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Abstract. Removing internal multiples remains an important but challenging problem
in seismic processing. The generalized Estimation of Primaries by Sparsity Inversion
(EPSI) method minimizes data residuals between the calculated and observed wave-
form using the sparse constraint of primary impulse responses to predict multiples and
remove them directly, instead of using the conventional adaptive subtraction method.
Even though the generalized EPSI method provides a good estimate of the primaries
and multiples when they overlap, it is limited by intensive computational cost.

In this paper, we introduce two strategies to improve computational efficiency.
First, the interface-controlled strategy is introduced by only selecting high-amplitude
primary responses related to the interfaces with strong impedance contrasts to esti-
mate multiples. The computational time is approximately proportional to the number
of involved reflectors and usually, most of the internal multiple energy in the data is
only related to a few strong reflectors. Therefore the modified method can remove
most of the internal multiples in fewer computations than in the generalized EPSI,
which loops through all the interfaces. Next, an approximate formula for estimat-
ing primary impulse responses is proposed by neglecting a computationally intensive
term which corresponds to the primary responses estimated from internal multiples.
According to our analyses and experiments, in most cases, the contribution of this term
is negligible because the internal multiples are weak. Therefore, the computational ef-
ficiency can be improved without significantly losing quality when estimating most
primaries and multiples.

In order to demonstrate this, multiple elimination of a two-layered simple data and
the Pluto data are implemented. We find that the modified method can yield reliable
results that require fewer computations. The improvements of the modified method
may encourage the use of the generalized EPSI method in industry.
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1 Introduction

Primary reflections are dominating in seismic datasets and considered as the most effec-
tive data for most popular subsurface imaging techniques in the surface reflection seismic
exploration. Therefore, multiples especially in marine data are regarded as noises reduc-
ing imaging quality in most processing algorithms. The multiples (including internal and
surface-related multiples) significantly contaminate subsurface images and thus reduce
the reliability of reservoir prediction and well location design. In shallow water data, the
reverberation caused by multiple reflections between free surface and the seabed is such
a serious problem that it is very tough to distinguish the primaries without suppressing
multiples. In recent years, multiple subsurface imaging techniques and some primary
and multiple joint imaging techniques, that exploit multiples instead of removing them,
have been developed to improve the illumination in subsalt area [1–5]. However, in
most applications, especially in oil and gas industry, the primaries and multiples are still
required to be separated before the seismic imaging. Therefore, accurate estimation of
primaries and multiples is still an important aspect of both primary imaging techniques
and the multiple imaging techniques.

Multiples are defined as waves that have undergone more than one upward reflection
before they are measured (ghost waves are not included). The upward reflection indicates
the upgoing waves that reflect at the interface and turn to propagate upward. According
to the position that the upgoing reflection takes place during the propagation, multiples
can be divided into two types: the surface-related multiples and the internal multiples.
Surface-related multiples are multiples that reflect at the surface at least once, and the
internal multiples are those that reverberate in the subsurface interfaces without surface
reflections. For instance, in marine exploration seismology, surface-related multiples are
multiples that reflect at the sea surface, and internal multiples are those that reflect at
the sea bottom, sediment interfaces and other impedance interfaces, such as salt dome
boundaries.

