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Abstract. A mathematical model for the steady, mixed convection heat and mass
transfer along a semi-infinite vertical plate embedded in a micropolar fluid in the
presence of Soret and Dufour effects is presented. The non-linear governing equa-
tions and their associated boundary conditions are initially cast into dimensionless
forms using local similarity transformations. The resulting system of equations is
then solved numerically using the Keller-box method. The numerical results are
compared and found to be in good agreement with previously published results
as special cases of the present investigation. The non-dimensional velocity, mi-
crorotation, temperature and concentration profiles are displayed graphically for
different values of coupling number, Soret and Dufour numbers. In addition, the
skin-friction coefficient, the Nusselt number and Sherwood number are shown in a
tabular form.
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1 Introduction

Flows in which the acceleration forces are large in comparison with the viscous forces,
or the diffusion times are large in comparison with the convection times, or the con-
vection velocities are large in comparison with the diffusion velocities, it can be shown
that, e.g., the influences of wall boundaries on flows are restricted to small region (thin
layer) near the walls. This thin layer where friction effects cannot be ignored is called
the boundary layer. Such flows can therefore be subdivided into body-near regions,
where viscous influences on flows have to be considered, and regions that are dis-
tant from the wall, which can be regarded as being free from viscous influences. This
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boundary layer theory was proposed by Ludwig Prandtl in 1904. Prandtl concluded
that it might be sufficient in an analysis of a flow field to consider action of viscosity
within these boundary layers, whereas the flow outside the boundary layers may be
considered inviscid. He then proceeded to simplify the conservation equation by esti-
mating the order of magnitude of the various terms in the conservation equations, and
thus he derived the so-called boundary layer equations (Eckert and Drake, see [1]).
Analytical treatment of the Navier-Stokes equations present great difficulties even in
the case of steady two-dimensional incompressible flows. Only a limited number of
exact solutions are known to exist for some special cases of these equations. An im-
portant contribution by Prandtl was to show that the Navier-Stokes equations can be
simplified to yield an approximate set of boundary layer equations (Bejan, see [2]).

The analysis of mixed convection boundary layer flow along a vertical plate em-
bedded in viscous fluid has received considerable theoretical and practical interest.
The phenomenon of mixed convection occurs in many technical and industrial prob-
lems such as electronic devices cooled by fans, nuclear reactors cooled during an emer-
gency shutdown, a heat exchanger placed in a low-velocity environment, solar collec-
tors and so on. Several authors have studied the problem of mixed convection about
different surface geometries. When heat and mass transfer occur simultaneously in
a moving fluid, the relations between the fluxes and the driving potentials are of a
more intricate nature. It has been observed that an energy flux can be generated not
only by temperature gradients but also by concentration gradients. The energy flux
caused by a concentration gradient is termed the diffusion-thermo (Dufour) effect. On
the other hand, mass fluxes can also be created by temperature gradients and this em-
bodies the thermal-diffusion (Soret) effect. In most of the studies related to heat and
mass transfer process, Soret and Dufour effects are neglected on the basis that they
are of a smaller order of magnitude than the effects described by Fouriers and Ficks
laws. But these effects are considered as second order phenomena and may become
significant in areas such as hydrology, petrology, geosciences, etc. The Soret effect,
for instance, has been utilized for isotope separation and in mixture between gases
with very light molecular weight and of medium molecular weight. The Dufour ef-
fect was recently found to be of order of considerable magnitude so that it cannot be
neglected (see Eckert and Drake [1]). Dursunkaya and Worek [3] studied diffusion-
thermo and thermal-diffusion effects in transient and steady natural convection from
a vertical surface, whereas Kafoussias and Williams [4] presented the same effects on
mixed convective and mass transfer transfer steady laminar boundary layer flow over
a vertical flat plate with temperature dependent viscosity. Postelnicu [5] studied nu-
merically the influence of a magnetic field on heat and mass transfer by natural con-
vection from vertical surfaces in porous media considering Soret and Dufour effects.
Both free and forced convection boundary layer flows with Soret and Dufour effects
have been addressed by Abreu et al. [6]. Alam and Rahman [7] have investigated the
Dufour and Soret effects on mixed convection flow past a vertical porous flat plate
with variable suction. Recently, the effect of Soret and Dufour parameters on free con-
vection heat and mass transfers from a vertical surface in a doubly stratified Darcian
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porous medium has been reported by Lakshmi Narayana and Murthy [8].
The study of non-Newtonian fluid flows has gained much attention from the re-

