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Abstract. In the contrast source inversion (CSI) method, the contrast sources (equiva-
lent scattering sources) and the contrast (parameter perturbation) are iteratively recon-
structed by an alternating optimization scheme. Traditionally integral equation CSI
method is formulated for transmission tomography using analytic Green’s function
in homogeneous background. To extend the method to the case of reflection seismol-
ogy, in this paper, we use WKBJ method to compute the Green’s function of depth
dependent background media and the solving method of equations to initialize the
contrast source of different frequencies, resulting in an efficient method to invert multi-
frequency reflection seismic data – multi-frequency contrast source inversion method
(MFCSI). Numerical results for the Marmousi model show that MFCSI method can
obtain good results even when low frequency data are missing, in which case the con-
ventional FWI fails.
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1 Introduction

Full waveform inversion (FWI) was introduced to the exploration seismology community
by Lailly in [12] and Tarantola in [18]. They regarded seismic inversion as a minimization
of the misfit between recorded and modeled data. In [5], Bunks et al. developed FWI in
the time domain and proposed successive inversion of multi-frequency band inversion.
Pratt et al. studied the FWI in frequency domain in [15] and Shin extended FWI to the
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Laplace domain in [16]. Shin and Cha combined the frequency domain and Laplace do-
main and studied the FWI method in the Laplace-Fourier domain in [17]. Readers can be
referred to [20] for a detailed review. On the other hand, the FWI can be considered as an
inverse scattering problem. The inverse scattering problem has been studied for many
years and it has numerous applications. For seismic imaging and inversion, see [22] for a
review. In addition the approach has been developed in other fields, such as target iden-
tification, non-destructive testing and medical imaging. In [21], Wang and Chew (1989)
proposed Born iterative method (BIM) where the Green’s function remains unchanged in
the iterative procedures for solving inverse scattering problem. In [6], Chew and Wang
(1990) proposed the distorted Born iterative method (DBIM), where the Green’s function
is updated in every iteration step. In [11], Kleinman and van den Berg (1992) introduced
the modified gradient method where the cost functional consists of the superposition of
the mismatch of the measured field data with the calculated scattered field and the error
in satisfying the state equation. The modified gradient method formed the base of the
contrast source inversion (CSI) method in [19]. In the CSI method, the contrast sources
(the product of contrast and total wavefield) and the contrast (perturbation) itself, are iter-
atively reconstructed by an alternately updating method. This is in contrast to the modi-
fied gradient method, where the fields and the contrast are updated simultaneously. The
CSI method outperforms the modified gradient method, and is computationally faster
and uses less memory. In [1], Abubakar et al. introduced the finite difference contrast
source inversion (FDCSI) method. Unlike the CSI method using the integral equation
(IE) approach, it uses a finite difference (FD) approach as its backbone and can readily
employ an arbitrary inhomogeneous medium as its background media. In [2], Abubakar
et al. applied the finite difference contrast source inversion method to seismic full wave-
form inversion problems and extended it to three dimensional geometry in [3]. In [4]
Barrière et al. applied CSI method to relatively high contrast objects, in which situation
the additive regularization can get better result. CSI method bears strong relationship
with the T-matrix based inversion method [8–10, 13]. However, the perturbation and T-
matrix updating in the above approach was realized by matrix operation, and the CSI
method is still based on the least-square error minimization.

The traditional integral equation CSI method is commonly used in tomography,
where the source and receiver positions locate in the opposite sides of the object and
usually only single frequency data are used in the inversion [19]. For the reflection seis-
mology, the source and receiver positions all locate on the earth’s surface, which makes
the inversion strong nonlinear and more difficult. Multiple frequency data must be used
in the inversion in this case. For reflection geometry, data with different frequencies cor-
respond to different wavenumber of the medium perturbation. In addition, a variable
background medium must be used. Based on these features, we expand the CSI method
and make it suitable for reflection seismic data. For the variable background we use the
WKBJ method in [7] to compute the Green’s function. Numerical results show that the
multi-frequency (MFCSI) method can achieve better results than the conventional gradi-
ent method, especially for the case of data missing low frequency.
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2 The acoustic scattering model

Consider the following variable coefficient acoustic equation

∆2u=
1

v2(r)

∂2u(r,t)

∂t2
+ f (r,t), (2.1)

where v(r) is the velocity of the inhomogeneous media, f (r,t) is the source function. r
represents the point in the space. ∆2 is Laplace operator and

∆2u=
∂2u

∂x2
+

∂2u

∂z2
.