Over the past few decades, two types of methods for suppressing multiples have been
developed and optimized: the filtering method and the wave-theory-based method. Fil-
tering techniques are based on signal analysis, which includes domain transform filter
and predictive deconvolution [6–8]. These methods have been widely used and have
been very successful in industry. However, it is difficult to estimate non-periodic multi-
ples produced by the complex underground structures. Wave equation-based methods
make full use of the kinematic and dynamic characteristics of wave propagation to esti-
mate the primaries and multiples. Wave equation-based methods can be further divided
into two categories: the two-step prediction-subtraction method and the sparse con-
straint inversion method. In the prediction-subtraction multiple elimination approach,
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the multiples are first predicted by data-driven or model-driven methods, and then the
multiples are eliminated by adaptive subtraction. These methods include Surface-Related
Multiple Elimination (SRME) [9–12], Inverse Scattering Series (ISS) [13], Internal Multi-
ple Elimination (IME) [14–16] and other model-driven methods [17–20]. Keydar et al. [21]
proposed that first-order internal multiples can be predicted based on a ”low-high-low”
reflection mode by a multidimensional convolution and correlation of three primaries,
and then subtracted from the original data. The IME approach [14–16] is an extension of
the SRME method for estimating of internal multiples and its use has been demonstrated
in field data applications [22–24]. Theoretically, the ISS method can estimate the internal
multiples related to all the reflectors, but in practice, it is limited by the large compu-
tational demands and poor practicality. Berkhout and Verschuur used Common Focus
Point (CFP) data gathers to estimate the internal multiples [14, 16]. This method can be
applied in a model-driven or a data-driven manner. However, these methods have com-
mon disadvantages. Firstly, the prediction-subtraction methods require complete and
regular datasets. Thus, data interpolation processes should be implemented for irregular
or incomplete data [25, 26] and the removal quality relies on the interpolation accuracy.
Secondly, the adaptive subtraction may cause the loss or distortion of primaries when
they are overlapped with multiples. To solve this problem, Liu et al. introduced statis-
tically estimated inverse source wavelet to attenuate the multiples and also effectively
preserve the amplitude and continuity of primary reflections [27].

Groenestijn and Verschuur proposed a direct inversion method to separate primaries
and surface-related multiples, referred to as the Estimation of Primaries by Sparsity In-
version (EPSI) [28, 29]. The objective function of the EPSI method is the sum of the L2-
norm of the estimation residual and the sparsity-constraint of the primary impulse re-
sponses. The estimation residuals are the difference between the observed seismic data
and the calculated data obtained by the summation of the estimated primaries and mul-
tiples. The EPSI method directly estimates primaries and multiples by minimizing the
sparsity-constrained objective function rather than the prediction-subtraction process in
the SRME method. Therefore, the waveform distortion and energy loss caused by the
adaptive subtraction in SRME is avoided. In addition, the EPSI method estimates the
primaries and multiples from the full wave fields. The primaries can be obtained simul-
taneously from the primary and the multiple reflections in the data. Therefore, it has
the effect of wave field reconstruction, which overcomes the problems of the irregular
and missing data presented in SRME. The robust EPSI uses the L1-norm minimization
to constrain the sparsity of the primary responses to improve the sparseness and the
accuracy of the primary impulse response estimation [30]. The EPSI method was ex-
tended to a generalized version, called the generalized EPSI [31, 32], which gradually
eliminates surface-related and subsurface interface-related multiples from the surface to
the subsurface. Song et al. demonstrated that the generalized ESPI is more effective
in preserving the primary waveform for estimating internal multiples than the other two
prediction-and-subtraction methods, namely the CFP-based method and the surface-data
based method [33]. Even though the generalized EPSI performs well in multiple elimina-
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tions, the high computational cost restricts its use in industry and thus further optimiza-
tion is necessary.

In this paper, we briefly review the generalized EPSI method and discuss its advan-
tages and disadvantages. Based on the analysis on the generalized EPSI, we present
an interface-controlled strategy and an approximate formula of the primary impulse re-
sponses to improve the efficiency and flexibility of the generalized EPSI method. A two-
layered synthetic data test is implemented to analyze the features of the approximation
in the modified method, and the benchmark data, Pluto1.5 data [34] test is implemented
to verify the effectiveness and feasibility of the interface-controlled multiple elimination
by sparsity inversion.

2 Methodology

2.1 The generalized EPSI method

In order to remove both surface and internal multiples, Ypma et al. proposed the general-
ized EPSI method, which is an extension of the original EPSI procedure (see in Appendix
A) [31,32]. In the generalized EPSI method, the internal multiples are categorized accord-
ing to their shallowest reflector. The internal multiples generated by the nth interface Mn

are given by
Pn−1=Pn+Mn, (2.1)

where Pn represents the wavefields without the multiples generated by the interfaces
(0∼n). When n=0, then P−1=P, which is consistent with the EPSI method. This algorithm
starts from the estimation of multiples related to the first reflection interface (n= 0), i.e.
the surface, and gradually goes down to the 1st, 2nd and deeper reflectors. The expanded
form of Eq. (2.1) is given as