searchers because of its applications in biology, physiology, technology and indus-
try. In addition, the effects of heat and mass transfer in non-Newtonian fluid also
have great importance in engineering applications like the thermal design of indus-
trial equipment dealing with molten plastics, polymeric liquids, foodstuffs, or slurries.
Several investigators have extended many of the available convection heat and mass
transfer problems to include the non Newtonian effects. Many of the non-Newtonian
fluid models describe the nonlinear relationship between stress and the rate of strain.
But the micropolar fluid model introduced by Eringen [9] exhibits some microscopic
effects arising from the local structure and micro motion of the fluid elements. Further,
the micropolar fluid can sustain couple stresses and include classical Newtonian fluid
as a special case. The model of micropolar fluid represents fluids consisting of rigid,
randomly oriented (or spherical) particles suspended in a viscous medium where the
deformation of the particles is ignored. Micropolar fluids have been shown to ac-
curately simulate the flow characteristics of polymeric additives, geomorphological
sediments, colloidal suspensions, haematological suspensions, liquid crystals, lubri-
cants etc. The mathematical theory of equations of micropolar fluids and applica-
tions of these fluids in the theory of lubrication and porous media are presented by
Lukaszewicz [10]. The heat and mass transfer in micropolar fluids is also important in
the context of chemical engineering, aerospace engineering and also industrial man-
ufacturing processes. The problem of mixed convection heat and mass transfer in
the boundary layer flow along a vertical surface submerged in a micropolar fluid has
been studied by a number of investigators. Ahmadi [11] has studied the boundary
layer flow of a micropolar fluid over a semi-infinite plate. Laminar mixed convection
boundary layer flow of a micropolar fluid from an isothermal vertical flat plate has
been considered by Jena and Mathur [12]. Asymptotic boundary layer solutions are
presented for the combined convection from a vertical semi-infinite plate to a microp-
olar fluid by Gorla et al. [13]. Tian-Yih Wang [14] have examined the effect of wall
conduction on laminar mixed convection heat transfer of micropolar fluids along a
vertical flat plate. Although the Soret and Dufour effects of the medium on the heat
and mass transfer in a micropolar fluid are important, very little work has been re-
ported in the literature. Beg et al. [15] have analyzed the two dimensional coupled
heat and mass transfer of an incompressible micropolar fluid past a moving vertical
surface embedded in a Darcy-Forchheimer porous medium in the presence of Soret
and Dufour effects. A mathematical model for the steady thermal convection heat
and mass transfer in a micropolar fluid saturated Darcian porous medium in the pres-
ence of Dufour and Soret effects and viscous heating is presented by Rawat and Bhar-
gava [16].

Motivated by the investigations mentioned above, the purpose of the present work
is to investigate the Soret and Dufour effects on mixed convection heat and mass trans-
fer along a semi-infinite vertical plate in a micropolar fluid with uniform wall temper-
ature and concentration. The Keller-box method given in [17] and [18] is employed to
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solve the non-linear system in the problem. The effects of micropolar parameter, Soret
and Dufour numbers are examined and are displayed through graphs. The results are
compared with relevant results in the existing literature and are found to be in good
agreement.

2 Mathematical formulation

Consider a steady, two-dimensional mixed convective heat and mass transfer along a
semi-infinite vertical plate embedded in a free stream of micropolar fluid with velocity
u∞, temperature T∞ and concentration C∞. Choose the coordinate system such that x-
axis is along the vertical plate and y-axis normal to the plate. The physical model
and coordinate system are shown in Fig. 1. The plate is maintained at uniform wall
temperature and concentration Tw and Cw respectively. These values are assumed to
be greater than the ambient temperature T∞ and concentration C∞ at any arbitrary
reference point in the medium (inside the boundary layer). In addition, the Soret and
Dufour effects are considered.

