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Abstract. In this paper we first prove a theorem on the nonexistence of pyramidal
polynomial basis functions. Then we present a new symmetric composite pyrami-
dal finite element which yields a better convergence than the nonsymmetric one.
It has fourteen degrees of freedom and its basis functions are incomplete piece-
wise triquadratic polynomials. The space of ansatz functions contains all quadratic
functions on each of four subtetrahedra that form a given pyramidal element.
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1 Introduction

Pyramidal mortar elements are very useful tools for making face-to-face connections
between tetrahedral and block elements in the finite element method (see Fig. 1). This
often occurs in joining tetrahedral meshes with hexahedral ones, which is common
in many practical applications, where only part of the domain can be decomposed
into block elements and the remainder of the domain, often near the boundary, is
decomposed into tetrahedral elements. The first mortar elements were proposed by
Zlámal. In [7], Zlámal introduced two kinds of triangular elements that enable us to
connect the standard linear elements with the Hermite cubic elements.

Two types of composite incomplete trilinear and triquadratic pyramidal mortar
elements with five (cf. Fig. 1) and thirteen degrees of freedom are presented in [6].
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Figure 1: Mortar elements with 5 degree of freedoms.

Their basis functions are defined on the pyramidal element which is composed of two
tetrahedra. This causes an artificial anisotropy in solving isotropic problems (com-
pare with [4]). In [5] pyramidal elements composed of four tetrahedra are introduced
which eliminate this artificial anisotropy. They also have five and thirteen degrees of
freedom. Moreover, numerical results given in [5] indicate that an improvement of the
convergence is obtained for both types of symmetric elements over the non-symmetric
ones.

Wieners in [6] points out that it can be proven that it is not possible to define poly-
nomial basis functions that are linear (or quadratic) on all the triangular faces and bi-
linear (or biquadratic) on the base of the pyramidal element. We will improve Wieners’
result. We also develop a new composite piecewise triquadratic pyramidal element.
To accomplish this we add a node at the center of the base of the element, thereby
creating an element with fourteen degrees of freedom. This new pyramidal element,
having nine nodes on the base, allows for a better connection to the common twenty-
seven node triquadratic block element which has nine nodes on each face. Its space of
ansatz functions contains all quadratic polynomials on each tetrahedron (from Figs. 2,
3 and 4).

This paper is organized as follows: in Section 2, we discuss the nonexistence of
polynomial basis functions on a pyramidal element. We prove that there exists no
continuously differentiable function on the pyramid (see Fig. 2), which would be lin-
ear on its four triangular faces and bilinear, but not linear, on its rectangular base. In
Section 3.1 we present the basis functions for the two-tetrahedral composition of the
pyramidal element (see Fig. 3) and prove that these functions meet the required cri-
teria for basis functions. In Section 3.2 we take the average of these basis functions
with their mirror images in order to derive a set of basis functions well defined on
the four-tetrahedral composition of the pyramid (see Fig. 4). Finally, in Section 4 we
present numerical results for both the two- and four-tetrahedral compositions.

2 Nonexistence of pyramidal polynomial basis functions

Let Co stand for the convex hull and let

K̂ = Co
{

Â0, Â1, Â2, Â3, Â4
}
= Co

{
(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1)

}
,
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Figure 2: A reference pyramid.

be the reference pyramid (see Fig. 2). A general pyramid K can be obtained as the
image of a nondegenerate linear affine mapping from K̂ into the three-dimensional
space.

Wieners presents a theorem in [6] that states: ”There exists no continuously differ-
entiable conforming shape function for the pyramid which is linear, resp. bilinear on
the faces.” His theorem is not exactly formulated, since the function p = 0 satisfies all
the assumptions of the theorem and p is continuously differentiable. Also his proof
is not correct, as he considers only one special shape function p and not an arbitrary
function satisfying all the assumptions of his theorem. Anyway, some of his ideas are
quite sophisticated and we will employ them in the proof of the following theorem:

Theorem 2.1. There exists no continuously differentiable function on the pyramid K that
would be linear on its four triangular faces and bilinear, but not linear, on its rectangular base.