Pn−1=XnS−X̂nδXH
n P̂′

n−1, (2.2)

where the superscript ’H’ represents the conjugate transpose of a matrix, Xn represents
the primary impulse response related to Pn, S is the source signature, X̂n extracts the
primary impulse responses of 0 ∼ nth reflectors from Xn, δXn represents the primary
impulse responses of the nth reflector, P̂′

n−1 excludes the primaries of the nth reflector

δPn from P̂n−1, which can be expressed as

P̂n−1= P̂′
n−1+δPn

= P̂′
n−1+δXnS. (2.3)

The primaries Pn are characterized by Pn = XnS and the multiples are calculated by
Mn = X̂nδXH

n P̂′
n−1. In particular, when n = 0 then P−1 = P̂−1 = P and δX0 = −R (sur-

face reflectivity), X̂0=X0. Fig. 1 depicts several important physical quantities used in the
generalized EPSI method.
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Figure 1: Important wavefields used in the generalized EPSI method [34]. (a) P̂n−1 = X̂n−1S extracts the
primary responses of the 0 to (n−1)th reflectors from Pn−1; (b) δXn represents the primary impulse responses

of the nth reflector; (c) X̂n represents the impulse responses excluded from Xn (0 to nth reflectors), including

primaries and internal multiples that scatter downwards below the nth reflector; (d)P̂′
n−1 excludes the primary

responses of the nth reflector δPn from P̂n−1, where δPn = δXnS.

Figure 2: Schematic illustration of the formation of the internal multiples. The black-dotted, red, green, and
black solid lines represent X̂n, P̂′

n−1, and δXH
n , and Mn (the internal multiples related to the n-th reflector),

respectively.

The formation of the internal multiples is shown in Fig. 2 by depicting the wave path
of various wavefields. The wave path of the nth reflector multiple has a ”low-high-low”
propagation pattern. Mathematically, and in practice, the nth reflector related multiples
Mn = X̂nδXH

n P̂′
n−1 are obtained through a multi-dimensional convolution and a multi-

dimensional cross-correlation using three wavefield quantities.

As mentioned above, the generalized EPSI method eliminates the multiples from the
surface to the subsurface. Removing the primary events (including the 0 to n−1 reflec-
tors) from the left and right side of Eq. (2.2), we provide a fundamental equation that is
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used to construct the objective function of the generalized EPSI method:

P̂n−1=(δXn+X̂n)S−X̂nδXH
n P̂′

n−1. (2.4)

According to Eq. (2.4), the objective function of the generalized EPSI method for esti-
mating the nth reflector related multiples is given as below

Jn =∑
ω

∑
ir

∑
is

‖P̂n−1−(δXn+X̂n)S+X̂nδXH
n P̂′

n−1‖
2
2+‖X̂n‖0+‖δXn‖0. (2.5)

The three unknown wavefields (X̂n, S and δXn) can be obtained by solving the objective
function minimization problem in Eq. (2.5). Ypma et al. include a steepest-descent step
to solve the minimization problem [31, 32]

{
∆X̂k =(P̂n−1−(δXn,i+X̂n,i)Si+X̂n,iδXH

n,iP̂
′
n−1)(S

H
i − P̂′H

n−1δXn,i),

X̂n,i+1= X̂n,i+α∆X̂n,
(2.6)

where ∆ represents the gradient direction, α is the scale factor, and the symbol ′ ′ repre-
sents the sparse constraint of a matrix or a vector. A more detailed theoretical derivation
has been reported by Ypma et al. [31, 32]. The multiples of the nth interface Mn can be
obtained by Mn =−X̂nδXH

n P̂′
n−1 and are subtracted from the data after all the iterations.

Alternatively, the subtraction process, can also be performed separately for each iteration
by removing the multiples estimated during the current iteration.

2.2 Interface-controlled strategy in multiple elimination by sparsity
inversion

As discussed above, the generalized EPSI method omits the adaptive subtraction step,
so it can preserve the primaries better when they overlap with multiples, especially in
shallow water explorations. In order to reduce the computational cost of the general-
ized EPSI, Ypma et al. introduced a macro-layer based scheme that divides the data into
several groups of layers [31, 32]. It was demonstrated that using a macro -layers based
scheme does not have a significant effect on obtaining the good results. However, its
high computational cost still remains the most challenging and significant problem. In
this paper, we propose a practical strategy and an approximate formula, to further re-
duce the computation demands. We use a practical interface-controlled strategy that
only estimates the multiples of specified interfaces, such as strong reflectors. In addition,
we present an approximate formula of primary impulse responses that can decrease the
computational costs.

