: according to the definition of up

ϵ , Xi |∂Ω ∈C∞(∂Ω).
Applying the Whitney extension theorem (see [12]), one can find Xi∈C∞(Ω) that coincide
with Xi on Γ. Thus, Xi−Xi ∈H1(Ω) solves the following problem{

L(Xi−Xi)=−L(Xi) a.e in Ω,
Xi−Xi =0 on ∪i Γi.

Since the boundary Γ of Ω satisfies the conditions (1.5) and L(Xi)∈ L2(Ω) then, Xi−Xi ∈
H

3
2+ι(Ω). Consequently

Xi =(Xi−Xi)+Xi ∈H
3
2+ι(Ω)
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as well. Furthermore, by an adequate Sobolev embedding, Xi ∈ C0(Ω) and thus, the
claimed continuity. The Lebesgue differentiation theorem yields:

lim
r→0

1
|B(x,r)|

∫
B(x,r)∩Ω

|Xi(y)|dy= lim
r→0

1
|B(0,r)|

∫
B(0,r)∩Ω

|Xi(y)|dy

≤lim
r→0

1
|B(0,r)∩Ω|

∫
B(0,r)∩Ω

|Xi(y)|dy= |Xi(0)|=0,

we infer that assertion 2) holds for all x∈Γ−Γi and thus, C1,2−almost everywhere. Where
C1,2 refers to the 2−capacity of the set Γ−Γi.

Finally, one can show continuity of the function Yi that solves problem P4 by remark-
ing that σ(Yi)·−→n = gϵ

p ∈ H
1
2 (Γ−Γi∪Γ0) and by applying the same argument used for

justifying the regularity of the solution u of problem (1.1), one easily infer that Yi∈C0(Ω)
and gets the same conclusions as for Xi.
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