Proof. First consider the reference pyramid K̂ and assume, to the contrary, that such
a function f̂ exists. Since the vertices Âi, i = 1, 2, 3, 4, are not contained in a plane, there
exists exactly one linear polynomial p̂ such that

p̂(Âi) = f̂ (Âi), i = 1, 2, 3, 4.

Setting

ĝ = f̂ − p̂,

on K̂, we see that ĝ satisfies all the assumptions of the theorem and vanishes on the
faces Â1 Â2Â4 and Â2Â3 Â4. Therefore, the following derivatives in three linearly in-
dependent directions along edges vanish:

(0,−1, 1)⊤grad ĝ(Â4) = (−1, 0, 1)⊤grad ĝ(Â4) = (−1,−1, 1)⊤grad ĝ(Â4) = 0,

which implies that

grad ĝ(Â4) = 0. (2.1)
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By the assumptions, f̂ is not linear on the base and thus, the same has to be true also
for ĝ. Consequently, the equalities

ĝ(Âi) = 0, for i = 1, 2, 3, 4,

imply that
ĝ(Â0) ̸= 0.

From this we find that

(0, 0,−1)⊤grad ĝ(Â4) = ĝ(Â4)− ĝ(Â0) ̸= 0,

because ĝ is linear on the edge Â0 Â4. However, this contradicts Eq. (2.1).
For a general pyramid K it is enough to apply a linear affine transformation FK

from the reference pyramid K̂ to K to obtain a similar contradiction. �
As linear and bilinear functions are quadratic, we also cannot construct polynomial

elements on the whole pyramidal element whose ansatz functions are quadratic on
triangular faces and biquadratic, but not quadratic, on the rectangular base, i.e., again
we have to use composite elements.

3 Piecewise triquadratic pyramidal finite element

As in [5] the proposed piecewise triquadratic basis functions are defined on another
reference pyramid which is different from the one in Section 2 (see Fig. 3):

K̃ = Co{A0, A1, A2, A3, A4} = Co
{
(−1,−1, 0), (1,−1, 0), (1, 1, 0), (−1, 1, 0), (0, 0, 1)

}
,

where Co denotes the convex hull.
We will first present basis functions for the two-tetrahedral element composition.

Then, following a process similar to that in [5] we take the average of these basis
functions with their mirror images across the x = 0 plane in order to develop basis
functions defined for the four-tetrahedral composition of the pyramidal element.

Figure 3: The piecewise triquadratic basis functions are defined on a reference pyramid.
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3.1 Nonsymmetric composite pyramidal element

Employing a procedure analogous to that outlined in [5] we introduce the following
basis functions defined on the reference pyramid K̃:

q0(x, y, z) =

{
1
4 (x + z)(x + z − 1)(y − z − 1)(y − z), for x > y,
1
4 (y + z)(y + z − 1)(x − z − 1)(x − z), for x ≤ y,

q1(x, y, z) =

{
− 1

4 (x + z)(y − z)[(x + z + 1)(−y + z + 1)− 4z]− z(x − y), for x > y,

− 1
4 (x − z)(y + z)(x − z + 1)(−y − z + 1), for x ≤ y,

q2(x, y, z) =

{
1
4 (y − z)(x + z)(y − z + 1)(x + z + 1), for x > y,
1
4 (y + z)(x − z)(x − z + 1)(y + z + 1), for x ≤ y,

q3(x, y, z) =

{
1
4 (x + z)(y − z)(y − z + 1)(x + z − 1), for x > y,
1
4 (x − z)(y + z)[(x − z − 1)(y + z + 1) + 4z] + z(x − y), for x ≤ y,