In marine exploration, the primary imaging results are mostly contaminated by the
reflectors that generate strong multiples, such as the sea surface, sea bottom, and sub-
surface salt dome structures. Although the generalized EPSI method can theoretically
remove all types of multiples, its efficiency and flexibility still need to be improved. On
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the other hand, multiples related to comparatively weak interfaces are difficult to remove
since in real data they are easily disturbed by other noises. Taking into consideration the
fact that the internal multiples related to weak reflectors can be ignored in most cases, we
can only estimate and remove the strong reflectors related multiples to improve the effi-
ciency of the generalized EPSI method without significant quality reduction. Therefore,
the primaries of the n reflector in Eq. (2.1) can be rewritten as

Pn=P−
N

∑
n=1

Mn

≈P−
K

∑
k=1

Mk

=P−
K

∑
k=1

X̂N(k)δXH
N(k)P̂

′
n−1, (2.7)

where K is the total number of chosen strong interfaces, k=1,2,··· ,K is the ordinal number
of each chosen interface, and N(k) represents the real order of the kth specified reflector in
the sequence of all N reflectors. Based on Eq. (2.7), the objective function can be expressed
as:

JN(k)=∑
ω

∑
ir

∑
is

‖P̂N(k)−1−(δXN(k)+X̂N(k))S+X̂N(k)δXH
N(k)P̂

′
N(k−1)‖

2
2

+‖X̂N(k)‖0+‖δXN(k)‖0 (2.8)

and further simplified as:

Jk =∑
ω

∑
ir

∑
is

‖P̂k−1−(δXk+X̂k)S+X̂kδXH
k P̂′

k−1‖
2
2+‖X̂k‖0+‖δXk‖0. (2.9)

The updated equations of the generalized EPSI method are still used to obtain the
three unknowns X̂k, S and δXk. However, in this version, only the primary impulse
responses of the k=1,2,··· ,Kth specified reflectors δXk are estimated.

The generalized EPSI method implements the sparse constraint based on two prereq-
uisites. First, the primary impulse responses are band-limited spikes containing the wave
path and the reflection information (i.e. the Green’s function) and thus they have sparse-
ness in temporal-spatial domain. In Practice, the generalized EPSI method implements
the sparse constraint on X̂k by choosing a sample with maximum amplitude in the time
window of the primary responses that obtained by the first equation in Eq. (2.6). During
the picking process, it relies on the other prerequisite that the energy of the primaries is
greater than that of the multiples. Thus, by the window picking, the focal energy near
the source, the strong reflections above the kth interfaces and the strong multiples are
all excluded. The sparsification term δXk also requires a window picking that contains
the nth reflector related primary impulse responses. Designing the window for pick-
ing the interface-related primary responses is very important. Fortunately, the temporal
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windows can be easily defined. For example, it is possible to roughly give a rectangle
or hyperbolic window for each shot of collected data. In this manner, we can exclude
the unrelated strong energies, such as the focused energy near the shot, artifacts above
the first arrivals and the primaries of other strong reflectors. Next, the samples with the
largest amplitude are selected as the center axis of the window. Finally, the rectangular
or hyperbolic window is reduced or narrowed around the center point.

The source signature Si+1 is estimated by least-square fitting δXk,i+1+X̂k,i+1 and P̂′
k−1+

X̂k,i+1δXH
k,i+1P̂′

k−1 in time domain. The iterations for the estimation of the kth interface re-
lated multiples Mk are continued until some criterion for convergence is met.

In the interface-controlled EPSI method, the computational time is approximately
proportional to the number of involved reflectors. Compared with the N times esti-
mations of all the multiples performed in the generalized ESPI method in Eq. (2.5), the
interface-controlled strategy solves the minimization problem only K<N times. The de-
termination of the number of specified reflectors depends on the balance between the cal-
culation cost and removal quality. Usually, the energies of most internal multiples in the
data are those related to a few strong reflectors. Therefore, using the interface-controlled
strategy can remove most of the internal multiples in fewer computations than in the
generalized EPSI. In the test of the benchmark Pluto data (see in Section 3.2), it provided
fairly good results by only estimating and removing the surface related and the sea bot-
tom related multiples.