Make Fourier transform on both side of (2.1) with respect to t, we get

(

∆2+
ω2

v2(r)

)

u(r,ω)= f (r,ω), (2.2)

here 1
v2(r)

is the squared wave slowness, which can be expressed as

1

v2(r)
=

1

v2
0(r)

−α(r), (2.3)

where v0(r) is the background velocity, which generally has very simple structure, such
as constant velocity, constant gradient velocity. α(r) is the contrast function. Substituting
(2.3) into (2.2), we get

(

∆2+k2
0

)

u(r,ω)=ω2α(r)u(r,ω)+ f (r,ω), (2.4)

where k0=
ω
v0

. We use u0 to represent the wave field in background medium and

(

∆2+k2
0

)

u0(r,ω)= f (r,ω). (2.5)

Define the scattering field
us(r,ω)=u(r,ω)−u0(r,ω). (2.6)

Eq. (2.4) minus Eq. (2.5), we get

(

∆2+k2
0

)

us(r,ω)=ω2α(r)u(r,ω). (2.7)

This is the Helmholtz equation. We use G(r,r′,ω) to represent its Green’s function and

(

∆2+k2
0

)

G(r,r′,ω)=δ(r−r′). (2.8)

With Green’s Function, the solution of Eq. (2.7) can be written as

us(r,ω)=
∫

ω2α(r′)G(r,r′,ω)u(r′,ω)dr′. (2.9)
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(a) (b)

Figure 1: Data acquisition model. (a)Tomography; (b) Reflection seismic.

Add u0(r,ω) on both side of Eq. (2.9), we get

u(r,ω)=u0(r,ω)+ω2
∫

α(r′)G(r,r′,ω)u(r′,ω)dr′. (2.10)

As α(r) is given, Eq. (2.10) is the second kind of Fredholm integral equation. Solving the
equation we can get wave field u(r,ω) and this is the forward problem.

In the specific case, we consider data acquisition model in Fig. 1(a). The perturbation
is only in area D and the data is collected on the surface S. Then Eq. (2.9) become

us(r,ω)=ω2
∫

D

α(r′)G(r,r′,ω)u(r′,ω)dr′ r∈S, (2.11)

and (2.10) become

u(r,ω)=u0(r,ω)+ω2
∫

D

α(r′)G(r,r′,ω)u(r,′ω)dr′ r∈D. (2.12)

The forward problem is to find u(r,ω), r∈D and us(r,ω), r∈S by solving Eqs. (2.12) and
(2.11). The inverse scattering problem is to find α(r) for given us(r,ω), r ∈ S. Fig. 1(a)
is the typical transmission tomography geometry. For reflection seismic, Fig. 1(b) shows
the geometry.

3 The CSI method

As described above, the inverse scattering problem can be described by Eqs. (2.11) and
(2.12). Background velocity can be assumed as constant and the Green’s function in the
2D case can be computed by

G(r,r′)=(i/4)H
(1)
0

(

k0

∣

∣r−r′
∣

∣

)

,
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where H
(1)
0 is the zero-order Hankel function of the first kind. In general, the background

velocity is not necessarily the homogeneous medium, but the Green’s function should be
able to be quickly calculated. Using the matrix formalism, Eq. (2.11) becomes

Us=G(s)AU (3.1)

and Eq. (2.12) becomes
U=U0+GAU, (3.2)

where A is the contrast function, U is the total field vector, U0 is the background field
vector, Us is the scattered field vector and G(s) denotes the Green’s function for surface
data calculation. Eqs. (3.1) and (3.2) are for the single source case. For multi-source case,
Eqs. (3.1) and (3.2) become

Us,i=G
(s)
i AUi, i=1, 2, ··· , N, (3.3)

Ui=U0,i+GAUi, i=1, 2, ··· , N, (3.4)

where i represents the i-th shot, N is the number of the shots. Eq. (3.3) is called data
equation and (3.4) is the state equation. From Eq. (3.4), we can find a formal solution of
Ui,