q4(x, y, z) = z(2z − 1),

q01(x, y, z) =

{
− 1

2 (x + z − 1)[((y − z − 1)(x + 1)y − z) + z(2x + 1)], for x > y,

− 1
2 (x − z + 1)(y + z − 1)(x − 1)y, for x ≤ y,

q12(x, y, z) =

{
− 1

2 (y − z + 1)[((x + z + 1)(y − 1)x − z) + z(2y + 1)], for x > y,

− 1
2 (x − z + 1)(y + z − 1)(y + 1)x, for x ≤ y,

q23(x, y, z) =

{
− 1

2 (y − z + 1)(x + z − 1)(x + 1)y, for x > y,

− 1
2 (x − z + 1)[((y + z + 1)(x − 1)y − z) + z(2x + 1)], for x ≤ y,

q03(x, y, z) =

{
− 1

2 (y − z + 1)(x + z − 1)(y − 1)x, for x > y,

− 1
2 (y + z − 1)[((x − z − 1)(y + 1)x − z) + z(2y + 1)], for x ≤ y,

q02(x, y, z) =

{
(y − z + 1)(x + z − 1)[(y − 1)(x + 1) + z(x − y + z + 1)], for x > y,
(x − z + 1)(y + z − 1)[(y + 1)(x − 1)− z(x − y − z − 1)], for x ≤ y,

q04(x, y, z) =

{
z(x + z − 1)(y − z − 1), for x > y,
z(y + z − 1)(x − z − 1), for x ≤ y,

q14(x, y, z) =

{
−z[(x + z + 1)(y − z − 1) + 4z], for x > y,
−z(x − z + 1)(y + z − 1), for x ≤ y,

q24(x, y, z) =

{
z(y − z + 1)(x + z + 1), for x > y,
z(x − z + 1)(y + z + 1), for x ≤ y,

q34(x, y, z) =

{
−z(y − z + 1)(x + z − 1), for x > y,
−z[(y + z + 1)(x − z − 1) + 4z], for x ≤ y,

where qkm corresponds to node Akm located at the midpoint of the edge Ak Am.

Theorem 3.1. The basis functions q0, · · · , q4, q01, · · · , q34 satisfy the following conditions:
1) qi(Aj) = δij, i, j ∈ {0, 1, 2, 3, 4, 01, 12, 23, 03, 02, 04, 14, 24, 34}.
2) Each basis function is biquadratic on the base of K̃ (given by the equation z = 0).
3) Each basis function is quadratic on all triangular faces of K̃.
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4) Each basis function is continuous in the interelement boundary of K̃ (given by the equa-
tion x = y).

5) Each quadratic polynomial can be expressed as a linear combination of the fourteen basis
functions q0, · · · , q4, q01, · · · , q34 on the subtetrahedron K̃1 = Co{A0, A1, A2, A4}, as well
as on K̃2 = Co{A0, A2, A3, A4}.

Proof. 1) This can be easily verified by a direct calculation.
2) Setting z = 0, we immediately find that q0, · · · , q4, q01, · · · , q34 are biquadratic,

for instance

q0(x, y, 0) =
x(x − 1)y(y − 1)

4
, for x > y.

3) (i) On the face A0A1 A4, which is contained in the plane z = 1 + y, we have

q2(x > y) = q3(x > y) = q12(x > y) = q23(x > y) = 0,
q03(x > y) = q02(x > y) = q24(x > y) = q34(x > y) = 0,

q0(x > y) =
1
2
(x + y + 1)(x + y), q1(x > y) =

1
2
(x − y − 1)(x − y),

q4(x > y) = (y + 1)(2y + 1), q01(x > y) = (x + y)(−x + y),
q04(x > y) = −2(y + 1)(x + y), q14(x > y) = 2(y + 1)(x − y).

(ii) On the face A1A2 A4, which is contained in the plane z = 1 − x, we have

q0(x > y) = q3(x > y) = q01(x > y) = q23(x > y) = 0,
q03(x > y) = q02(x > y) = q04(x > y) = q34(x > y) = 0,

q1(x > y) =
1
2
(x − y − 1)(x − y), q2(x > y) =

1
2
(x + y − 1)(x + y),

q4(x > y) = (x − 1)(2x − 1), q12(x > y) = (x + y)(x − y),
q14(x > y) = 2(1 − x)(x − y), q24(x > y) = 2(1 − x)(x + y).

(iii) On the face A2 A3A4, which is contained in the plane z = 1 − y, we have

q0(x ≤ y) = q1(x ≤ y) = q01(x ≤ y) = q12(x ≤ y) = 0,
q03(x ≤ y) = q02(x ≤ y) = q04(x ≤ y) = q14(x ≤ y) = 0,

q2(x ≤ y) =
1
2
(x + y − 1)(x + y), q3(x ≤ y) =

1
2
(x − y + 1)(x − y),

q4(x ≤ y) = (1 − y)(1 − 2y), q23(x ≤ y) = (x + y)(−x + y),
q24(x ≤ y) = 2(1 − y)(x + y), q34(x ≤ y) = 2(1 − y)(−x + y).