2.3 The approximate formula for estimating primary impulse responses

In Eq. (2.6), the right-hand side of the first equation can be split into two parts as shown
below:

∆X̂k =(P̂k−1−(δXk,i+X̂k,i)Si+X̂k,iδXH
k,i P̂

′
k−1)S

H
i

−(P̂k−1−(δXk,i+X̂k,i)Si+X̂k,iδXH
k,i P̂

′
k−1)P̂′H

k−1δXk,i. (2.10)

The first part can be expressed as the contribution from the primaries themselves for
estimating the primary impulse responses whilst the second part can be considered as
the contribution from the internal multiples. It has been demonstrated that EPSI has a
good performance in reconstructing missing data by estimating the primaries from the
surface multiples [28]. Its success is attributed to the sufficiently strong energy of the
surface multiples. Similarly, in the generalized EPSI method, the internal multiples are
theoretically useful in estimating or reconstructing primaries. However, in many cases,
it is difficult to reconstruct primaries from the usually weak internal multiples. On the
other hand, it should be noted that in each iteration, the main computations use: the Fast
Fourier Transform (FFT), the Inverse Fast Fourier Transform (IFFT) of several wavefields,
the convolution for the internal multiples estimation, and the correlation for obtaining
the second term in Eq. (2.10). Another reason why the generalized EPSI requires large
numbers of computations is due to the correlation process between two wavefields. Tak-
ing the above into consideration, we deduce an approximation formula of Eq. (2.10) as
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shown below:
∆X̂k =(P̂k−1−(δXk,i+X̂k,i)Si+X̂k,iδXH

k,iP̂
′
k−1)S

H
i . (2.11)

Omitting the second term in Eq. (2.10) significantly reduces the computational cost
of estimating the primary impulse responses. It should be noted that the approxima-
tions can be only used when internal multiples are weak. Fortunately, internal multiples
are comparatively weak and thus the approximation can be applied in many cases. In
order to improve the flexibility, one can selectively use the above approximate formula
for removing weak interface related multiples whilst using the conversional formula in
Eq. (2.6) to remove strong internal multiples.

The generalized EPSI method is a nested iterative algorithm, i.e. the outer loop re-
lates to the interface and the inner loop relates to the estimation iterations of the cur-
rent interface. The procedure for implementing the generalized EPSI method using the
interface-controlled strategy is described as below:

1. Define the temporal window or boundaries of the specified interfaces that related
to the primaries; initialize X̂k, S and δXk;

2. Start the outer loop k=1,2,··· ,K to estimate the kth related multiples Mk;

3. Calculate ∆X̂k, and then sparsify the result by picking samples in the time window
with the maximum amplitude; update X̂k,i;

4. In a Similar manner, obtain δXk;

5. Calculate the kth reflector related multiples Mk;

6. Using a temporal-spatial domain, Sk,i+1 is estimated by least-square fitting δXk,i+1+

X̂k,i+1 and P̂′
k−1+X̂k,i+1δXH

k,i+1P̂′
k−1;

7. Based on the maximum number of iterations or the threshold value of the residuals,
decide whether the iteration for the kth multiples estimation should be stopped. If
the end conditions are met, go to step 7); otherwise, repeat steps 3)-6);

8. If k+1<K, return to step 2), start the iterative estimation for the (k+1)th interface
related multiples Mk+1; otherwise, terminate the outer loop.

3 Numerical results

3.1 Two-layered model data

Initially, the modified method was tested using a synthetic two-layered model. The
model has two interfaces, the surface and a strong subsurface reflector. Accordingly,
the synthetic data contains primaries, surface-related multiples and internal multiples
related to the subsurface interface. In the test, we removed all aforementioned multiples
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Figure 3: Comparison of the results of a two-layered synthetic data test using the original formula in Eq. (2.6) and
the approximate formula in Eq. (2.11). (a) The original single shot record; (b) the results after surface multiples
elimination; (c) the results after internal multiples removal by using the original formula of the generalized EPSI
method in Eq. (2.6); (d) the results after internal multiples removal by using the approximate formula proposed
in Eq. (2.11).