Using the Boussinesq and boundary layer approximations, the governing equa-
tions for the micropolar fluid in the presence of Soret and Dufour effects (see [11–13]
and [19]) are given by

∂u
∂x

+
∂v
∂y

= 0, (2.1a)
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where u and v are the velocity components in x and y directions respectively, ω is
the component of microrotation whose direction of rotation lies in the xy-plane, T
is the temperature, C is the concentration, g∗ is the acceleration due to gravity, ρ is
the density, µ is the dynamic coefficient of viscosity, βT is the coefficient of thermal
expansion, βC is the coefficient of solutal expansions, κ is the vortex viscosity, j is
the micro-inertia density, γ is the spin-gradient viscosity, α is the thermal diffusivity,
D is the solutal diffusivity of the medium, Cp is the specific heat capacity, Cs is the
concentration susceptibility, Tm is the mean fluid temperature and KT is the thermal
diffusion ratio. The last term on the right-hand side of the energy equation (2.1d) and
diffusion equation (2.1e) signifies the Dufour or diffusion-thermo effect and the Soret
or thermal-diffusion effect, respectively [19].
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Figure 1: Physical model and coordinate system.

The boundary conditions are

u = 0, v = 0, ω = 0, T = Tw, C = Cw, at y = 0, (2.2a)
u = u∞, ω = 0, T = T∞, C = C∞, as y → ∞, (2.2b)

where the subscripts w and ∞ indicate the conditions at the wall and at the outer
edge of the boundary layer respectively and k is the thermal conductivity of the fluid.
The boundary condition ω=0 in Eq. (2.2a), represents the case of concentrated particle
flows in which the microelements close to the wall are not able to rotate.

In view of the continuity equation (2.1a), we introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.3)

Substituting (2.3) in (2.1b)-(2.1e) and then using the following local similarity trans-
formations
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where the primes indicate partial differentiation with respect to η alone, ν is the
kinematic viscosity, Grx=g∗βT(Tw − T∞)x3/ν2 is the local thermal Grashof num-
ber, Gcx=g∗βC(Cw − C∞)x3/ν2 is the local solutal Grashof number, Rex=u∞x/ν
is the local Reynolds number, gs=Grx/Re2

x is the temperature buoyancy param-
eter, gc=Gcx/Re2

x is the mass buoyancy parameter, Pr=ν/α is the Prandtl num-
ber, Sc=ν/D is the Schmidt number, J=xν/[ju∞] is the micro-inertia density
and λ=γ/[jρν] is the spin-gradient viscosity, N=κ/(µ + κ) (0≤N<1) is the Cou-
pling number [20], D f=DKT(Cw − C∞)/[CsCpν(Tw − T∞)] is the Dufour number and
Sr=DKT(Tw − T∞)/[Tmν(Cw − C∞)] is the Soret number.

Boundary conditions (2.2) in terms of f , g, θ and ϕ become

η = 0 : f (0) = 0, f ′(0) = 0, g(0) = 0, θ(0) = 1, ϕ(0) = 1, (2.6a)
η → ∞ : f ′(∞) = 1, g(∞) = 0, θ(∞) = 0, ϕ(∞) = 0. (2.6b)

If D f=0 and Sr=0, the problem reduces to mixed convection heat and mass transfer
in a micropolar fluid without Soret and Dufour effects. Also, in the limit as N→0, the
governing equations (2.1a)-(2.1e) reduce to the corresponding equations for a mixed
convection heat and mass transfer in a viscous fluid. Hence, the case of combined free-
forced convective heat and mass transfer on a semi-infinite vertical plate of Kafous-
sias [21] can be obtained by taking N=0, D f=0 and Sr=0.

The wall shear stress, heat and mass transfers from the plate respectively are given
by

τw =
[
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+ κω
]

y=0
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[∂T
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]
y=0
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[∂C

∂y

]
y=0

. (2.7)

The non-dimensional skin friction C f=2τw/[ρU2
∗ ], the local Nusselt number

Nux=qwx/[k(Tw − T∞)] and local Sherwood number Shx=qmx/[D(Cw − C∞)], where
U∗ is the characteristic velocity, are given by

C f Re
1
2
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( 2
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)
f ′′(0),
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Re
1
2
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Shx

Re
1
2
x

= −ϕ′(0). (2.8)

3 Results and discussions

The system of non-linear ordinary differential equations (2.5a)-(2.5d) together with the
boundary conditions (2.6) are locally similar and solved numerically using Keller-box
implicit method discussed in [17, 18], and in the review paper by Keller [22]. This
method has been successfully used by several authors to study boundary layer flows
(see [24, 25] and [23]). The method has the following four main steps:

Step 1 Reduce the system of Eqs. (2.5a) to (2.5d) to a first order system;

Step 2 Write the difference equations using central differences;
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Step 3 Linearize the resulting algebraic equations by Newtons method and write them in
matrix-vector form;

Step 4 Use the block-tridiagonal-elimination technique to solve the linear system.