(iv) On the face A0A3 A4, which is contained in the plane z = 1 + x, we have

q1(x ≤ y) = q2(x ≤ y) = q01(x ≤ y) = q12(x ≤ y) = 0,
q23(x ≤ y) = q02(x ≤ y) = q14(x ≤ y) = q24(x ≤ y) = 0,

q0(x ≤ y) =
1
2
(x + y + 1)(x + y), q3(x ≤ y) =

1
2
(x − y + 1)(x − y),
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q4(x ≤ y) = (x + 1)(2x + 1), q03(x ≤ y) = (x + y)(x − y),
q04(x ≤ y) = 2(−1 − x)(x + y), q34(x ≤ y) = 2(1 + x)(−x + y).

From (i)-(iv) we observe that each qi is quadratic on any triangular face of K̃.
4) By setting x = y, we can easily see that the functions q0, · · · , q4, q01, · · · , q34 are

continuous in the plane x = y.
5) The proof is quite simple, but long and technical. Consider, for instance, the

quadratic function

p(x, y, z) =
(y − z + 1)(y − z)

2
.

We show that it can be expressed as a linear combination of basis functions on K̃1. Let

p = ∑
i

ciqi, (3.1)

on K̃1. Then by the property 1) of Theorem 3.1, we have

p(Aj) = ∑
i

ciqi(Aj) = cjqj(Aj) = cj. (3.2)

Since

p(A0) = p(A1) = p(A4) = p(A01) = p(A04) = p(A14) = p(A02) = p(A12) = p(A24) = 0,

we get
c0 = c1 = c4 = c01 = c04 = c14 = c02 = c12 = c24 = 0.

Moreover, since p(A2) = 1, we get from Eq. (3.2) that c2 = 1. Thus, Eq. (3.1) reduces
to

p = q2 + c3q3 + c03q03 + c23q23 + c34q34,

on K̃1. From this and the definition of qi for x ≥ y we get

2(y − z + 1)(y − z)− (y − z)(x + z)(y − z + 1)(x + z + 1)
=c3(x + z)(y − z)(y − z + 1)(x + z − 1)− 2c03(y − z + 1)(x + z − 1)(y − 1)x

− 2c23(y − z + 1)(x + z − 1)(x + 1)y − 4c34z(y − z + 1)(x + z − 1)

=(y − z + 1)(x + z − 1)
[
c3(x + z)(y − z)− 2c03x(y − 1)− 2c23(x + 1)y − 4c34z

]
.

Hence,

(y − z)
[
2 − (x + z)(x + z + 1)

]
=(x + z − 1)

[
c3(x + z)(y − z)− 2c03x(y − 1)− 2c23(x + 1)y − 4c34z

]
.

For x = z = 0, we get c23 = 1, for y = z = 0, we get c03 = 0, and for x = y = 0, we
find that

−z
[
2 − z(z + 1)

]
= (z − 1)

[
− c3z2 − 4c34z

]
,

i.e., c3 = −1 and c34 = 1/2.
A similar calculation can be made for other quadratic functions from a given basis

and also on K̃2. �
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3.2 Symmetric composite pyramidal element

In order to eliminate the artificial anisotropy occurring in the two-tetrahedral compo-
sition we now take the average of the basis functions

qi, i ∈
{

0, 1, 2, 3, 4, 01, 12, 23, 03, 02, 04, 14, 24, 34
}

,

with their mirror images. Namely, we consider a mirror image mapping

M : (x, y, z) 7→ (−x, y, z),

and define

q0(x, y, z) = q1(−x, y, z), q1(x, y, z) = q0(−x, y, z), (3.3a)
q2(x, y, z) = q3(−x, y, z), q3(x, y, z) = q2(−x, y, z), (3.3b)
q01(x, y, z) = q01(−x, y, z), q12(x, y, z) = q03(−x, y, z), (3.3c)
q23(x, y, z) = q23(−x, y, z), q03(x, y, z) = q12(−x, y, z), (3.3d)
q02(x, y, z) = q02(−x, y, z), q04(x, y, z) = q14(−x, y, z), (3.3e)
q14(x, y, z) = q04(−x, y, z), q24(x, y, z) = q34(−x, y, z), (3.3f)
q34(x, y, z) = q24(−x, y, z). (3.3g)