Ui=(I−GA)−1
U0,i, i=1, 2, ··· , N. (3.5)

Substituting it into the data equation we obtain

Us,i=G
(s)
i

[

A(I−GA)−1
U0,i

]

, i=1, 2, ··· , N. (3.6)

Approximating the inverse operator by

(I−GA)−1≈ I (3.7)

leads to the Born approximation. If the iterative methods is used, where a sequence {An}
is constructed, the approximation

(I−GAn)−1≈
(

I−GAn−1
)−1

(3.8)

gives the iterative Born series method.
The CSI method is proposed by van den Berg in [19]. Its idea is to treat the product of

contrast and field as one variable. Introducing the contrast source

Wi=AUi, i=1, 2, ··· , N, (3.9)

data equation (3.3) becomes

Us,i=G
(s)
i Wi, i=1, 2, ··· , N, (3.10)
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and Eq. (3.4) becomes

Wi=AU0,i+AGWi, i=1, 2, ··· , N. (3.11)

The inversion can be described as to find the A satisfying Eqs. (3.10) and (3.11). So we
define the cost functional

N

∑
i=1

∥

∥

∥
G

(s)
i Wi−Us,i

∥

∥

∥

2
+β

N

∑
i=1

‖(I−AG)Wi−AU0,i‖
2
, (3.12)

where β is a weight coefficient, and minimizing the cost functional we can find the con-
trast A. The CSI method iteratively minimize the cost functional using an alternating
method which first updates contrast source Wi and then updates contrast A. Suppose
we have obtained Wn−1

i
and An−1, The CSI method finds Wn

i
and An in the following

manner.
For the given An−1 the cost functional (3.12) become

N

∑
i=1

∥

∥

∥
G

(s)
i Wn−1

i −Us,i

∥

∥

∥

2
+β

N

∑
i=1

∥

∥

∥
(I−An−1G)Wn−1

i −An−1U0,i

∥

∥

∥

2
. (3.13)

Minimizing this functional by the conjugate gradient method, we can obtain Wn
i
,

Wi
n =Wi

n−1+γn
i Vn

i , (3.14)

where Vn
i is the conjugate gradient direction and

Vn
i =gn

i +

(

gn
i

)T
(

gn
i −gn−1

i

)

(

gn−1
i

)T
gn−1

i

Vn−1
i , (3.15)

gn
i =−

(

G
(s)
i

)T(

G
(s)
i Wn−1

i
−Us,i

)

−β(Qn−1)T
(

Qn−1Wn−1
i

−An−1U0,i

)

, (3.16)

γn
i =−

(

G
(s)
i Vn

i

)T(

G
(s)
i Wn−1

i −Us,i

)

+β
(

Qn−1Vn
i

)T
(

Qn−1Wn−1
i −An−1U0,i

)

(

G
(s)
i Vn

i

)T(

G
(s)
i Vn

i

)

+β
(

Qn−1Vn
i

)T(
Qn−1Vn

i

)

, (3.17)

where Qn−1=(I−An−1G).
Once Wn

i is determined, Un
i can be obtained via

Un
i =U0,i+GWn

i . (3.18)

And we can seek An to minimize the cost functional

N

∑
i=1

‖Un
i An−Wn

i ‖
2, (3.19)
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and

An=

(

N

∑
i=1

(Un
i )

TUn
i

)−1
N

∑
i=1

(Un
i )

TWn
i . (3.20)

This complete the description of the algorithm except for the starting values W0
i . We

choose the starting value obtained by back propagation of observed data [19] and

W0
i =

∥

∥

∥

∥

(

G
(s)
i

)T
Us,i

∥

∥

∥

∥

∥

∥

∥

∥

G
(s)
i

(

G
(s)
i

)T
Us,i

∥

∥

∥

∥

(

G
(s)
i

)T
Us,i. (3.21)

This complete the description of the CSI algorithm.