This method has been proven to be adequate and give accurate results for boundary
layer equations. A uniform grid was adopted, which is concentrated towards the
wall. The calculations are repeated until some convergent criterion is satisfied and the
calculations are stopped when

δ f ′′0 ≤ 10−8, δg′0 ≤ 10−8, δθ′0 ≤ 10−8, and δϕ′
0 ≤ 10−8.

In the present study, the boundary conditions for η at ∞ are replaced by a sufficiently
large value of η where the velocity approaches one and microrotation, temperature
and concentration approach zero. In order to see the effects of step size (∆η) we ran the
code for our model with three different step sizes as ∆η=0.001, ∆η=0.01 and ∆η=0.05
and in each case we found very good agreement between them on different profiles.
After some trials we imposed a maximal value of η at ∞ of 10 and a grid size of η as
0.01.

In order to study the effects of micropolar parameter N, Soret number Sr and Du-
four number D f explicitly, computations were carried out for the cases of gs=1.0 and
gc=0.1, Pr=0.71, Sc=0.22. The values of Soret number Sr and Dufour number D f are
chosen in such a way that their product is constant according to their definition, pro-
vided that the mean temperature Tm is constant. The values of micropolar parameters
J=0.1 and λ=1.0 are chosen so as to satisfy the thermodynamic restrictions on the
material parameters given by Eringen [9].

In the absence of coupling number N, Soret number Sr and Dufour number D f
with J=0, λ=0, Pr=0.73 and Sc=0.24 for different values of buoyancy parameters
gs and gc, the results have been compared with the special case Kafoussias [21] and
found that they are in good agreement, as shown in Table 1.

In Figs. 2-5, the effects of the coupling number N on the dimensionless velocity, mi-
crorotation, temperature and concentration are presented for fixed values of Soret and

Table 1: Comparison of results for a vertical plate in viscous fluids without Soret and Dufour effects case [21].

f ′′(0) −θ′(0)
gs gc Kafoussias Present Kafoussias Present
0.1 0.05 0.5538 0.5538 0.3296 0.3296
0.1 0.10 0.6317 0.6317 0.3404 0.3404
0.1 0.20 0.7776 0.7776 0.3589 0.3589
1.0 0.05 1.4452 1.4452 0.4129 0.4129
1.0 0.10 1.5007 1.5007 0.4179 0.4179
1.0 0.20 1.6096 1.6096 0.4274 0.4274
10.0 0.05 6.8389 6.8389 0.6449 0.6449
10.0 0.10 6.8715 6.8714 0.6461 0.6462
10.0 0.20 6.9366 6.9363 0.6487 0.6488
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Figure 2: Velocity profiles for various values of
N.

Figure 3: Microrotation profiles for various values
of N.

Figure 4: Temperature profiles for various values
of N.

Figure 5: Concentration profiles for various val-
ues of N.

Dufour numbers. As N increases, it can be observed from Fig. 2 that the maximum ve-
locity decreases in amplitude and the location of the maximum velocity moves farther
away from the wall. Since N→0 corresponds to viscous fluid, the velocity in case of
micropolar fluid is less compared to that of viscous fluid case. From Fig. 3, it is shown
that, as N increase the angular velocity profiles decrease beside the vertical plate and
increase far away from the vertical plate. As N→0, the microrotation tends to zero
because in the limit N tends to zero the micro-polarity is lost and the fluid behaves as
non-polar fluid. It is clear from Fig. 4 that the temperature increases with the increase
of coupling number N. It can be seen from Fig. 5 that the concentration of the fluid
increases with the increase of coupling number N. The temperature and concentration
in case of micropolar fluids is more than that of the Newtonian fluid case.

