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Abstract. Recently, attenuation of surface-related multiples is implemented by a large-
scale sparsity-promoting inversion where the primaries are iteratively estimated with-
out a subtraction process, which is called estimation of primaries by sparse inversion
(EPSI). By inverting for surface-free impulse responses, EPSI simultaneously updates
the primaries and multiples, both of which contribute to explaining the input data,
and therefore promote the global convergence gradually. However, one of the ma-
jor concerns of EPSI may lie in its high computational cost. In this paper, based on
the same gradient-descent framework with EPSI, we develop a computationally cost-
effective primary estimation approach in which a newly defined parameterization of
primary-multiple model is adopted and an efficiently defined analytical step-length
is developed. The developed approach can yield a better primary estimation at less
computational cost as compared to EPSI, which is verified by two synthetic datasets
in numerical examples. Moreover, we apply this approach to a shallow-water field
dataset and achieve a desirable performance.
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1 Introduction

Nowadays, multiple removal is still a fundamental step in the conventional seismic data
processing [30, 31, 34, 35], even though seismic imaging using multiples is widely inves-
tigated in recent years [32, 33, 36, 37]. Multiple removal is implemented as a prediction-
subtraction process for many techniques, such as surface-related multiple elimination
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(SRME) [4, 26], which has achieved a widespread adoption in industry due to its prac-
ticality. Despite its major success over the years, SRME still have limitations in many
cases, such as: 1) subtraction based on minim energy constraint can hardly yield a satis-
factory result when primaries and multiples interfere with each other [12, 15]; 2) as the
strongest contributor of multiples, the near-offsets of the input data are absent due to the
acquisition gap especially for shallow water data, which makes it a necessity for near-
offset data reconstruction [2,7,27]. Therefore, geophysicists increasingly shift their atten-
tions towards the demultiple methods that the primary estimation is implemented with
an explicit full-wave inversion [10, 11, 14, 19, 20, 25, 28, 29]. Among these methods, the
approach of estimation of primaries by sparse inversion (EPSI) attracts great attention.
This approach integrates nears-offset data reconstruction into multiple removal without
a subtraction process [19].

By parameterizing primaries with wavelets and spike-like impulse responses, EPSI
directly estimates the primaries through inversion, which potentially conserves the pri-
maries even in case that primaries and multiples seriously interfere with each other [10].
Additionally, with its new insight into geophysical signal separation, EPSI has been suc-
cessfully applied in various aspects, such as passive seismic data, blended data and
ocean-bottom cable data [1, 9, 18, 21–24]. Despite its great success in many cases [17],
the EPSI algorithm still has some limitations.

As the impulse response is parameterized as a series of spikes, lots of free parame-
ters need to be defined to determine the sparsity of the gradient in each iteration. This
shortcoming limits the flexibility and practicality of the EPSI algorithm, and may ulti-
mately affect the reliability of the final result [10]. Therefore, some geophysicists made
refinements for the EPSI algorithm to eliminate the number of free parameters [10,11,14].

Another challenge faced by EPSI may lies in its high computational cost. To ensure
the convergence and minimize the artifacts, a large number of iterations are required in
general. Specifically, in each iteration, the spike-like impulse response is used to update
the primaries and multiples, both of which explain the input data until the energy of
residual is controlled in an acceptable scope. Usually, tens of iterations, with each one
involving a multi-dimensional correlation and convolution, are needed for a satisfactory
final primary estimation. Therefore, reducing the computational cost or accelerating the
convergence is an important issue for EPSI [6, 8, 13]. In addition, the spike-like impulse
response is determined through imposing the sparsity to the gradient by the practitioner
(due to the sparsity and causality). When the multiples in the input data are explained
with a low rate, the multiple impulse response would be wrongly selected as the primary
impulse response, which cannot be eliminated in the subsequent iterations and therefore
causes an irretrievable result. Thus, accelerating the convergence not only results in a
lower computational cost, but potentially contributes to a more reliable primary estima-
tion.