4 The CSI method for reflection data

In exploration seismology, velocity increases with depth. If we use the homogeneous
background, the contrast will be quite large, and this will increase the nonlinearity and
difficulty of inversion. Variable background medium must be employed for reflection
seismic. We chose smooth, vertically varying background medium and use the WBKJ
method to compute the Green’s function of background medium. The WKBJ solutions [7]
will be accurate if the wavelength of the waves is considerably shorter than the scale
length of the variations in the medium and the computation efficiency of WKBJ method
is high. This is the motivation for choosing the background parameters to be slowly
varying. Other methods of calculating Green’s function are also feasible, for example,
the method of calculating the Green’s function for an arbitrary heterogeneous reference
medium numerically by solving the Lippmann-Schwinger equation [9, 10].

According to WKBJ method [7], for the vertically varying background medium, the
2D Green’s function can be computed by

G(x,zg

∣

∣0,z′;ω) =
1

2π

∫

dkxeikxx ei
∫ zg

z′
dzq(z)

2i
√

q(zg)q(z′)
, (4.1)

where

q(z)=
ω

v0(z)

√

1−
k2

xv2
0(z)

ω2
,

(0,z′) is shot point coordinates, (x,zg) represents receiver coordinates and v0(z) is the
background velocity.

In the conventional integral equation CSI method for transmission tomography, only
one frequency is used in the inversion [19]. Multiple frequency data must be used in the
inversion of the reflection seismic data. In [2, 3], Abubakar et al. extended the FDCSI to
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the reflection seismic data and also used multiple frequency data. The strategy of select-
ing frequency is similar to the gradient method (Gauss-Newton method) [14, 15], which
helps to mitigate the nonlinearity of the inversion problem. The CSI inversion method
will encounter a problem when the inversion moves from one frequency to another fre-
quency. In the inversion process, the CSI inversion method updates the contrast function,
and also update contrast source iteratively. The contrast source changes when the data
frequency changes and an initial value needs to be given. FDCSI does not have the prob-
lem because it changes the background for each frequency and calculates the Green’s
function by finite difference method. We use the inversion result of contrast function
from the previous frequency as the initial value for the new frequency, say the mth fre-
quency, A0

m. From (3.11), for the i-th shot, we can calculate the new initial contrast source
by the following equation:

(

I−A0
mGm

)

W0
i,m=A0

mU0,i,m. (4.2)

Once we obtain the initial value W0
i,m, we can use formula (3.14) to update the Wi,m

and use formula (3.20) to update the Am. The iterative process can run until the termina-
tion criterion is satisfied. This complete the description of the MFCSI algorithm.

5 Discussion on computational complexity

MFCSI method is separately carried out for each frequency data and the inverse process
is from low frequency to high frequency. We just discuss the computational complexity
of inversion for one frequency. Suppose the size of the model is Nz×Nx, the number
of unknowns is N = Nz×Nx, the number of sources is Ns and the number of receivers
for each shot is Nr. The memory mainly needed for inversion is the Green’s function
matrix G in formula (3.13). The matrix G is N×N and it is dense complex matrix. The
main computations of MFCSI are solving Eq. (4.2) and computing the gradient using
formula (3.16). We use the LU decomposition method to solve Eq. (4.2). It can effectively
save computations for the multi-source data and computations=O( 1

3 N3+Ns∗N2). The
computations of computing gradient are O(2Ns∗(Nr∗N+N2)).

6 Numerical examples

6.1 Simple model

The true velocity section of the first example is shown in the Fig. 2 and it is a very sim-
ple model. There are four homogeneous layers in the model. The model is 1000 m wide
and 500 m deep. The target region, which starts at a depth of 100 m, is discretized into
100×40 grid blocks that are 10 m in each direction. We employed 33 sources and 101
receivers located on the surface z=0 m. The lateral position of first shot is x=10 m and
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Figure 2: The true velocity model.

Figure 3: The background velocity.

the shot interval is 30 m. The lateral position of first receiver is x=0 m and receivers in-
terval is 10 m. For each shot, we use all the receivers. The background velocity we used
is shown in Fig. 3. Based on experiences from many numerical experiments, we selected
nine frequencies (1, 1.5, 2.2, 3.3, 4.9, 7.3, 10.9, 16.3 and 24.4 Hz) for inversion. We made
inversion using each single frequency data and from low frequency to high frequency.
The inverted velocity of low frequency data is used as the initial velocity of next inver-
sion. The number of iterations of inversion for each frequency data is 60. We first made
the inversion using the conventional CSI method which use formula (3.21) to initialize
the contrast source and the inversion results using the aforementioned nine frequencies
is shown in Fig. 4. We can see that the conventional CSI method is not convergent and
the inversion result is not acceptable. Fig. 5 shows the inversion results using the MFCSI
method and Fig. 6 shows the comparison of true velocity, initial velocity and MFCSI in-
version velocity at distance 200 m, 500 m and 800 m. From the two figures, we can see
that the MFCSI method can obtain good inversion result.