Fig. 6 displays the non-dimensional velocity for different values of Soret number
Sr and Dufour number D f with fixed value of coupling number N. It is observed that
the velocity of the fluid increases with the increase of Dufour number (or decrease
of Soret number). It can be observed from Fig. 7 that the microrotation component
decrease near the vertical plate and increase far away from the plate with increas-
ing Dufour number (or decreasing of Soret number), showing a reverse rotation near
the two boundaries. The reason is that the microrotation field in this region is dom-
inated by a small number of particles spins that are generated by collisions with the
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Figure 6: Velocity profiles for various values of
Sr and D f .

Figure 7: Microrotation profiles for various values
of Sr and D f .

Figure 8: Temperature profiles for various values
of Sr and D f .

Figure 9: Concentration profiles for various val-
ues of Sr and D f .

boundary. The dimensionless temperature for different values of Soret number Sr and
Dufour number D f for N=0.3, is shown in Fig. 8. It is clear that the temperature of the
fluid increases with the increase of Dufour number (or decrease Soret number). Fig. 9
demonstrates the dimensionless concentration for different values of Soret number
Sr and Dufour number D f for N=0.3. It is seen that the concentration of the fluid
decreases with increase of Dufour number (or decrease of Soret number).

The variations of f ′′(0), −θ′(0) and −ϕ′(0) which are proportional to the local skin-
friction coefficient, rate of heat and mass transfers are shown in Table 2 for different
values of the coupling number with fixed Sr=2.0 and D f=0.03. From this table it is
observed that the the value of f ′′(0) decreases with the increasing values of coupling
number. Also, these values (local viscous drag) are higher for the Newtonian fluid
(N=0) than the micropolar fluid (N ̸=0). The heat and mass transfer rates decrease
with the increasing values of coupling number. From this data, it is obvious that mi-
cropolar fluids present lower heat and mass transfer values than those of Newtonian
fluids. Since the skin-friction coefficient as well as heat and mass transfers are lower
in the micropolar fluid comparing to the Newtonian fluid, which may be beneficial in
flow, temperature and concentration control of polymer processing. Finally, the effects
of Dufour and Soret number on the local skin-friction coefficient and the rate of heat
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Table 2: Effects of skin friction, heat and mass transfer coefficients for varying values of coupling, Soret and
Dufour numbers.

N Sr D f f ′′(0) −θ′(0) −ϕ′(0)
0.1 2.0 0.03 1.42349 0.40971 0.14463
0.2 2.0 0.03 1.31175 0.40212 0.14390
0.3 2.0 0.03 1.19206 0.39385 0.14305
0.4 2.0 0.03 1.06430 0.38470 0.14204
0.5 2.0 0.03 0.92832 0.37437 0.14078
0.6 2.0 0.03 0.78382 0.36230 0.13909
0.7 2.0 0.03 0.62996 0.34740 0.13660
0.8 2.0 0.03 0.46447 0.32716 0.13242
0.9 2.0 0.03 0.28013 0.29360 0.12368
0.2 2.0 0.03 1.31175 0.40212 0.14390
0.2 1.6 0.0375 1.30927 0.40135 0.16397
0.2 1.2 0.05 1.30717 0.40040 0.18402
0.2 1.0 0.06 1.30641 0.39977 0.19406
0.2 0.8 0.075 1.30602 0.39896 0.20412
0.2 0.5 0.12 1.30717 0.39686 0.21935
0.2 0.2 0.3 1.31861 0.38950 0.23553
0.2 0.1 0.6 1.34062 0.37741 0.24260

and mass transfer are also shown in this table. The behavior of these parameters is
self-evident from the Table 2 and hence are not discussed for brevity.

4 Conclusions

In this paper, a boundary layer analysis for mixed convection heat and mass transfer
in a micropolar fluid over a vertical plate with uniform wall temperature and concen-
tration conditions in the presence of Soret and Dufour effects is considered. Using the
similarity variables, the governing equations are transformed into a set of non-similar
parabolic equations and numerical solution for these equations has been presented for
different values of parameters. The higher values of the coupling number N (i.e., the
effect of microrotation becomes significant) result in lower velocity distribution but
higher wall temperature; wall concentration distributions in the boundary layer com-
pared to the Newtonian fluid case. The numerical results indicate that the skin friction
coefficient as well as rate of heat and mass transfers in the micropolar fluid are lower
compared to that of the Newtonian fluid. The present analysis has also shown that the
flow field is appreciably influenced by the Dufour and Soret effects.
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