Based on the same gradient-descent framework with the EPSI algorithm, we de-
velop a computationally efficient algorithm in which a newly defined parameterization
of primary-multiple model is adopted for accelerating the convergence, and an analyti-
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cal step-length is concisely derived in each update for reducing the computation further.
It should be noted beforehand that, in this paper, the scope of our developed approach
is limited in primary estimation, while near-offset data reconstruction is not involved.
The developed approach can potentially yield a better primary estimation when taking
a less computation time as compared to the EPSI algorithm, which is illustrated by two
synthetic datasets and a shallow-water field dataset. In what follows, we first review the
algorithm of EPSI in the Section 2.1. Then we describe the algorithm of our developed
approach in the Section 2.2. Last, we demonstrate the effectiveness and practicality of
our developed approach with three numerical examples when compared with EPSI.

2 Methodology

2.1 Estimation of primaries by sparse inversion (EPSI)

According to the detail-hiding operator notation introduced by [3], the upgoing data P

recorded at the surface can be expressed as

P=X0S+X0RP, (2.1)

where X0 represents the primary (including internal multiple) impulse response of the
subsurface, S and R represent the source wavelet and surface reflectivity respectively.
Assuming S(w) = S(w)I (a constant-source wavelet for all shots), and R =−I (the re-
flectivity is -1) in Eq. (2.1), EPSI directly estimates the unknowns (X0 and S) through a
full-wave inversion process such that primaries X0S and multiples X0RP can be simul-
taneously obtained [19]. EPSI is implemented by minimizing the following objective
function:

J=∑
w

∑
j,k

|Vi|
2
j,k, (2.2)

where V is the residual, which is defined as V=P−X0S+X0P; i is the iteration number; j
and k represent the shot and receiver index of Vi respectively; w is the frequency. During
the inversion, X0 is assumed to be a series of spikes in time domain. Based on the steepest-
descent method, the updates ∆X0 is introduced as

∆X0=Vi(SiI−P)H, (2.3)

where (•)H represents the conjugate transpose operation. Before adding ∆X0 to the cur-
rent primary impulse response, the sparsity is imposed to ∆X0 by the practitioner. Specif-
ically, in each iteration, a space-time window is placed over ∆X0; and in this window, the
sample with the maximum amplitude per trace is selected as the spike [20]. With the
iteration continuing, the window is gradually expanded both in space and time direction
such that all the primary events can be selected. As a result, X0 can be iteratively updated:

X0,i=X0,i−1+α∆X0. (2.4)
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The step-length α can be obtained with a line-searching method [19]. Because of the con-
stant source wavelet assumption, Si can be updated in the same way as X0, or estimated
by matching X0,i with P+X0,iP in time domain [19]. Consequently, primaries and multi-
ples can be simultaneously obtained:

{

M0,i=X0,iP,

P0,i=X0,iSi, or P0,i=P−M0,i.
(2.5)

The essence of EPSI is to find a correct impulse response model that can simultane-
ously explain all the primaries and multiples in input data, such that the primaries can
be directly estimated without a subtraction process. However, the amplitude of the in-
verted primary impulse response is highly associated with the relative strength between
primaries and their related multiples. Therefore, the success of EPSI highly depends
on the internal consistency of the relative amplitude between primaries and multiples
in the input data [10]. However, it is hard to accurately explain all the input data with
the assumptions of a constant source-wavelet and constant surface reflectivity used in
the primary-multiple model (Eq. (2.1)) due to some inaccuracies in the primary-multiple
model, such as ghost, phase variation, 3D wavefield effect and directivity of sources and
receivers in the measured data.

Thus, some multiple residual can be hardly explained, which leads to a low conver-
gence rate, especially at intermediate or late iterations. Consequently, when imposing the
sparsity to the gradient, the impulse response of the unexplained multiples (or multiple
residual) may be easily selected as the primary impulse response, which cannot be elim-
inated in the subsequent iterations and therefore causes an irretrievably wrong result.
Here, we use a 1D synthetic data example to clearly illustrate the issue.