Setting

mi =
qi + qi

2
, for i ∈

{
0, 1, 2, 3, 01, 12, 23, 03, 02, 04, 14, 24, 34

}
, (3.4a)

m4 = q4. (3.4b)

Theorem 3.2. The basis functions m0, · · · , m4, m01, · · · , m34 satisfy the following condi-
tions:

1) mi(Aj) = δij, i, j ∈ {0, 1, 2, 3, 4, 01, 12, 23, 03, 02, 04, 14, 24, 34}.
2) Each basis function is biquadratic on the base of K̃ (given by the equation z = 0).
3) Each basis function is quadratic on all triangular faces of K̃.
4) Each basis function is continuous in the interelement boundaries of K̃ (given by the

equations x = y and x = −y).
5) Each quadratic polynomial can be expressed as a linear combination of the fourteen

basis functions m0, · · · , m4, m01, · · · , m34 on each of the four subtetrahedra whose union is
the original pyramid.

The proof of 1)-4) is an immediate consequence of Eqs. (3.3)-(3.4), and Theorem 3.1.
The proof of 5) can be done similarly to Theorem 3.1.

The mirror image mapping has the effect of creating a pyramidal element com-
posed of four tetrahedra (the pyramid is split along the x = y and x = −y planes, see
Fig. 4). In addition, this averaging helps us in reducing the discretization error coming
from anisotropy (see [5]), since the new basis functions are now more symmetric on
K̃.
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Figure 4: A pyramidal element.

4 Numerical experiments

In order to test the proposed basis functions, experiments were conducted to solve
Poisson’s equation with Dirichlet boundary conditions

−
(∂2u

∂x2 +
∂2u
∂y2 +

∂2u
∂z2

)
= f , in Ω, (4.1a)

u = 0, on ∂Ω, (4.1b)

where Ω = (0, 1)× (0, 1)× (0, 1).
The true solution used for the problem is oscillating:

u(x, y, z) = sin(πx) sin(2πy) sin(3πz).

The overall mesh consisted of N × N × N small cubes, where each small cube is con-
structed from six pyramidal elements containing a common vertex in the centre of
each cube (see Fig. 5). Experiments were carried out using the basis functions both
before and after the mirror image mappings were made. In the former case the pyra-
midal element was split into two tetrahedra along the x = y plane. In the second
case the element was split into four tetrahedra along the x = y and x = −y planes
and the mirror image mappings were applied. Denote by uh and ũh the finite element
solution of (4.1) before and after symmetrization, respectively. In both cases Gaussian

Figure 5: The overall mesh with small cubes.
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Table 1: Discretization errors before and after symmetrization.

h = 1/N 6N3 ∥u − uh∥L2

∥u−u2h∥L2
∥u−uh∥L2

∥u − ũh∥L2

∥u−ũ2h∥L2
∥u−ũh∥L2

1/4 384 1.61e-3 NONE 1.58e-3 NONE
1/8 3072 3.77e-4 4.27 3.69e-4 4.28
1/16 24576 9.23e-5 4.08 9.04e-5 4.08
1/32 196608 2.30e-5 4.01 2.25e-5 4.02
1/64 1572864 5.73e-6 4.01 5.61e-6 4.01

cubature with 11 integration points (cf. [1–3]) were used for the numerical integration
over the tetrahedral components. For each N ∈ {4, 8, 16, 32, 64}, we present in Table 1
the number of pyramidal elements, the L2-norms of the discretization errors and the
ratios

r =
∥u − u2h∥L2

∥u − uh∥L2

, and r̃ =
∥u − ũ2h∥L2

∥u − ũh∥L2

.

We observe a slight improvement in accuracy of the solution ũh, since the sym-
metrized elements reduce the error coming from the anisotropy of the mesh. In the
future, we plan to use suitable higher order integration formulae to increase the prac-
tical convergence rate.
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