using the original formula in Eq. (2.6) and the proposed approximate formula in Eq. (2.11)
respectively. Fig. 3a shows a raw common shot gather, where events of primaries are in-
dicated by black arrows, with surface-related multiples by red arrows, and internal mul-
tiples by blue arrows. Fig. 3b shows the results after surface multiples removal, which
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Figure 4: The zero-offset section of the results. (a) The zero-offset section of the original data; (b) the zero-
offset section of the results after surface multiples removal; (c) the zero-offset section of the results after internal
multiples removal by using the original formula of the generalized EPSI method in Eq. (2.6); (d) the zero-offset
section of the results after internal multiples removal by using the approximate formula proposed in Eq. (2.11).

required 30 iterations. The surface multiples were well eliminated (comparing the events
indicated by red arrows in Fig. 3a-b). Fig. 3c-d compares the results of removing internal
multiples by using the conventional formula in Eq. (2.6) with the proposed approximate
formula in Eq. (2.11). Fig. 4a-d show the zero-offset profiles of the raw data, the results
after surface multiples elimination and after internal multiples elimination by using the
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original and the approximate calculation respectively. From these results, we demon-
strate that the generalized EPSI method can successfully eliminate both surface-related
and internal multiples. The approximation approach yields good results, removing most
internal multiples (the maximum amplitude of the internal multiples is reduced by 90%).

In the results of the approximation method, the internal multiples are not removed
completely. There may be two main factors. Firstly, the interfaces in the model are de-
signed with strong impedance difference so that the internal multiples are very strong.
Secondly, the velocity model is very simple with horizontal reflecting layers. Therefore,
the energy of primary responses estimated from the internal multiples may be concen-
trated better. Two aspects all affect the contributions from internal multiples on estimat-
ing primary responses. In fact, in real seismic data processing, most internal multiples
are comparatively weak and the subsurface structure is very complex. In that case, the
approximate formula is good enough to be used in the real data processing. It is well
demonstrated in the benchmark test of the Pluto data in the next section.

3.2 The Pluto1.5 synthetic data test

The Pluto1.5 velocity model [34] contains seawater, several salt domes and large amounts
of sedimentary layers, as shown in Fig. 5. The layers that generate the strongest multi-
ples are the sea surface, the bottom of the seawater and the boundary of the salt domes.
Therefore, using the interface-controlled strategy, we can lower the computational cost by
only estimating and separating the surface related and the sea bottom related multiples.
Additionally, the approximate formula in Eq. (2.11) is applied in the Pluto1.5 synthetic
dataset test, removing the surface multiples and sea bottom related internal multiples.

3
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Figure 5: The Pluto velocity model [34].
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Figure 6: Pluto1.5 synthetic data test results. (a) The 580th shot record; (b) results after surface-related
multiple removal; (c) results after seafloor-related internal multiples removal applying the original formula in
Eq. (2.6); (d) results after seafloor-related internal multiples removal by the modified method.

Fig. 6a shows a common shot gather of the Pluto dataset. The red arrows indicate
the surface-related multiples and the blue arrows indicate the sea bottom related internal
multiples which arrive at 4s to 5.6s. The shot record shows that the internal multiples
generated by the strong interfaces are much weaker than the surface multiples. Fig. 6b
presents the results after the removal of surface-related multiples. As seen in Fig. 6b,
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Table 1: Comparison of the computational cost for estimating sea bottom related internal multiples when using
the original formula in Eq. (2.6) and the approximate formula in Eq. (2.11).