An original shot-gather (Fig. 1a) where only the first event is the primary, is used as
the input for the EPSI algorithm. During imposing the sparsity to the gradient in the first
30 iterations, the time-length of the picked window is controlled so that only the primary
impulse responses are selected and their related multiples can be eliminated as much as
possible. However, although the primary impulse response is successfully inverted after
30th iterations (Fig. 1b), some multiples still remains in the residual (unexplained data),
as indicated by arrows in Fig. 1c. In this case, if the picked window is expanded in time
direction with the iteration continuing (for most general situations), the multiple impulse
response would be probably selected as the primary impulse response inevitably. This
is demonstrated in the inverted primary impulse response at the 40th iteration (Fig. 1d),
where the arrows indicate the wrongly picked impulse responses. As a result, some fake
primary events will be generated in the primary estimation, and these primary events
cannot be eliminated in the subsequent iterations.

2.2 Estimating primaries by sparse inversion with cost-effective computation

2.2.1 Description of our developed approach
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Figure 1: (a) The original shot-gather generated from a 1D model with a single reflector; (b) primaryFigure 1: (a) The original shot-gather generated from a 1D model with a single reflector; (b) primary impulse
response inverted by EPSI after 30 iterations; (c) the residual of EPSI after 30 iterations; (d) primary impulse
response inverted by EPSI after 40 iterations; (e) the residual of our developed approach after 15 iterations; (f)
the primary impulse response of our developed approach after 15 iterations.

To address the aforementioned issue faced by EPSI, we develop a primary estimation
approach which adopts a new parameterization of primary-multiple model. The devel-
oped approach potentially explains the input data with high efficiency, which provides
an alternative for EPSI in many cases.

We begin with an illustration for primary impulse response (shown in Fig. 2) to in-
troduce the new parameterization of primary-multiple model used in our developed ap-
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Figure 2: An illustration of impulse responses that contribute to primaries (XP0
0 ) and multiples (XM

0 ).

proach. As shown in Fig. 2, the impulse response X0 can be viewed as primary reflections
of the subsurface excited with an impulsive source wavelet. After reflecting from the sub-
surface, one part of energy of X0 transmits away from the surface (or directly received by
the geophones), which forms the primaries; the other part of energy of X0 reflects against
the surface and ultimately forms the multiples. Therefore, the total primary impulse re-
sponse X0 can be written as a summation of two parts:

X0=XP0
0 +XM

0 , (2.6)

where XP0
0 and XM

0 respectively represent the primary impulse response that only con-
tributes to primaries and only contributes to multiples, and these two terms are mutu-
ally independent. Actually, the expression in Eq. (2.6) is also indicated in the EPSI algo-
rithm, where the update of primary impulse response ∆X0 consists of two parts (ViS

H
i

and ViP
H) (see Eq. (2.3)). These two parts respectively represent the primary impulse

responses that are transferred from primaries and transferred from multiples in the data
residual [19, 20].

Thus, based on the Eq. (2.6), the parameterization of the primary-multiple model in
Eq. (2.1) can be modified as

P=XP0
0 S+XM

0 P. (2.7)

Compared with the Eq. (2.1), the directivity of the receiver and the strength of the reflec-
tivity at the surface are incorporated in Eq. (2.7), which loosens the internal consistency
of amplitude between primaries and multiples.

As there are three unknowns (XP0
0 , XM

0 and S) in Eq. (2.7), we need extra constraints
that 1) the impulse response is comprises of a series of spikes and 2) the length of the
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source-wavelet is finite in time domain. The unknowns can be alternately inverted based
on the same gradient-descent framework with the EPSI algorithm, so that the multiples

XM
0 P and the primaries XP0

0 S can be sequentially obtained. The objective function is in-
troduced as

J=∑
w

∥

∥P−XP0

0,iSi−XM
0,iP

∥

∥

2
+λLs

(

XP0

0,i,αXM
0,i

)

, (2.8)

where i denotes the iteration number; ∑w indicates a summation for all frequencies. Ls

represents the sparse constraint operator, which is implemented in the same way as EPSI.