216 S. Wang and R.-S. Wu / Commun. Comput. Phys., 28 (2020), pp. 207-227

Figure 4: The inverted velocity model using the conventional CSI method.

Figure 5: The inverted velocity model using the MFCSI method.

6.2 Marmousi model

The velocity model of the second example is a resampled 2D Marmousi model (Fig. 7)
which is a more realistic structure. The model is 10000 m wide and 3080 m deep. The
target region, which starts at a depth of 80 m, is discretized into 250×75 grid blocks with
size of 40 m in each direction (the original grid size is 4 m). We employed 51 sources and
251 receivers located at surface z=0 m. The lateral position of first shot is x=40 m and the
shot interval is 200 m. The lateral position of first receiver is x=0 m and receivers interval
is 40 m. For each shot, we use all the receivers. Through averaging the true velocity
in lateral and smoothing it in vertical, we got a depth-dependent smooth background
velocity model (Fig. 8). We selected the nine frequencies (1, 1.5, 2.2, 3.3, 4.9, 7.3, 10, 14
and 18 Hz) for inversion and the inversion process is the same as the first example. Fig. 9
shows the inversion result using MFCSI method. The comparison of velocity profiles
for the true velocity, initial velocity and MFCSI inversion velocity at distance 2000 m,
4800 m and 7600 m is shown in Fig. 10. From the two figures, we can observe that the
MFCSI method also can obtain good inversion result for the complex structure.
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(a)

(b)

(c)

Figure 6: The comparison of true velocity, initial velocity and MFCSI inversion velocity at distance (a) 200 m,
(b) 500 m and (c) 800 m.

In the above example, the background velocity model is obtained from the true veloc-
ity model. We know that, in the actual situation, we do not know the true velocity model.
In addition, in seismic exploration there are no effective frequency component below 4
Hz in the real seismic data. In a more realistic example, we use a linear velocity as back-



218 S. Wang and R.-S. Wu / Commun. Comput. Phys., 28 (2020), pp. 207-227

Figure 7: The resampled Marmousi velocity model.

Figure 8: The depth dependent smooth background velocity model.

Figure 9: The MFCSI inversion velocity section.

ground velocity (Fig. 11) and do not use the lowest frequency data in the inversion. We
selected nine frequencies (4, 4.25, 4.5, 4.75, 5, 7.5, 11.25, 14 and 18 Hz) for inversion. The
other aspects in the inversion are the same as the second example. Fig. 12(b) shows the
inversion result. For comparison, we also show the inversion result of using the full-
band sources for the linear background medium (Fig. 12(a)). The comparison between
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(a)

(b)

(c)

Figure 10: The comparison of true velocity, initial velocity and MFCSI inversion velocity at distance (a) 2000 m,
(b) 4800 m and (c) 7600 m.

true velocity, initial velocity and MFCSI inversion velocity at distance 2000 m, 4800 m
and 7600 m is shown in Fig. 13. From the two figures, we see that the MFCSI method also
can obtain good inversion result using linear background velocity for the case of data
missing low frequency.
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Figure 11: The linear background velocity model.

(a)

(b)

Figure 12: Inverted velocity model obtained using the MFCSI method with an initial velocity model where
velocity increases linearly with depth. (a) Inversion results obtained by including data with frequency lower than
4 Hz. (b) Inversion results obtained by excluding data with frequency lower than 4 Hz.