Computational parameters The traditional formula The approximate formula

Total Iterations 4 4

Computational nodes 8 CPU cores 8 CPU cores

Memory 18.345G 9.785G

Computational time 2373.01s 747.751s

after the removal of surface multiples, the internal multiples become sharper and easier
to distinguish. It was found that the blue arrow pointed multiples, that related to the
sea bottom, are the most prominent internal multiples. The result obtained using the tra-
ditional method and our interface-controlled strategy is shown in Fig. 6c-d respectively.
Comparing Fig. 6a-c, we demonstrate that only estimating and removing the surface and
the sea bottom related multiples gives satisfactory results, especially the surface multi-
ples near 2s, 3.8s and 5.4s, and the internal multiples near 4-5.6s. The corresponding
zero-offset sections of the results are shown in Fig. 7a-d. The procedure required a total
of 30 iterations for the removal of surface multiples and only 4 iterations for the esti-
mation of sea bottom related internal primaries. Table 1 shows a comparison between
the computational demands for estimating sea bottom related internal multiples using
the original formula in Eq. (2.6) and our modified version which uses an approximation
Eq. (2.11). Under the same parallel computing environment, totally 4 iterations are re-
quired to predict the sea bottom related multiples using both the original formula and
the approximate formula. The memory consumptions are 18.345G and 9.785G (only con-
sidering 3D variables and ignoring 1D or 2D variables) while the computational times
are 2373.01s and 747.751s respectively. Note that the computations are counted only for
estimation of sea bottom related internal multiples. It means that the approximation in
Eq. (2.11) saves about 68% computations for estimating internal multiples.

4 Conclusions

We have proposed a modified method based on the generalized EPSI procedure to im-
prove the computational efficiency in estimating primaries and internal multiples. We
first introduced an interface-controlled strategy into the generalized EPSI method by only
estimating multiples related to few strong reflection interfaces, such as the sea surface,
sea bottom. The internal multiples related to weak reflectors have negligible effect on the
imaging result. The interface-controlled strategy selectively separates multiples related
to specified strong reflectors, according to the data characteristics, and thus significantly
reduces the computational cost as there is no need to remove all multiples. The arithmetic
operations and computational time were approximately proportional to the number of
involved reflectors. The computational demands decreased linearly with a reduction in
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Figure 7: The zero-offset section of the results of the Pluto data test. (a) The zero-offset section of the original
dataset; (b) the zero-offset section of the data after surface multiple removal; (c) the zero-offset section of the
result after sea bottom related internal multiple removal by the original formula Eq. (2.6); (d) the zero-offset
section of the data after sea bottom related internal multiple removal by our modified method.

the involved interfaces, whilst still obtaining satisfactory results. In addition, we pro-
posed an approximate formula for estimating primary impulse responses by ignoring
the contributions of internal multiples to the primary response estimation. Compared to
other waves, the internal multiples are usually weak and thus have negligible effect on
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estimating the primary responses. We have applied this new method on the two-layered
synthetic data and the Pluto1.5 benchmark data. In the Pluto dataset test, using the ap-
proximate formula reduces the computational time by about 68% for estimating the in-
ternal multiples related to the sea bottom. The results demonstrate the effectiveness and
high-efficiency of the proposed method. The improvements in the modified method may
increase its practicability of the generalized EPSI method in industry.
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Appendix A

Based on the iterative feedback model, the generalized EPSI method expresses the full
wavefield including primaries and multiples in the frequency domain as below:

P−=P0+M0=X0S++X0R−P−, (A.1)

where P− represents the full wavefield, P0 the primaries, M0 the multiples, X0 are the
primary responses, S is the seismic wavelet, R− is the upgoing reflection coefficient of the
free surface, superscript ’−’ represents the upgoing wavefield, and subscript ’0’ represents
the depth of the surface (n=0). In Eq. (A.1) the full wavefield P− is the summation of the
primaries P0 and the multiples M0. The term P0 can be expressed by the multidimensional
convolution of X0 and S, where S=s(ω)I; M0 can be obtained through multidimensional
convolution of X0, R and P−.

According to Eq. (A.1), the objective function of the EPSI method is established

J=∑
ω

∑
is

∑
ir

‖P−X0S−X0RP‖2
2+‖X0‖0, (A.2)

where ‖·‖0 represents ”zero” norm, i.e. the number of non-zero elements. ω, is and ir are
the indexes related to the frequency, shot number and receiver number respectively. The
symbol ∑ω ∑is ∑ir · represents the summation of the objects related to all the frequencies,
shots and receivers. In Eq. (A.2), the first term at the right-hand side of the equation is
the total residual of the estimation of primaries and multiples, and the second term is
the sparse constraint on primary impulse responses. This equation has two unknowns:
the primary responses X0 and the seismic wavelet S+. The minimization problem of
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the objective function is solved based on the steepest descend algorithm. The difference
between the EPSI method and the SRME method is that in the EPSI method the mini-
mization of Eq. (A.2) ensures that the objective function goes to zero whilst in the SRME
method it assumes that the primaries contain a minimum energy.
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