The constant α ensures XP0

0,i and XM
0,i have the same scale during imposing the sparse

constraint.

More details of our developed algorithm are present in Algorithm 1. In this algorithm,

all the unknowns are initialized to be zeros in the first iteration (line 2). After that, XP0
0

and XM
0 are alternatively updated based on the gradient-descent method in each iteration

(lines 3-6). The gradients of XP0

0,i and XM
0,i are obtained by taking partial derivatives to the

first term of the objective function (line 4). However, this cannot yield unique solutions

for XP0

0,i and XM
0,i. Thus, the sparsity needs to be imposed to the gradients (line 5), as indi-

cated in the second term of the objective function. The way of imposing the sparsity is
same with EPSI, with which the event with the maximum amplitude of the gradients is

Algorithm 1 The algorithm of our developed approach.

1: Input: the recorded data P, the maximum iteration N;
2: initialize: XP0

0,0=0, XM
0,0=0, S0=0;

3: do

4: calculate the gradients of XP0

0,i and XM
0,i:

{

∆XM
0 =(P−XP0

0,iSi−XM
0,iP)P

H,

∆XP0
0 =(P−XP0

0,iSi−XM
0,iP)S

H;

5: imposing the sparse constraint over ∆XM
0 and ∆XP0

0 in time domain;

6: update XP0

0,i and XM
0,i:

{

XM
0,i=XM

0,i−1+α1∆XM
0 ,

XP0

0,i=XP0

0,i−1+α2∆XP0
0 ;

7: calculate the total impulse response: X0,i=X0,i−1+α1∆XM
0 +α2∆XP0

0 ;

8: estimate the wavelet Si by matching X0,i with P−XM
0,iP;

9: calculate the current primary estimation:
{

M0,i =XM
0,iP,

P0,i=X0,iSi, or P0,i=P−M0,i;

10: while i≤N or the threshold of residual energy is not reached;
11: output.
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selected in a space-time window. The size of the window is related to iteration number.
Generally, to improve the convergence, the window can be kept small in the initial itera-

tions and expanded rapidly with the iteration continuing. Subsequently, XP0
0 and XM

0 can
be updated with their own gradients and a proper step-length (line 6). Instead of using
a line-searching method for acquiring the step-length in the EPSI algorithm [19], we con-

cisely derive two analytical step-lengths for updating XP0
0 and XM

0 in this paper, which is
detailedly introduced in Appendix A. Once XM

0 is obtained, the multiples XM
0,iP and the

conservative primary estimation P−XM
0,iP in the current iteration can be obtained.

The source wavelet Si can also be calculated with the same gradient-descent method,
or can be estimated by matching the impulse responses with the conservative primary
estimation in the current iteration. In this paper, we choose the latter approach to ob-

tain Si. As XP0
0 and XM

0 contain the same kinetic information, both of them contribute to
the direct primary estimation. Therefore, the total impulse response X0,i is calculated for
matching with P−X0,iP to obtain Si (lines 7-8), so that the primaries X0,iS can be simulta-
neously obtained (line 9). This contributes to improving the stability of the inversion and
protecting primaries, which will be further discussed at the end of Section 2.2.2. Once the
residual energy or the iteration number is reached the predefined value, the loop will be
terminated (line 10).

2.2.2 Comparison of EPSI and our developed approach

In the EPSI algorithm, the multiple is explained with ∆X0 (see Fig. 3b), which is com-
prised of two parts (indicated in Eq. (2.3)): the first part ViS

H
i maps the primaries in the

residual into ∆X0; the second part ViP
H is a multi-dimensional correlation, which maps

the multiples in the residual to ∆X0 [19]. However, when the input data does not have
a good amplitude consistency between primaries and multiples, the term ViS

H
i (trans-

ferred from primaries) would not accurately explain multiples in the residual, which
affects the convergence rate.