To compare MFCSI method with the conventional gradient inversion method (Gauss-
Newton method) [5,15], we make the same model inversion using the gradient inversion
method. The initial velocity model is a linear model shown in Fig. 11, same as the previ-
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(a)

(b)

(c)

Figure 13: The comparison of true velocity, initial velocity and MFCSI inversion velocity at distance (a) 2000 m,
(b) 4800 m and (c) 7600 m.

ous example. Fig. 14 shows the inversion result for full frequency band data (1, 1.5, 2.2,
3.3, 4.9, 7.3, 10, 14 and 18 Hz) and Fig. 15(a) is the inversion result for the case when in-
version started from 3Hz above, while Fig. 15(b) shows the result when inversion started
from 4Hz (4, 4.25, 4.5, 4.75, 5, 7.5, 11.25, 14 and 18 Hz). From these comparisons, we can
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Figure 14: The inversion result using gradient method using the full frequency-band data.

(a)

(b)

Figure 15: The inversion result using gradient method for data missing low frequency. (a) Data with frequency
lower than 3 Hz are not used in the inversion. (b) Data with frequency lower than 4 Hz are not used in the
inversion.

see that the gradient method can obtain good result for the full frequency band data and
can give acceptable result when low-frequency data below 3Hz are missing. However,
the inversion result is much deteriorated and totally unacceptable when low frequency
data below 4Hz are cut. It shows that the nonlinearity is too strong in the latter case and
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(a)

(b)

(c)

Figure 16: The comparison of inversion results using gradient method and MFCSI method for data missing low
frequency at distance (Data with frequency lower than 4 Hz are not used in the inversion) (a) 2400 m, (b)
4800 m and (c) 7200 m.

the standard gradient method (Gauss-Newton or its variants) no longer functions prop-
erly for that case. In the meanwhile the MFCSI method can still work and give reasonable
inversion result. Fig. 16 shows the comparison of inversion results using gradient method
and MFCSI method for the low frequency missing (below 4Hz) data at distance 2400 m,
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Figure 17: Difference of the true velocity and initial velocity.

Figure 18: Velocity update of the first iteration using gradient method. Initial velocity is Fig. 11. Seismogram
with frequency 4 Hz is used in the inversion.

4800 m and 7200 m. We can conclude that the MFCSI method has advantage over the
gradient method for the case of data missing low frequency.

In order to further study the performance, we compare the velocity update in first it-
eration using gradient method and MFCSI. Fig. 17 shows the difference between true ve-
locity and initial velocity. This figure can be used as a reference used to compare with dif-
ferent velocity updates. Fig. 18 is the velocity update using gradient method. Comparing
Fig. 18 and Fig. 17, we can see that there are negative velocity updates in the shallow part
of Fig. 18 which is not consistent with Fig. 17. Fig. 19 is the velocity update using MFCSI.
Comparing Fig. 17, Fig. 18 and Fig. 19, we can see that the velocity update using MFCSI
has much more long-wavelength components and is better than that of gradient method.
Fig. 20 shows the reduction of data residuals with iterations. Compared with gradient
method, the convergence of MFCSI method is faster and has avoided the false local min-
ima. The gradient method only follows the update direction for data residual reduction.
While CSI inversion is also constrained by the contrast errors in the model space. The
key is the model reconstruction by the inversion of the lowest frequency. Contrast-source
and contrast (perturbation) inversions have different difficulties. For contrast inversion,
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Figure 19: Velocity update of the first iteration using MFCSI method. Initial velocity is Fig. 11. Seismogram
with frequency 4 Hz is used in the inversion.

Figure 20: Reduction of data residuals with iterations. Comparison of MFCSI and gradient method.

the main problem is the strong nonlinearity. However, contrast source inversion itself is a
linear inversion and its main difficulty is the nonuniqueness (illposedness) of inversion.
Combining these two approaches together and taking advantages of both, MFCSI can
work for stronger nonlinearity than the gradient inversion method.

7 Conclusion

We have improved the integral equation CSI method to apply to the inversion of multi-
frequency reflection seismic data. We use WKBJ method to compute the Green’s func-
tion of depth dependent background media and equations solving method to initialize
the contrast source for different frequencies. Two tests of this algorithm, performed
with synthetic models, show that the multi-frequency CSI method can recover the ve-
locity even for data missing low frequency. A comparison between the multi-frequency
CSI method and conventional gradient method (Gauss-Newton method) shows that the
multi-frequency CSI method produces better reconstruction of velocity than the conven-
tional gradient method in the case where low-frequency data are not available.
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