In our developed approach, a newly defined parameterization for primary-multiple
model is adopted. Thus, the multiple is explained with the gradient ∆XM

0 that is trans-
ferred from the multiples (see Fig. 3a). This is because that the calculation of ∆XM

0 (line 4
of Algorithm 1) is a multi-dimensional correlation, which maps the multiples in the resid-
ual to primary location. Therefore, the multiple residual in the current iteration will be
mapped to XM

0 in the next iteration, which will conversely explain the multiple residual.
It is a close-loop process for explaining multiples with high efficiency.

The new parameterization used in our developed approach loosens the demand for
the internal consistency of relative amplitude between primaries and multiples in the
input data, and therefore weakens the impact of the inaccuracies of primary-multiple
model on inversion. Thus, the input data can be resolved with high efficiency. Addi-
tionally, when updating the primary impulse response, analytical step-lengths are de-
duced for updating two types of primary impulse response simultaneously, which avoids
at least two extra times calculation of the objective function as compared to the line-
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Figure 3: The process for explaining multiples of (a) our developed approach and (b) EPSI.Figure 3: The process for explaining multiples of (a) our developed approach and (b) EPSI.

searching step-length for EPSI in [19], and therefore reduces the computational cost fur-
ther.

We also use the numerical example presented in Fig. 1 to illustrate the high efficiency
of our developed approach. Our developed approach is tested on the original shot-gather
(Fig. 1a). When imposing the sparsity to the gradient of impulse responses, we use the
same parameters as that for the results in Figs. 1b and 1c. The results of our developed
approach after 15th iterations are shown in Figs. 1e and 1f, where the data residual (un-
explained data) and the primary impulse response are respectively shown. Visually, the
residual of our developed approach after 15 iterations (Fig. 1e) contains less multiples
as compared to that of EPSI after 30 iterations (Fig. 1c). Therefore, even the picked win-
dow is expanded in the time direction with the iteration continuing, the multiple impulse
response would not be wrongly selected as the primary impulse response.

However, the new parameterization of our developed approach has its own draw-
backs. As the primaries and multiples are parameterized with different impulse re-
sponses, the connection of them is weakened. Therefore, our developed approach proba-
bly cannot perform well in case that primaries and multiples are strongly interfered with
each other. To alleviate this problem, the total primary impulse responses are used to
calculate the primaries (lines 7-9 in the Algorithm 1), which can partially address this
issue, and therefore ensures that the developed approach can still obtain a satisfactory
result for cases where primaries and multiples are slightly interfered. Overall, due to the
efficiency, the developed approach provides an alternative for EPSI in many cases.

3 Numerical examples

In this section, we use three numerical examples including two synthetic datasets and a
shallow-water field dataset to demonstrate our developed approach. In each example,
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the effectiveness of our developed approach is demonstrated by comparing it with EPSI.
During inverting for the primary impulse response for the two approaches, the same set
of free parameters are used for imposing the sparsity for the gradient of primary impulse
response.

3.1 A three-layer model

We use a three-layer model, in which the velocity changes only in depth direction, for
generating the synthetic dataset. There are 201 shots with 25 Hz Ricker wavelet sources
synthetized in the dataset. All the sources and receivers are overlapped and fixed in the
depth of 10 m below the surface. No deghosting is done for the dataset. One of the shots
in the synthetic dataset is present in Fig. 4a, where only the first and the second events
are the primaries. Besides, the weak event at around 0.7s (indicated by the gray arrow in
Fig. 4a) is the internal multiple which also needs to be estimated.

The results of EPSI after 60 iterations are shown in Figs. 4b-4d, where the primary
impulse response, the conservative primary estimation and the residual are sequentially
present. Though the primary impulse response are successfully inverted in Fig. 4b, some
multiple impulse response (indicated by white arrows) contain in it, which causes some
multiples remained in the conservative primary estimation, as indicated by white arrows
in Fig. 4c.

The corresponding results of our developed approach after 40 iterations are shown
in Figs. 4e-4g. In the total primary impulse response (Fig. 4e) and the conservative pri-
mary estimation (Fig. 4f), all the primaries (including internal multiples) are also success-
fully inverted. Although some multiple residual still exists in our results as indicated by
white arrows in Figs. 4e-4f, the residual is largely weakened as compared to that of EPSI
(Figs. 4b-4c).

Through the comparison of the two approaches, we conclude that our approach
achieves a better primary estimation with less computation cost for this example. This is
mainly because that the EPSI algorithm is sensitive to the amplitude consistency between
primaries and multiples in the input data. The dataset without deghosting processing
would affect the final results for EPSI, because the primary-multiple model in Eq. (2.1)
would be no longer accurately satisfied in this case. Whereas for our developed ap-
proach, the demand for amplitude consistency between primaries and multiples is loos-
ened as the primaries and multiples are parameterized with different impulse responses
(see Eq. (2.7)), and therefore the efficiency can be improved. The comparison of the final
residual for the two approaches (Figs. 4d and 4g) can also show the difference of the two
algorithms. For the residual of EPSI (Fig. 4d), the major primary and multiple events are
resolved except some weak imprint. The imprint indicates some low-frequency compo-
nent of the input data that is not included in the primary-multiple model which is difficult
to explain. For the residual of our developed approach (Fig. 4g), the unexplained imprint
is evenly distributed, which indicates that our developed approach is not sensitive to the
inaccuracies of the input data.
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Figure 4: (a) The original shot-gather generated from a three-layer model; (b-d) the primary impulse
Figure 4: (a) The original shot-gather generated from a three-layer model; (b-d) the primary impulse response,
conservative primary estimation and data residual of EPSI after 60 iterations; (e-g) the primary impulse response,
conservative primary estimation and data residual of our developed approach after 40 iterations.

3.2 The Sigsbee 2B model

For further testing the capability of our developed approach, we use the Sigsbee 2B [16]
model as an additional example to generate the synthetic data. The velocity model (Fig. 5)
is a part of the original released Sigsbee 2B model. A free surface and strong water bottom
(marked by the red dash line) are designed for generating strong surface-related multi-
ples. 181 shots are synthetized with 30 Hz Ricker wavelet sources, and each shot has 181
receivers with a 10 m interval. All the sources and receivers are overlapped and placed
at 10 m depth.
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Figure 5: The velocity model used for generating the synthetic data.Figure 5: The velocity model used for generating the synthetic data.

Figure 6: (a) An original shot-gather generated from the velocity model in Fig. 5; (b-c) the
Figure 6: (a) An original shot-gather generated from the velocity model in Fig. 5; (b-c) the conservative
primary estimation resulted from EPSI after 60 iterations and our developed approach after 40 iterations; (d-e)
the corresponding data residual for results in (b) and (c).

An original shot-gather is shown in Fig. 6a, which is used as the input for EPSI and
our developed approach. Figs. 6b and 6c respectively shows the corresponding conser-
vative primary estimation resulted from EPSI after 60 iterations and from our developed
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Figure 7: (a) The original zero-offset section; (b-c) the conservative primary estimation on zero-offset section
resulted from EPSI after 60 iterations and our developed approach after 40 iterations.

approach after 40 iterations. It can be seen that both the approaches are effective for elim-
inating surface-related multiples. However, compared with the result of EPSI (Fig. 6b),
the primaries resulted from our developed approach (Fig. 6c) contain less multiples resid-
ual, which is indicated by white arrows in the two figures. Figs. 6d and 6e show the
final residual of EPSI and our developed approach respectively. The final residual can
indicate the convergence of the algorithm. Despite 60 iterations, some residual is not ex-
plained with EPSI, especially at the shallow part of the shot-gather (indicated by arrows
in Fig. 6d), which shows that a more desirable result needs more iterations. Whereas for
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Figure 8: Convergence curves of EPSI and our developed approach.

Figure 8: Convergence curves of EPSI and our developed approach.

our developed approach, the residual appears cleaner after only 40 iterations (Fig. 6e),
which indicates a high convergence rate of our developed approach.

Applying the two approaches to all shots in the dataset, the appearance of the two ap-
proaches on zero-offset section can be shown in the Fig. 7, where the original zero-offset
section, primaries estimated by EPSI, primaries estimated by our developed approach
are sequentially displayed. Because of the strong water bottom, the water layer related
multiples have a tremendous effect on the demultiple results. Such as in the result of
EPSI (Fig. 7b), the first-order water-layer related multiples, which is between about 0.5s
at the left side and 0.2s at the right side (indicated by white arrows), are not suppressed
enough. Whereas in the result of our developed approach (Fig. 7c), the demultiple output
appears cleaner.

The convergence curves of the two approaches are shown in Fig. 8, where the total
residual energy is reduced to 16.8% for EPSI after 60 iterations, 14.4% for our developed
approach after 40 iterations. The reason for the sharp decrease of the two curves at the
20th iteration is that the size of the picked window for imposing the sparsity is forced at
the position of water-bottom primaries before the 20th iteration, but relaxed after the 20th

iteration, so that the water-layer related multiples can be eliminated as much as possible
during the first 20 iterations. The comparison for the two convergence curves shows our
developed approach has a better convergence appearance than EPSI.

3.3 A shallow-water field dataset

As the final demonstration, we use a shallow-water field dataset to test the practicality
of our developed approach. The dataset undergoes a series of preprocessing steps, in-
cluding random noise removal, interpolation of missing shots and traces, deconvolution
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Figure 9: (a) The original zero-offset section of a shallow-water field dataset; (b-c) the conservative

Figure 9: (a) The original zero-offset section of a shallow-water field dataset; (b-c) the conservative primary
estimation on zero-offset section resulted from EPSI after 60 iterations and our developed approach after 60
iterations.

for the source bubble effects and so on. No deghosting is done and the direct wave is re-
moved for all shots by muting. After preprocessing, the dataset includes 600 shots with
each one containing 600 traces. All the sources and receivers are overlapped.
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Figure 10: (a) The close-up view of the rectangular area at the left-side in Figure 9b; (b) the close-Figure 10: (a) The close-up view of the rectangular area at the left-side in Fig. 9b; (b) the close-up view for
the rectangular area at the left-side in Fig. 9c. As indicated by arrows, the result in (b) contains less multiple
residual than that in (a).

As with the previous two examples, the robustness of our developed approach is
demonstrated by comparing it with EPSI. Both the approaches are taken 60 iterations
to ensure the convergence. As a result, both the approaches are effective for attenuat-
ing multiples, as numerous multiple events in Fig. 9a are removed in Figs. 9b and 9c,
which are indicated by arrows. However, compared with EPSI, our developed approach
achieves a better behavior, as less multiple residual remained in Fig. 9c. This is further
demonstrated in Fig. 10 and Fig. 11, which are the close-up views of the rectangular areas
in Figs. 9b and 9c. This is mainly because that, our developed approach is not sensitive
to amplitude inaccuracy of the field data as compared to EPSI.

The convergence curves of the two approaches are shown in Fig. 12. After 60 iter-
ations, the total residual energy is reduced to 17.5% for EPSI and 11.9% for our devel-
oped approach. As with the second example, the reason for the sharp decrease of the two
curves at the 20th iteration is that the size of the picked window for imposing the sparsity
is forced at the position of water-bottom primaries before the 20th iteration, but relaxed
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Figure 11: (a) The close-up view of the rectangular area at the right-side in Figure 9b; (b) the close-Figure 11: (a) The close-up view of the rectangular area at the right-side in Fig. 9b; (b) the close-up view for
the rectangular area at the right-side in Fig. 9c. As indicated by arrows, the result in (b) contains less multiple
residual than that in (a).

after the 20th iteration, which contributes to efficiently explaining the water-layer related
multiples. Overall, the example verifies the practicality of our developed approach.

4 Conclusion and discussion

We have developed a primary estimation approach based on the gradient-inversion frame-
work. As with EPSI, the developed approach directly estimates the primaries by inver-
sion which needs no subtraction process. But more importantly, the developed approach
can yield a better primary estimation at less computational cost as compared to EPSI,
which has been verified by two synthetic datasets and a shallow-water field dataset. The
high efficiency of our developed approach lies in that a newly defined parameterization
for primary-multiple model is adopted and an analytical step-length is derived for each
update in the algorithm. The newly defined parameterization contributes to a better
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Figure 12: The convergence curves of EPSI and our developed approach.
Figure 12: The convergence curves of EPSI and our developed approach.

convergence as compared to EPSI especially when the input data does not have a good
amplitude consistency between primaries and multiples.

It should be noted that, there are still some problems in our developed approach that
need to be further investigated: 1) The near-offset data reconstruction is not involved in
the algorithm; 2) the developed approach cannot be suitable for the case that primaries
and multiples are strongly interfered. Thus, we hope that in our future studies, these
issues can be successfully tackled, so that our approach can have a broad application
base.
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Appendix A: Derivation of analytical step-lengths for our

developed approach

Ignoring the regularization term, the objective function in Eq. (2.8) can be rewritten as

J=∑
i,j

∑
w

∣

∣P−XP0
0,iSi−XM

0,iP
∣

∣

2
. (A.1)
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For alternately inverting for the two types of primary impulse response, the gradients of

XP0

0,i and XM
0,i can be calculated with:



















∆XM
0,i =−

∂J

∂XM
0,i

=−(P−XP0
0,iSi−XM

0,iP)P
H,

∆XP0
0,i =−

∂J

∂XP0
0,i

=−(P−XP0
0,iSi−XM

0,iP)S
H
i .

(A.2)

After imposing the sparsity to ∆XM
0,i and ∆XP0

0,i, XP0

0,i+1 and XM
0,i+1 can be expressed as

{

XM
0,i+1=XM

0,i+α1∆XM
0,i,

XP0
0,i+1=XP0

0,i+α2∆XP0
0,i,

(A.3)

where α1 and α2 are the step-length, which are to be obtained. Substitute Eq. (A.3) into
Eq. (A.1), the residual energy in the i+1 iteration can be shown as:

Ji+1=∑
j,k

∑
w

∣

∣P−(XP0

0,i+α2∆XP0

0,i)Si−(XM
0,i+α1∆XM

0,i)P
∣

∣

2
. (A.4)

In Eq. (A.4), the optimal values for α1 and α2 should minimize the residual energy. There-
fore, the problem for calculating α1 and α2 in Eq. (A.4) is equivalent to a minimum prob-
lem for a 2-variables function.

For simplicity, we rewrite Eq. (A.4) as

J(α1,α2)=∑
i,j,k

|W0−α1W1−α2W2|
2 , (A.5)

where W0=P−XP0
0,iSi−XM

0,iP, W1=∆XM
0,iP and W2=∆XP0

0,iSi. As J is a convex function, the
extreme value can be obtained when the partial derivatives are zeros:















∂J

∂α1
=α1 ∑i,j,k W2

1,ijk+α2∑i,j,k W1,ijkW2,ijk−∑i,j,k W0,ijkW1,ijk =0,

∂J

∂α2
=α1 ∑i,j,k W1,ijkW2,ijk+α2 ∑i,j,k W2

2,ijk−∑i,j,k W0,ijkW2,ijk =0.

(A.6)

Solve Eq. (A.6), α1 and α2 can be simultaneously obtained:















α1=
B2A2−B1A3

A2
2−A1A3

,

α2=
B1A2−B2A1

A2
2−A1A3

,

(A.7)

where A1 =∑i,j,k W2
1,ijk, A2 =∑i,j,k W1,ijkW2,ijk, A3 =∑i,j,k W2

2,ijk, B1 =∑i,j,k W0,ijkW1,ijk and
B2=∑i,j,k W0,ijkW2,ijk.
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